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A NON-ARCHIMEDEAN ANALOGUE OF
THE KOBAYASHI SEMI-DISTANCE AND ITS
NON-DEGENERACY ON ABELIAN VARIETIES

WILLIAM CHERRY

One way to state the Schwarz-Pick Lemma is to say that holomorphic maps from
the unit disc to itself are distance decreasing in the hyperbolic (Poincar6) metric.
The Kobayashi semi-distance on a complex analytic space is an intrinsically defined
semi-distance with the property that holomorphic mappings are distance decreasing
in the Kobayashi semi-distance and such that the Kobayashi semi-distance on the unit
disc is just the hyperbolic distance coming from the Poincar6 metric.

If d denotes the Kobayashi semi-distance on a complex analytic space X, it is
possible that d (x, y) 0 for two distinct points x :/: y in X. For instance, if X C
is the complex plane, then d(x, y) 0 for every x and y in C. Therefore, if X is
any analytic space and f is a non-constant holomorphic map from C into X, then
d(x, y) 0 for any two points x, y in the image of f by the distance decreasing
property of holomorphic maps. Brody’s Theorem, [Br], in its weakest formulation
says that in the case that X is compact, this is the only way the Kobayashi semi-
distance can degenerate. Namely,

THEOREM (BRODY). Let X be a compact, complex analytic space. Then there
exist two distinct pointsx y in X such that the Kobayashi semi-distanced (x, y) 0

ifand only ifthere exists a non-constant holomorphic mapfrom C into X.

In this paper, I define a non-Archimedean analogue of the Kobayashi semi-
distance, and, using Berkovich’s, [Ber], theory ofnon-Archimedean analytic spaces,
I show that this semi-distance does not degenerate on Abelian varieties. In [Chl (or
see [Ch2]), I showed that every non-Archimedean map from the atiine line A into
an Abelian variety must in fact be constant. Therefore, I view the main result of this
paper as the first step in answering:
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QUESTION. ff X is a non-singular projective algebraic variety defined over an
algebraically closed field complete with respect to a non-trivial, non-Archimede-
an valuation, is it true that there exists a non-constant analytic mapfrom A into X
ifand only ifthe Kobayashi semi-distance on X is not an actual distance?

Note that the proof of Brody’s Theorem makes essential use ofcompactness, and
there are counterexamples which show that some sort of compactness assumption is
necessary; see Example 3 on page79 of [L ]. Non-Archimedean algebraically closed
fields are not locally compact, so the proof ofBrody’s Theorem does not immediately
generalize to the non-Archimedean case.

In this paper, I will assume that the reader is acquainted with the main ideas in
[Ber] or at the very least with the basic theory of rigid analysis as in [BGR]. For a
more leisurely exposition of the results presented in this paper, I refer the reader to
my thesis, [Ch ].

1. Preliminaries

Throughout this paper, K will denote an algebraically closedfield, complete with
respect to a non-trivial, non-Archimedean absolute value I.

The prototypical example of such a field is the p-adic field Cp, which is the
completion of the algebraic closure of Qp, which itself is the completion of Q with
respect to the p-adic valuation IIp normalized so that IPlp p-l. It is a theorem that
Cp is algebraically closed, and the field Cp is the p-adic analogue of the complex
numbers.

By analytic space, I will always mean analytic space in the sense of Berkovich as
described in [Ber]. Berkovich’s idea of analytic spaces has since been generalized in
a couple of different directions. Berkovich himself gives a generalization in [Ber2].
For a different approach, a little more analogous to schemes, see [Sch]. Since I will
mainly be concerned with algebraic varieties, Berkovich’s original theory will be
more than sufficient for my purposes. Recall that each point in an analytic space
corresponds to a bounded multiplicative semi-norm on the space of functions on
some affinoid neighborhood. I will use the notation Ix to denote the semi-norm
corresponding to a point x in an analytic space X. Given an algebraic variety, one can
provide it with an analytic structure in a completely straightforward manner; see [Ber]
for details. I will denote both the algebraic variety and its analytification by the same
symbol, and I doubt that this will lead to any confusion. Unless otherwise specified,
all analytic spaces and maps will be defined over a fixed field K, algebraically closed
and complete with respect to a non-trivial, non-Archimedean valuation. The symbol
A denotes the affine line, and the symbol A1 denotes the affine line with the origin
removed. The symbol pn denotes projective n-space, and p1 therefore denotes the
projective line. The symbol Bn will be used to denote the closed unit n-ball, which is
the affinoid space associated to the Tate algebra K < z zn >, which is the ring
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of formal power series in n-variables with coefficients in K whose absolute values
tend to zero. The symbol B or simply B will denote the one dimensional closed unit
ball. The open unit n-ball is then defined by

n {X E Bn" IZj Ix < forj n}.

The one dimensional open unit ball is denoted by 1 or simply 1.

In this paper, I will always assume that any affinoid space or subdomain is strictly
affinoid. I will also assume that all analytic spaces are reduced and separated.

Recall that to each point x in an analytic space X, one associates a field/C(x),
which is a complete, non-Archimedean extension of K, the field of definition for
X. The field/C(x) is obtained by first taking the ring of analytic functions on an
affinoid neighborhood ofx modulo the kernel of Ix and then completing the fraction
field of this ring with respect to Ix, For an analytic function f, the notation f (x)
denotes the image of f in/C(x) under the canonical map. I denote by X(K) the set
of points x E X such that/C(x) K. In the case that K is algebraically closed, this
space corresponds to the set ofpoints in the rigid analytic space associated to X. For
example, A (K) K, and A (K) K.

Throughout this paper, the use ofthe character will be reserved to denote a residue
class. For instance, K denotes the residue class field of K, the field defined by the
elements in K of norm < modulo the elements in K of norm < 1. In the case that
a is an element of K with norm < 1, denotes the image of a in K. We will also
see that it is sometimes possible to associate to an analytic spac X, a reduction X,
which is an algebraic variety defined over the residue class field K. In this case, there
will be a reduction map zr" X X, so given a pointx in X, the notation f is used to
denote the image of x under the reduction map rr. Affinoid spaces X have canonical
reductions, and in the case that X is affinoid, the notation will always refer to the
canonical reduction.

Recall that by an admissible affinoid cover bl of an analytic space X, one means a
cover H consisting of affinoid subspaces U such that if V is any affinoid subspace of
X, thenHIv {U V} is afinite covering of V. Let Ube an aftinoid space. Let V be
an affinoid subdomain of U. If the induced morphism V --+ U is an open immersion,
then V is called aformal affinoid subdomain of U. Now let X be an analytic space.
An admissible, affinoid coveting bt of X is called formal if the intersection U f3 V is
a formal affinoid subdomain of Ufor everyU, V H. Given a formal coveting b/of
X, one gets an algebraic variety Xu over K and a reduction map

ru: X -- Xu.

If and V are two formal affinoid coverings of X, then the reductions Xu and Xv
are in general non-isomorphic. However, two formal coverings and V are called
equivalent if U V is a finite union of formal subdomains of both U and V for
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every U 6 L/and every V 6 V. Equivalent formal coverings give rise to isomorphic
reductions.

By an analytic group G, one means a group object in the category of analytic
spaces. This means that there exist three morphisms

(a) #" G G-- G (multiplication)
(b) i" G G (inverse)
(c) e: G G (identity)

satisfying the obvious relations. Note that G itself is not a group, but it follows easily
that G(K) is a group.

The two most important examples of analytic groups are the additive group Ga,
which as an analytic space is isomorphic to A and the multiplicative group Gm,

which as an analytic space is isomorphic to A 1. Another important analytic group
is the affinoid analytic group Gm, associated to the Tate algebra K < z, z-1 >. The
canonical reduction of Gm, is the multiplicative group over the residue class field K.
Aformal analytic space X is an analytic space together with a fixed equivalence

class of formal coverings. Such a space is denoted by (X,/g), where/g is a formal
covering of X representing its equivalence class. A morphism

q: (X, L/) --+ (Y, V)

of formal analytic spaces is a morphism q" X -- Y of analytic spaces such that
there exists a formal covering L/’ of X equivalent to/g and a formal covering )2’ of Y
equivalent to V such that for every U 6/g’, there exists a V 6 V’ such that 4 (U) C V.
Recall that such a morphism induces a morphism

dp: Xu -- Yv,

and this is the whole point of considering the category of formal analytic spaces.
One easily sees that products exist in the category of formal analytic spaces, so

it makes sense to talk aboutformal analytic groups, which are group objects in the
category of formal analytic spaces.

There is an obvious functor from the category of formal analytic spaces to the
category of analytic spaces, and from the category of formal analytic groups to the
category of analytic groups, namely thefunctor which simply forgets the formal cover.
By a theorem of Bosch [Bos], this functor from the category offormal analytic groups
to the category of analytic groups is fully faithful, so in particular an analytic group
can have at most oneformal analytic group structure. Of course it might be that some
analytic groups cannot be made into formal analytic groups at all, and in fact, this is
the case. Note that the problem is not in finding a formal covering for an analytic
group G, but rather that not all analytic groups G have formal coverings such that the
multiplication map from the product of G with itself will then be a morphism in the
category of formal analytic spaces..:_. This last property is equivalent to the existence
of a formal covering L/such that Gu is a group variety.
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The term affine analytic torus, or affine torus, refers to a product of multiplicative
groups Grn. (Actually, this should be called a split torus, but in this paper I will only be
concerned with split tori.) The term affinoid torus will mean a product of the affinoid
group Gm, The rank of an affine or affinoid torus is by definition the number of
copies of Grn or Gm, in the product. Let T be an affine torus, and let 1-’ be a torsion
free, discrete subgroup of T(K). Then, I" acts discretely and freely on T, so the
quotient space Xr T/F is an analytic space. If the rank of 1-’ is equal to the rank
of T, then Xr is called a complete analytic torus, or a complete toms.

2. A non-Archimedean analogue of the Kobayashi semi-distance

In this section I define a non-Archimedean analogue of the Kobayashi semi-
distance. I also discuss its basic properties and give some basic examples and lem-
mas. Since the full set of points of a Berkovich analytic space X is not, in general,
metrizable, I will define a semi-distance only on the set of K-points X (K).

When one defines the Kobayashi semi-distance over the complex numbers, one
starts with the Poincar6 metric on the unit disc. The most important property of the
Poincar6 metric in this context is that holomorphic functions from the disc to the disc
are distance decreasing, meaning that for such a map f, the distance from f(zl) to

f (z2) is < the distance from z to z 2 for all pairs of points z l, z 2 in the unit disc. To
define a non-Archimedean analogue of the Kobayashi semi-distance, the first thing
to notice is that analytic maps from the unit ball B to itself are distance decreasing in
the standard non-Archimedean norm on B(K). We see this as follows.

PROPOSITION 2.1. Let f: Bn Bn be an analytic map, and let f: An--> An
K K

denote the reduction of f, then f is an isomorphism ifand only iff is an isomorphism.

Proof. See [BGR], 5.1.3/8.

COROLLARY 2.2. Let f: B B be an analytic map given by

kf (Z) 2-, akz
k=0

Then, f is an isomorphism ifand only if

la01 <_ 1, lal 1, and lakl < 1, for all k > 2.

Proof. The reduced map f, which is a polynomial in one variable, will be an
isomorphism if and only if it has degree one.

PROPOSITION 2.3. If f" B -- B is an analytic map, thenfor all z, w B(K),

If(z) f(w)l _< Iz- wl.
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Furthermore, iff is an analytic isomorphism, then

If(z) f(w)l --Iz wl

for all z, w in B(K).

Proof Let f(z) be given by akZ. Now, because f maps into B, one has
lakl < for all k. Therefore,

f(z) f (w) ak(zk- tOk

k=

ak(Z w)(z-1 + wzk-2 +’" + wk-2z + W-)
k=

(z- w)ak(Zk-1 + wZ-2 +’" + wk-2z + W-l).
k=l

Since lal < 1, Izl _< 1, and wl _< 1, everything inside the last sum has norm < 1.
Hence,

If(z) f(w)l < Iz- wl.
If, in addition, f is an isomorphism, then lal < for k >_ 2, and lall by
Corollary 2.2. This implies

If(z)- f(w)l--lallz- wl Iz- wl.

Remark. Lin Weng [We] has suggested an alternate definition for a hyperbolic
distance on the "open" unit ball It(L) by defining

+ Ib alp
dhyp(a, b) logq

Ib alp’
where L is a finite extension of Qp, q is the cardinality of the residue class field of
L, and logq means the logarithm with base q. At present, I prefer to stick to working
with the "closed" unit ball and the standard norm.

Once the distance decreasing property of analytic maps is established, the non-
Archimedean analogue of the complex situation can be developed by taking the unit
ball together with its standard norm as the model. Let X be an analytic space, and let
x, y X (K). Suppose that there is a sequence of analytic maps

fj:B-->X, j=l m,

and points zj, wj B(K) such that

fl(Zl) =x, fm(Wm) Y, and 3(wj) fj+l(Zj+), j m- 1.
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Figure 1

Such a sequence is called a Kobayashi chain joining x and y (Fig. 1).
The Kobayashi semi-distance is then defined by

m

d (x, y) inf Izj wj l,
j=l

where the infimum is taken over all Kobayashi chains (3, Zi, 110i) joining x and y.
If there are no Kobayashi chains joining x and y, then define d(x, y) o. The
Kobayashi semi-distance is the only (semi-) distance used in this paper, so henceforth
d will always refer to the Kobayashi semi-distance.

It is clear that d is symmetric in x and y, and that d satisfies the triangle inequal-
ity, though not necessarily the stronger non-Archimedean triangle inequality. It is,
however, possible that d(x, y) 0 but x - y, as we will see in the second example
below.

Remark. In the case ofconnected complex analytic spaces, the Kobayashi semi-
distance is always finite, but this is definitely not the case for non-Archimedean ana-
lytic spaces, as we shall see later.

Example 2.4. Let X B. Since If(z) f (w)l < Iz w for all z, w B(K)
and all analytic maps f by Proposition 2.3, we see that d(z, w) Iz wl for all
z, w B(K). Hence, the Kobayashi semi-distance on B(K) coincides with the
distance induced from the standard norm on B(K).
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Example 2.5. Let X A, and let x, y AI(K) K. Let w be a non-zero
element of B(K), and define

f B-A by f(z) x+(y-x) Z.
1/3

Note that f(O) x and f(w) y, so then d(x, y) < Iwlo But, the choice ofw was
arbitrary, so w can be chosen with w arbitrarily small, and hence

d(x, y) 0 for every x, y 6 A I(K).

Notice that in this example we have used the fact that we can make arbitrarily large
dilations of the disc when we map into A

PROPOSITION 2.6. Let X and X’ be analytic spaces, and let f: X -- X’ be an
analytic map. Let d and d’ denote the Kobayashi semi-distances on X andX respec-
tively. Then,

d’(f (x), f(y)) <_ d(x, y)

for all x, y X (K). In other words, analytic maps are distance decreasing in the
Kobayashi semi-distance. If in addition, f is an analytic isomorphism, then f is an
isometryfor the Kobayashi semi-distance.

Proof. Composition with f makes any analytic map from B to X into a map
from B to X’. Therefore, composition by f makes any Kobayashi chain connecting
x and y in X into a Kobayashi chain ofthe same length connecting f (x) and f (y) in
X’. The statement about isomorphisms follows by symmetry. D

COROLLARY 2.7. Let X be an analytic space and f: A -- X an analytic map.
Ifx, y X(K) are two points in the image off, then d(x, y) O. Therefore, ifX
is an analytic space admitting a non-constant analytic map f: A -- X, then the
Kobayashi semi-distance on Xfails to be a distance.

The next proposition relates the Kobayashi semi-distance on a product space to
the Kobayashi semi-distance on each of the factor spaces.

PROPOSITION 2.8. Let X and Y be analytic spaces, and let X x Y denote the
product space. Let dx, dr and dxxr denote the Kobayashi semi-distances on X, Y
and X x Y respectively. For all x,x’ X(K) andall y, y’ Y(K), one has

dx(x, x’) + dr(y, y’) > dxr((x, y), (x’, y’)) > max{dx(x, x’), dr(y, y’)}.

Proof. The second inequality follows from the fact that the projection maps

X x Y--- X and X x Y--- Y
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are analytic, hence distance decreasing for the Kobayashi semi-distance by Proposi-
tion 2.6. The first inequality is trivial if either term on the left-hand side is infinite, so
assume that both dx(x, x’) and dr(y, y’) are finite. Map X ---> X x Y by -> (., y)
and Y X x Y by. (x’, .), so that any Kobayashi chain connecting x to x’ in X
will connect (x, y) to (x’, y) in X x Y, and any Kobayashi chain.connecting y to y’
in Y will connect (x’, y) and (x’, y’) in X Y. Then,

dxv((x, y), (x’, y’)) < dxv((x, y), (x’, y))4-dxv((x’, y), (x’, y’))
< dx(x,x’) + dy(y, y’),

by the triangle inequality.

Example 2.9. IfX=Bn=Bx...xB,then

d((Xl Xn), (Yl Yn)) max lYj- xjl.
<j <n

To see this, it suffices to assume that

x1 Xn 0 and lYnl> lYn-ll > > ly=l > lyll

because isomorphisms preserve the Kobayashi semi-distance. Of course, we may
also assume that Yn 7 0. Now, let f" Bn Bn be given by

yl y2 yn-I
Z - --Z, uZ, Z, Z

Yn Yn yn

Since f is distance decreasing,

d((0 0), (Yl Yn)) d(f(0), f(Yn)) < lYnl.

But, the second inequality in Proposition 2.8 tells us that

lYnl <_J<_max lY < d ((0 0), (yl Yn )).

Therefore, d((0 0), (yl Y)) lyl as desired.

PROPOSITION 2.10. LetX be anon-singular analytic space. Then, the Kobayashi
semi-distance d is a continuous function on X (K) x X K).

Proof. As usual, by the triangle inequality, it suffices to check that if xm > x
in X (K), then d (Xm, x) --+ O. By the definition of non-singular, there is an analytic
map f: Bn ---> X such that f (0) x and such that f is an isomorphism onto its
range. Hence, for m sufficiently large, let Zm Bn be the point such that f(Zm) Xm.
Then, the sequence Zm tends to zero, and hence d (Zm, 0) --+ 0 because the Kobayashi
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distance on the n-ball is just the standard distance by Example 2.9. Because analytic
maps are distance decreasing in the Kobayashi semi-distance,

d(xm, x) d(f(Zm), f(0)) _< d(zm, O) O,

so d(xm, x) 0 as was to be shown.

LEMMA 2.1 1. Let X X be a finite analytic map w,.hich is a local isomor-
phism at every pointofX. If the Kobayashi semi-distance on X is an actual distance,
then the Kobayashi semi-distance on X is also an actual distance.

Proof. Let d and denote the Kobayashi semi-distances on X and. respectively.
Let x, y X (K) be two points such that d (x, y) 0. Fix a lift of x. Because B
is contractible and zr is a local isomorphism, any Kobayashi chain joining x to y in
X will lift to a Kobayashi chain of the same length joining J to some lift of y in
X. Because d (x, y) 0, there exists a sequence of Kobayashi chains joining x to y
such that the length of the chains tends to zero. Because there are only finitely many
points in X lying above y, infinitely many of these chains must lift to Kobayashi
chains joining J to a fixed lift 33 of y. Therefore, (J, 33) 0 for this particular lift. Because the Kobayashi semi-distance on X is assumed to be a true distance, this
implies . Therefore, x y, and the Kobayashi semi-distance on X must also
be a true distance.

Remark. Later, when we get to Abelian varieties, we will have toconsider infinite
analytic covering maps. In that case, the above argument will not work, but because
we have very specific knowledge about the structure of the spaces involved, we will
be able to show what we want. It would be nice to answer the following question in
general: Is it true that the Kobayashi semi-distance on an analytic space X fails to
be an actual distance if and only if the same thing is true for the universal covering
space ofX?

Caution! I should remark at this point that an 6tale morphism over the complex
numbers is also a topological covering map. This is definitely not true in the non-
Archimedean case. For example, let A and A’ be two Abelian varieties with Abelian
reduction. Any non-trivial isogeny from A to A’ will be an 6tale morphism in the
sense of algebraic geometry. However, it will not be a covering map of the underlying
Berkovich topological spaces. Indeed, if a’ is the unique point in A’ lying above the
generic point ofthe reduction A’, then the only poiin the inverse image of a’ is the
unique point of A lying above the generic point of A.

The following two lemmas show how the reduction of a formal analytic space can
affect the Kobayashi semi-distance.

LEMMA 2.12. Let X be aformal analytic space defined over an algebraically
closedfieldcomplete with respect to a non-trivial, non-Archimedean valuation. As-
sume that X, the reduction of X, does not contain any rational curves. Let Y be a
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connected analytic subspace ofP and let f: Y X be an analytic map. Then, the
image off lies above a single closed point ofX.

Proof First we show that the image of f lies entirely above the closed points in
X. Indeed, suppose there exists a..point y 6 Y such that the point x f(y) X is
such that Y is not a closed point ofX. Then, there wouldbe a non-zero homomorphism
from/C(x) into/C(y). This would imply

/C() /C(x) /C(y),

where the first inclusion follows directly from the definitions. However by Sec-
tion 1.4.4 of [Bet],/C(y) is either K or the field of rational functions in one variable
over K, but since is assumed not to be closed,/E(y) must be the rational function
field. This gives a non-constant map from PrL - X, contradicting the assumption

that X contains norational curves. Now since Y is connected, f (Y) is also connected.
The anti-continuity of reduction (Corollary 2.4.2 in [Ber]) then implies that the image
of f cannot lie above more than one closed point in X.

LEMMA 2.13. Let X be a formal analytic space with reduction X. Assume that
X is smooth and does not contain any rational curves. Then, the Kobayashi semi-
distance on X is an actual distance.

Proof. By Lemma~ 2.12, f" B - X must lie entirely above a single closed point
X because X is assumed not to contain any rational curves. Therefore, any

Kobayashi chain in X lies above a single closed point 6 X. Since X is smooth, the
inverse image of is isomorphic to 11n by Proposition 2.2 of [BL ], so the Kobayashi
semi-distance on X is an actual distance by Example 2.9. ffl

Remark. If x and y are as in the lemma and 5 , then d (x, y) cx even if X
is connected because a Kobayashi chain cannot cross from the inverse image of one
closed point to the inverse image of another closed pOint.

3. Non-Archimedean uniformization ofAbelian varieties

Over the complex numbers, every Abelian variety can be realized as C" modulo a
lattice. Over non-Archimedean ground fields, this is not at all the case. In this section,
I summarize the non-Archimedean uniformization theory of Abelian varieties. For
the details, see the work ofBosch and Ltkebohmert [BL2] and Section 6.5o..f [Ber].
A formal analytic group (G, L/) is said to have Abelian reduction if Gu is an

Abelian variety, and (G,/a) is said to have semi-Abelian reduction if Gu is a semi-
Abelian variety; a semi-Abelian variety is an extension of an Abelian variety by an
affine toms. In view ofBosch’s result, [Bos], mentioned earlier about the uniqueness
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of formal analytic group structures when they exist, an analytic group G will be said
to have Abelian or semi-Abelian reduction if G can be given the structure of a formal
analytic group with Abelian or semi-Abelian reduction.

THEOREM 3.1 (SEMI-ABELIAN REDUCTION). Let A be an Abelian variety defined
over an algebraically closed field K, complete with respect to a non-trivial, non-
Archimedean valuation. Then, there exists a unique compact subgroup N ofA such
that N is an analytic domain in A and is aformal analytic group with semi-Abelian
reduction. Furthermore, N contains a unique closedanalytic subgroup T in N such
that T is an affinoid torusfitting into an exact sequence

where B is aformal analytic group with Abelian reduction, which is the analytification
ofan Abelian variety. Note that an affinoid torus is a formal analytic group, so the
exact sequence above reduces to an exact sequence defining N as a semi-Abelian
variety.

THEOREM 3.2 (Uniformization Theorem). Let A be an Abelian variety defined
over an algebraically closed field K, complete with respect to a non-trivial, non-
Archimedean valuation. Let T1, N and B be as in Theorem 3.1. Let T be an affine
analytic torus with the same rank as T and embed T into T by

T Gm, ... Gm, Gm ... Gm T.

Then"

(a) G T x N/diagonal exists as an analytic quotient, and there is an exact

sequence

so G is a semi-Abelian variety. Here "diagonal" refers to the image ofT1 along
the diagonal in T x N.

(b) The immersion N A extends uniquely to a surjective analytic group homo-
morphism

dp: G--+ A,

which is also a topological covering map.
(c) I" ker 4 is a discrete subgroup in G (K), which is free and whose rank is

equal to the rank ofT.
(d) G is simply connected and 7r (A) I’.
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4. The Kobayashi semi-distance on Abelian varieties

The goal of this section is to show that the Kobayashi semi-distance on Abelian
varieties is a genuine distance. The proof of this fact will essentially involve showing
that on both Abelian varieties with Abelian reduction and on complete tori (the totally
degenerate reduction case), the Kobayashi semi-distance is an actual distance. The
next step is to apply the uniformization theorem for Abelian varieties to conclude the
general case.

Example 4.1. The Kobayashi semi-distanceon Al , the affine line minus a point,
is a genuine distance. Furthermore, ifx, y A (K) are such that Ixl p lYlp, then
d(x, y) cxz.

Proof. Let x 6 A (K), and let f: B A be an analytic map such thatx is
in the image of f. Write f (z) ’=0 ckzk" Now since x is in the image of f, we have
sup levi >_ Ixl. On the other hand, since f does not have a zero, its Newton polygon
cannot have any critical points, and therefore Icl < If01 for all k > 0. Therefore,
If(z)l If01 Ixl for all z B(K). This implies that ifx,y AI(K) are such
that Ix 4: lYl, then there cannot be a Kobayashi chain joining x to y, and hence
d(x, y) cx. Furthe.rmore, even if Ixl lyl r, any Kobayashi chain joining x to
y must be contained inB (r), the ball ofradius r. Therefore, if we couldfind Kobayashi
chains in A1 of arbitrarily small length joiningx to y, then we could find Kobayashi
chains in B(r) of arbitrarily small length joining x to y. But, by Example 2.4, the
Kobayashi semi-distance on B(r) B is a genuine distance, so x must in fact equal
y, and hence the Kobayashi semi-distance on A must also be a genuine distance.

Applying Proposition 2.8 to the above, we get:

Example 4.2. If T is an affine analytic torus, then the Kobayashi semi-distance
on T is a genuine distance.

We will also need this lemma about the Kobayashi semi-distance on affine tori.

LEMMA 4.3. Let T be an affine analytic torus and I" a discrete, torsion free
subgroup of T K). Let T K), and let , be a non-trivial element in I’. Then,
d / cx

Proof. Write T Gm x x Gm, and write ?, (’1 ’n) and
(t tn). Because T is a product space, Proposition 2.8 says that

d(t, yt) >_ max dqj, tj),
l<j<n
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where the Kobayashi semi-distance on the right is the Kobayashi semi-distance on

Gm AI x. Now since ’ is not the identity, there is at least one j such that I1 1.
Indeed, ifI" had an element y (Y1 Yn) other than the identity such that I’1
for all i, then either ?, would be a torsion element, or the subgroup generated by ,
would have an accumulation point in the Berkovich analytic space T because it would
lie in a compact subset of T. This would contradict the assumption that 1-’ is discrete
and torsion free. Therefore, there is at least one j such that Itjlp I tjlp. Then by
Example 4.1, d(tj, yj t) o, and we are done. [2]

Example 4.4. If X is a complete analytic torus (not necessarily algebraic), then
the Kobayashi semi-distance on X is a genuine distance.

Proof. By assumption, X T F, where T is an affine analytic torus and F is
a discrete, torsion free subgroup of T(K) with rank equal to the dimension of T.
Furthermore, the natural map T ---> X is a topological covering map. Let d denote
the Kobayashi semi-distance on X, and let d denote the Kobayashi semi-distance on
T. Let x, y be two points in X (K) such that d (x, y) 0. Fix a lift :2 of x in T. Any
Kobayashi chain joining x to y can be lifted to a Kobayashi chain of the same length
joining : to some lift 33 of y because T ---> X is a covering map. A priori, the lifts
of two different Kobayashi chains joining x to y may lift to chains joining 3 to two
different lifts 33. However, Lemma 4.3 tells us that (331, 2) o for two different
lifts of y, so the triangle inequality implies that all lifts of Kobayashi chains joining x
to y lift to chainsjoining : to the same . Therefore, d(:, ) 0, soby Example 4.2,
: . Therefore, x y, and we are done.

Now we begin to study the Kobayashi semi-distanceon arbitrary Abelian varieties.

LEMMA 4.5. Let

>T >G ;B

be an algebraic extension ofanAbelian variety B with Abelian reduction~ by an affine
analytic torus T. Let zr" B ---> B be the reduction mapfor B. Let b be a closed point
in B. Let U zr-l(/) - !n be the open set in B lying above [. Then, there is an
analytic isomorphism

lnx T U x T -- qb-l(U).

Proof. Because all ofthe arrows in the above short exact sequence are algebraic
morphisms and because T is a connected, solvable, algebraic group, we can apply
Theorem 10 of [Ro] to conclude that there exists a non-empty Zariski open subset V
of B and an algebraic morphism or: V ---> G such that

Now, I claim that there exists a closed point 0 in such that zr -1 (0) C V. To see
this, let Z be the complement of V in B, and let W be a small affinoid neighborhood
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in B compatible with the reduction zr" B -- B such that there exist analytic functions

fl fr on W so that

w m z {w e w" fl(w) fr(W) =01.

Let Isup be the supremum semi-norm on W. Since V is not empty, we may assume
that none ofthe fi are identically zero. By multiplying each fi by a non-zero constant,
we may also assume that Ifi Isup for all i. Let

D(3) {b W C B" fi (b) :fi 0}.

Then, by Lemma 2.4.1 in [Ber] relating the topology of the reduction to the topology
of the original space,

:rr-(D(j)) {b W" Ifi(b)lsup 1}.

Now if for every /, there is at least one b above / such that f(b) 0, then
zr -1 (D())) 0, and hence D(3) 0. Therefore, 3 0 for all/, andhence fi 0
for all i, cont_radicng the assumption that V is not empty. Thus, there is indeed a
closed point b0 in B with zr-1 (/0) contained in V.

Next, let be any closed point of . Because is a group, translation by the
appropriate group element gives us an automorphism such that f (b) b0. Now, f
comes from an automorphism given by a translation on B. Therefore, a o

gives the isomorphism

The proof of the lemma is therefore completed by_recalling that zr-l() 1" by
Proposition 2.2 of [BL since all closed points of B are smooth.

This brings us to the main result of this paper.

THEOREM 4.6.
distance.

The Kobayashi semi-distanceon anAbelian variety A is agenuine

Proof. Let G be the universal cover of A, and let

>T >G >B >I

be the exact sequence from Theorem 3.2. Also, let F be the discretegroup from
Theorem 3.2. Recall that B has Abelian reduction, and let zr" B B denote the
reduction map.

First we will see that the Kobayashi semi-distance d on G is a distance. Let
x, y G(K) be two points such that d (x, y) 0. If f is any analytic map from B
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into G, then by Lemma 2.12, the image of o f in B must lie entirely above a single
closed point b of B because B does not contain any rational curves. Let b denote
this closed point, and let U zr -l (/). Therefore, any Kobayashi chain connecting x
to y in G must be entirely contained in 4-1 (U). Hence, it suffices to verify that the
Kobayashi semi-distance on 4-1 (U) is in fact a distance. By Lemma 4.5,

-l(U) n x T.

Therefore, since the Kobayashi semi-distance on both ]n and T are distances, Propo-
sition 2.8 implies that the Kobayashi semi-distance on- (U) is an actual distance,
and by the above, we have therefore shown the same for G.

Now, let x be in A(K), and let and ’ be two different lifts of x in G. We will
show that (J, .’) o, where now the Kobayashi distance on G is denoted by
and d denotes the Kobayashi semi-distance on A. If (2, J’) :/: cxz, t_hen ey can be
joined by a Kobayashi chain, so must lie above a single closed point b in B as above.
By Lemma 4.5, we can then consider and ’ to be points in !n x T. Furthermore,
since we have assumed that 2 andJ’ are lifts ofthe same point in A, their images under
the projection ! x T T differ by translation by an element of F. Proposition 2.8
then says that (, J’) is greater than the Kobayashi distance between the images of
J and ’ in T, which is equal to infinity by Lemma 4.3.

Finally, let x and y be two points in A(K) such that d(x, y) 0. Fix a lift of
x in G. As in Example 4.4, any Kobayashi chain joining x to y in A will lift to a
Kobayashi chain of the same length joining to some lift of y in G. From above,
the Kobayashi distance between two different lifts in G of y is infinite, so by the
triangle inequality, as in Example 4.4, every lift ofa Kobayashi chain joining x to y
lifts to a Kobayashi chain joining J to the same lift . Therefore, (, ) 0, and
because the Kobayashi semi-distance on G is an actual distance, J . Therefore,
x y, and the proof of the theorem is complete.

In conclusion, I point out what Theorem 4.6 tells us about the Kobayashi semi-
distance on algebraic curves. If X is a smooth projective curve of positive genus,
then X can be embedded in its Jacobian, so we get:

THEOREM 4.7. Let X be an irreducible algebraic curve, and let X be its normal-

iz...ation. Then, the Kobayashi semi-distance on X fails to be a distance ifand only if
X - pl or " A if and only if there exists a non-constant analytic map from A
into X.

Proof. If " 11 or . -- Al, then the Kobayashi semi-distance on X clearly
fails to be a distance, and there are obviously non-constant analytic maps from A
to X. Now assume that . l1 and . A Because . is a normal curve, it is
smooth. If X has positive genus, then the Kobayashi semi-distance on X is an actual
distance because it is an analytic subspace of its projective completion, which is a
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subvariety of its Jacobian, so Theorem 4.6 implies that the ,Kobayashi semi-distance
on X is, in fact, a distance. Furthermore, Theorem 4.5.1 of [Ber] ys that there are no
non-constant analytimaps from A to . If, has genus 0, then X

___
A because of

the assumption that X P or A Therefore, the Kobayashi semi-distance on , is a
distance by Example 4.1, and any analytic map from A to , must be constant. (This
last fact is an elementary consequence of the theory of Newton polygons.) Finally,
from the general properties ofnormalizations (see [G-R]), any non-constant analytic
map from B or fromA into X will lift to a non-constant analytic map to ,. Therefore,
the above implies that there can be no non-constant analytic maps from A into X.
Similarly, since a Kobayashi chain in X will lift to a Kobayashi chain in X of the
same length and since the normalization map X X is a finite morphism, we see,
as in Lemma 2.11, that the Kobayashi semi-distance on X is, in fact, a distance, and
we are done. I--1

This paper is part oftheauthor’ s Ph.D. thesis written underthe supervision of Professor
Serge Lang (Yale University).
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