
ILLINOIS JOURNAL OF MATHEMATICS
Volume 40, Number 4, Winter 1996

A HECKE CORRESPONDENCE THEOREM FOR MODULAR
INTEGRALS WITH RATIONAL PERIOD FUNCTIONS

WENDELL CULP-RESSLER

1. Introduction

In the 1930’s Erich Hecke used the Mellin transform and its inverse to demonstrate
a systematic relationship between automorphic forms and Dirichlet series [5], [6].
In particular, entire modular forms on the full modular group F(1) SL(2, Z)
correspond to Dirichlet series which satisfy a functional equation.

In [2], Eichler introduced generalized abelian integrals which he obtained by in-
tegrating modular forms of positive weight. An Eichler integral satisfies a modular
relation with a polynomial period function. In [8] and [9], Marvin Knopp generalized
Eichler integrals and developed the theory of modular integrals with rational period
functions.

In [9], Knopp shows that an entire modular integral with a rational period function
corresponds to a Dirichlet series which satisfies Hecke’s functional equation, provided
the rational period function has poles only at 0 or cxz. Knopp also proves a converse
theorem, from which it follows that if the rational period function has any other poles
the corresponding Dirichlet series does not satisfy the same functional equation.

In [4], Hawkins and Knopp prove a Hecke correspondence theorem in which a
modular integral with an arbitrary rational period function corresponds to a Dirichlet
series which satisfies a more general functional equation. In this case the functional
equation for the Dirichlet series contains an additional remainder term which arises
from the poles of the rational period function which are not at 0 or cx. Hawkins
and Knopp formulate their results for modular integrals on the theta group, F0, a
subgroup of index 3 in F (t). The theta group has a single group relation and any
rational period function on F0 must satisfy a corresponding relation. This relation
in turn imposes a relation on the remainder term in the functional equation for the
corresponding Dirichlet series.

In this paper we present a Hecke correspondence theorem for modular integrals of
weight 2k 6 2Z+ with rational period functions on thefull modular group F (1). The
modular group has a second group relation which imposes more structure (than F0) on
any modular integral, forcing its rational period function to satisfy a second relation.
This in turn imposes more structure on the remainder term in the functional equation
for the corresponding Dirichlet series. We will modify the characterization of rational
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period functions on F (1) given by Choie and Zagier [1 in order to emphasize the
second relation. We will show that a remainder term associated with 1-’(1) must
satisfy a second relation which arises from the second relation for the rational period
function and we will write the remainder term and its second relation explicitly.

2. Modular integrals

We will consider 1-’(1) SL(2, Z) to be a group of linear fractional transforma-

az+bforM:(a b)tions acting on 7-/, the upper half plane, by putting Mz
c d

E

1-’ (1) and z E . With this interpretation we identify an element M with its negative

(1 )andT_(0 -1 )-M. F(1) is generated by S
0 0

and satisfies the

group relations

T2 (ST) I.

Suppose F is a function holomorphic in 7-( and has the Fourier expansion

F (z) E ane2rrinz
n--0

z 7. (1)

Let 2k 6 2Z. If for every z 6 , F satisfies the modular relation

z-2F --F(z)+q(z), (2)

where q (z) is a rational function, we say that F is an entire modular integral ofweight
2k on I" (1) with rational periodfunction q. If q _-- 0, then F is an entire modular

form of weight 2k on F (1). Using the slash operator F 12 M F M defined by

(F M)(z) (cz + d)-2 F(Mz),

we may rewrite (2) as

F IT=F+q. (3)

The group relation T2 I implies that a rational period function q satisfies the
relation

qlT+q=O,

and the relation (ST) I implies that q satisfies the second relation

q I(ST)2+qlST+q=O.

(4)

(5)

Knopp [7, Section II] showed that (4) and (5) characterize the set of rational period
functions for a given weight.
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3. Rational period functions

This section summarizes the results we need concerning rational period functions
on 1-" (1). It also describes modifications to Choie and Zagier’s characterization in
order to emphasize the second relation (5).

In [9], Marvin Knopp proves that the poles of a rational period function on F (1)
occur only at 0, cxz, or at real quadratic irrationalities. He also shows that when the
weight 2k is positive and the period function has only rational poles, it is of the form

Cl(1-z-2)+c2z-1, k=
q (z)

c(1 z-2k), k > 1,
(6)

where c, cl, and C2 are complex numbers. The function c(1 z-2k) (for any k E R) is
the period function for the trivial modular integral F(z) -c. The function czz-1 is
a multiple of the period function for Ez(Z), the Eisenstein series of weight 2 on F(1).

In [3], Hawkins describes the pole set of a rational period function and shows that
it is the disjoint union of irreducible systems of poles. If q (z) has a pole at a fixed
quadratic irrational number or, an irreducible system ofpoles, P (or), is the minimal
set of quadratic irrational numbers which must be poles of q(z) because of (4) and
(5). Hawkins also observes a connection between irreducible pole sets and indefinite
binary quadratic forms.
We will use the following definitions and properties of quadratic forms which can

be found in 13]. Let A, B and C be relatively prime integers such that D B2 4AC
is positive and not a square. Then Q(x, y) Ax2 + Bxy + Cy2 is called a primitive

indefinite binary quadratic form of discriminant D. We also denote Q(x, y) by
Q=[A,B,C].

GivenaquadraticformQ(xy)ofdiscriminantDandamatrixM=(a b)c d
F (1), define

0(x, y) (Q o M)(x, y) Q(ax + by, cx + dy),

which is another quadratic form of the same discriminant D. Suppose that Q and
) are two binary quadratic forms of discriminant D. We will say that Q and )
are equivalent in the narrow sense, and write Q ), if there is an element M of
F (1) such that ) Q o M. The relation Q ) is an equivalence relation (narrow
equivalence) on the set of quadratic forms of a given discriminant. Let 4 denote a
narrow equivalence class ofbinary quadratic forms and define another (not necessarily
distinct) equivalence class of forms,

04-1 {[-A,-B,-C]" [A, B, C] 6 4}.

The binary quadratic form Q [A, B, C] is associated with the real quadratic
irrational number ot OfQ

B+/ one of the roots of Q(z, 1) Az2 Bz + C.
2A
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We will write Q - ot to denote this correspondence. The other root ot’ -4- is2A
associated with the negative form -Q [-A,-B,-C].
A quadratic form is said to be simple if A > 0 > C. Quadratic irrational numbers

associated with simple forms are also said to be simple. A quadratic irrationality ot

is simple if and only if ot > 0 > ot’, where ot’ is the algebraic conjugate of ot. A
quadratic form is said to be reduced if A > 0, C > 0, and B > A + C. Reduced
quadratic irrational numbers are those associated with reduced forms. A quadratic
irrationality ot is reduced if and only if ot > > ot’ > 0. Each narrow equivalence
class A contains a finite, positive number of reduced forms 13].

Hawkins proves in [3] that an irreducible pole set P (ot) corresponds to the set of
reduced quadratic forms in a narrow equivalence class. Since any class A of forms
corresponds to a unique irreducible pole set we will also denote the pole set by P (A).

Choie and Zagier establish a connection between the simple quadratic forms
in an equivalence class A and the pole set P (A). Let Zt denote the set of simple
quadratic irrational numbers which are associated with A.

LEMMA (CHOIE AND ZAGIER). P (,A)

It is worth noting that Zt is the set of positive poles in P (A) and that TZt
{-1/ot ot E Z.a} is the set of negative poles in P(A).

Choie and Zagier show that any rational period function q of weight 2k has the
form

q(z) CA Z (q(z) qr(z)) 4- q6(z). (7)

The outer sum is on the (finite number of) classes of binary quadratic forms which
correspond to the irreducible pole sets of q. Each CA is a complex number which
depends only on the class .4. The functions q and qr are the principal parts of
q at ot and Tot, respectively, normalized so the coefficients of (z ot)-k in q and
(z Tot) -k in qv are both one. The function q6 is a rational function with a pole
only at zero of order at most 2k.
A complete description of the rational period function q(z) requires explicit ex-

pressions for the functions q and qr. Let PP [f] denote the principle part of f (z)
at z ot. Choie and Zagier prove the following lemma.

LEMMA 2 (CHOIE AND ZAGIER).
gate. Then

Let ot be a quadratic irrationality, ot’ its conju-

q(z) PP
(z ot)(z ot’) PP

(az2 bz 4- c)
(8)

where [a, b, c] is the binary quadraticform associated to ot and D is the discriminant
of[a,b,c].
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The proof of Lemma 3 also shows that under the same assumptions,

q,(z) PP,
(Z Ot)k(Z Ot’)

P P’
(az2 bz + c)

(9)

an expression which we will use later. We may write q, and q, in a more explicit
way, using the partial fraction decomposition

(az2 bz + c) -,(2k-l-/ )(ot’-ot)t-2(-1)ak k (z Ol)/=1

( 2k-l-1 ) (Ot--ott)l-2k(--1)k
+

=1
k (z a’)

We have

q (z) E 2k (or Olt)1-k (-- 1)l-k
k -1 (z-or)/=1

(10)

and

2k- -l (a- oe’)-q,(z)
k (z-or’)

(11)
/=1

We will modify the characterization of rational period functions given by Choie
and Zagier in order to emphasize the second relation. We begin with an alternative
way to express an irreducible pole set P(A). Let Zt denote {or’: u 6 ZA}.

LEMMA 3. P (M) Z.A U Z’04-

Proof A routine argument of containment in both directions shows that TZt
This, along with Lemma 3 completes the proof.

We will rewrite the part of a rational period function which corresponds to the
poles in Zt which are between zero and one. The following lemma will allow us to

distinguish these poles when using the associated quadratic forms.

LEMMA 4. Suppose that ot is a simple quadratic irrational number associated
with the quadraticform [a, b, c]. Then

(i) ot > ifand only ifb > a + c, and
(ii) 0 < c < ifand only if b < a + c.
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The proof of Lemma 3 is a routine exercise in using inequalities.
The next lemma will allow us to rewrite those poles in P (4) which are images

under (ST)2 of other poles in

LEMMA 5. For every equivalence class .A ofquadraticforms we have

(i) {/ /3 ZA, 0 < fl < 1} {(ST)2ot [ot G z,O..4-, ot > }, and
(ii) {/’ /3 ZoA-,, 0 < /3 < 1} {(ST)2ot lot Z.A ot > 1}.

Proof Statement (i) is equivalent to statement (ii). An argument which involves
containment in both directions and some tedious manipulations shows that statement
(i) is true. Ul

Choie and Zagier observe, in a somewhat different form 1, page 95], that for any

M=(o b)c d
6 1-’(1),

qM --q M-l- P Pa/c [q M-l], (12)

where PPa#. [q M-1] (z) has a pole at z a/c of order at most 2k 1. If

M=(ST,2 (0-1 ) (1-1 )-1
then M-1 ST

0
and a/c 0. Thus

we have

q(sr)2 --q ST- P Po [qIST],
where PPo [qIST] has a pole at z 0 of order at most 2k 1.
We may now rewrite (7) in the desired form. By the proof of Lemma 3,

_CA q+ Z q/3-

o>1 0</3<1

Z q(ST)2,

c>l

Lemma 5 and (13) imply that

0</3<1

+ qo

q’ q/3’ +q0"
Z

i- flZ 4-
ot>l 0</3<1

(q, ST- P Po [q,ISTI)

(13)
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and

E qt’ E q(ST)Za
Z .A Z,A

O<fl<l ot>l

E (q’ ST- PPo[qoIST]).

ct>l

This gives us

where

4- E Ct E q’ (I- ST)- E q, (I- ST)
v4 Z4 ZoA_

ot>l ot>l

qo q E PPo[q,IST] + E PPo[qIST]
oteZO,A._ eZ
a>l ot>l

4- qo, (14)

is a rational function with a pole only at zero of order at most 2k.
The expression (14) highlights the second relation (5) because each of the terms

q, (I ST) or q, (I ST) by itself satisfies the second relation. Since q must
satisfy the second relation, q0 must satisfy it as well.
We will write q (z) in a more explicit form. Let

q,,t(z)

q,’,t(z)

Put fl’ (ST)2ot and fl (ST)2ot ’. Then

(q,,t ST)(z)-

(Z Ol) (15)

(Z Olt)1"

Z2k-l (Z
fit (16)

Z2k-l(Z )l"(qo,,,t ST)(z)

With this notation, (10) and (11) are

(2k-l-I )(ot--ot’)t-k(--1)t-kq,t,(Z) k
q

l=1

(17)

and

-(2k-l-1 )(ot_ot’)t-’q,,t.q,(z)
k-l

/--1

(18)
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Substituting (17) and (18) into (14) we have

-or) q,,,t (I-ST) +qo
k-1

Zo.A_ I:1

(19)

where qo may be written as

’2k bm
(20)qo(z) Z.., zm=0

with the bm, m 0, 2k complex constants. Finally, if we use (15), (16), and
(20) in (19), we may write the rational period function as

k-1 (z-or
-’4 /=1
ot>l

k (z or’)
zoA_ 1=1

ot>l

2k

.bm (21)
m=O

4. The direct Hecke theorem

In this section we prove that a modular integral of positive, even weight 2k on F (1)
leads to a Dirichlet series with a functional equation. We derive an explicit form for
the remainder term in the functional equation, which is based on (21).

Let F(z) be an entire modular integral on F (1) of weight 2k E 2Z+ with rational
period function q(z). We may assume without loss of generality that F(z) is a cusp
modular integral, i.e., that a0 0 in the Fourier expansion (1).
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Write z x + y with x, y 6 R. It can be shown [7, 622-623] that F satisfies

IF(z)l _< K (Izl + y-), z (22)

for some positive real numbers K, ot and/3. It follows that the coefficients an in the
Fourier expansion (1) for F satisfy

a O(n), n +cxz. (23)

This, with a0 0 in (1), implies that

F(iy) O(e-2zry), y --+ +OC. (24)

Because of (22) and (24) we may consider the Mellin transform of F,
c dy

(s) F(iy)y"m, (25)
Y

a function of s cr + t. For r >/ + l, we can integrate term by term to get

(s) (2rr)-SF(s)c(s), (26)

where
oe an

4(s) Z (27)
n--1

is the Dirichlet series associated with F. The bound on the growth of the coefficients
(23) implies that sum in (27) converges absolutely and uniformly on compact subsets
of the right half plane cr >/3 + 1, so that 4 (s) is analytic there.

Using the modular relation (3) we have

Thus

where

and

fo foe (--l) dy
F(iy)y.

dy
F

y --yY--f-
2k F(iy)y2k-s -F t;,,a

y Y

(s) D(s)+ E(s),

floeD(s) F(iy)[y + i2y2-s] d--y (28)
Y

E(s) 2k q(iy)y2k_ --.dY (29)
Y
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It is not hard to see that D(s) is entire and satisfies the functional equation

D(2k s) 21 D(s) O. (30)

From (21) we know that q(z) (.9(1) as Izl . Thus the integral defining E(s)
in (29) converges in the right half plane 0- > 2k. Hawkins and Knopp prove in [4]
that E(s), and hence (s), has a meromorphic continuation to the s-plane with, at
worst, simple poles at integer points m < 2k. They also show that (s) is bounded
in every lacunary vertical strip of the form

S(0-1, 0-2; to)" 0-1 < 0- < 0-2, Itl >_ to > 0, (31)

where 0-1, 0-2, and to are real numbers.
Since (s) has a meromorphic continuation to the whole s-plane we may write

the functional equation which is suggested by (30),

(2k s) i2/(s) R(s), (32)

where R (s) is a meromorphic function which we will call the remainder term. Then
by (30) we have

R(s) E(2k s) 2 E(s), (33)

from which it is clear that R (s) depends only on the rational period function q and not
on the modular integral F. The expression (33) (or (32)) implies that R(s) satisfies
the (first) relation

R(2k s) + 21 R(s) 0, (34)

which was first observed by Hawkins and Knopp [4].
We will find an explicit expression for R(s) using (33) and (21). This will give

meaning to the functional equation (32) and it will enable us to prove a converse
theorem. Put Ea(s) E(2k s) and Eb(s) -i21E(s), so that

R(s) Ea(s) -k- E,(s). (35)

By (29) we have

and

dy
Ea(s) 2 q(iy)yL-, (36)

Y

Eb(s) q(iy)y2-’ (37)
Y

If we use the first relation (4) to replace q(iy) in (37) we have

fl (-y)y_,dyEb(S) 2k q
Y

i q(iy)y d.__y. (38)
Y
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A simple calculation shows that the parts of Ea(s) and Eb(s) which arise from q0

cancel each other, so that q0 contributes nothing to the remainder term. As a result,
we may write

R(s) .a(S) + -b(S), (39)

where

and

a(s) 2’ {q(iy) qo(iy)}y
sdy
Y

b(S) 2k {q(iy) qo(iy)Jysd--y
Y

We will use (21 to write q qo as the sum of two functions which we can consider
separately. Let

/ ) ( )
A z = k (-

(z )
a>l

k (z a’)
(40)

ZoA_ /=l

a>l

and

q: (z) C k z-(z
a>l

k z:- (z fl)
eZoA__ 1=1
>1

where the outer sum in each expression is on the equivalence classes which coespond
to the ieducible pole sets of q (z). Then by (21) we have

q q0 q + q,
so that

dy 2k fc (:z) (iy)y,
dya(S) 2k q(1)(iy)y, + q

Y Y
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and

dy 2k fob(S i2 q(ll(iy)yS__ + q(Z)(iy)y, dy
Y Y

(1) /(2)
"b (s)+. (s).

This, with (39), gives us

,(1) i-, (2)R(s) a(1)(s) -[- a(2)(s) + -b (S) --"-’b (S). (42)

The integral for/a(1)(S) converges for cr < and the integral for/1) (s) converges
for cr > 0. Thus, for 0 < cr < 1, we have

R(1)(s) a(1)(S) + /;1)(S) (43)

i2k q() (iy)y --.dY (44)
Y

In a similar way, for 2k < cr < 2k, we have

i(2) (S)R (2) (s) a(2) (S) --i2k q(2)(iy)y, dy
Y

(45)

(46)

As a result the determination of R (s) reduces to the evaluation of the integrals

/?(1) i2kn dy y’ dy
",1 (s) q,(iy)y 2k

y (iy ) y

fo fo/?(2) (S) 2k 2k(,, (q,tlST)(iy)y"
dy ,) y’ dy
y (iy)2k-(iy ’) y

R(). i2k fo dy fo Y’ dy,, t(s) q,,(iy)y 2k

y (iy Ol’) y

/?(2) (S) 2k 2k
"’u’,l (q,,tlsr)(iy)y.

dy fll y* dy
y (iy)2k-l(iy fl)t y

(47)

with/3 (ST)2c’, fl’ (ST)20t, and < _< k.
The evaluation of these integrals involves exponential functions of the form Z

ealgz, where logz log Izl + argz for z 6 C. We will take the principal branch
for each logarithm, using the convention that

In order to evaluate the integrals in (47) we use the representation for the beta
function 10, page 13]

a-1

B(a, b)
(1 + t)a+b

dt,
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valid for Re a > 0 and Re b > 0. Let 6 be a nonzero real number and change variables
by putting y i6t. If we use a contour integral to move the path of integration to the
positive real axis, we have

B(a, b) ibb dy

(Y + i()a+b y

We replace b with b a and rearrange to get

ya d ia_2ba_b b (48)B(a, a),
(iy 6)b y

for0 < Rea < Reb, 8 6 R, 6 0.
Using (48) to evaluate the integrals in (47), we have

R(s) is+-’-lB(s s)

R(2) is-2k )s-2k+/, (s) (’ B(s 2k + l, 2k s),
(49)

(I) (s) s+2k-2l (,)s-/B(s, s),t,l

s-2kfls-Zk+!,,(s) B(s 2k + l, 2k s).

Now we may use (43) and (45) in (42) to write

R(s) R (1) (s) + R(2) (s).

The expressions (44) and (40), along with the notation of (47), imply that

k

( ) ’)l-k --1)l-k(1)k
>1

k ’,t
z0A_ /=1

>1

Similarly, (46) and (41) imply that

R2)
k-l

>1

6o_
>1

(5O)
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Using these expressions in (50) we have

Z I - - ( 2k-- --1 ) (l lt)l-k(--1)l-k(e(otl,] "’or,R C.A (2)

.A z4 1=1
ot>l

ezoA_ 1=1
>1

Then, by (49), we have the expression

z =l
k

ff>l

(51)

(is+2k-210ts-I B(s, s) is-2k (fl’)s-2k+l B(s 2k + l, 2k s))

k-l
zo4- l=1

ot>l

(iL+2k--2t (Ot’)S--1B(s, s) "-2/.-2+1B(s 2k + l, 2k s)) Ix

(52)

We can replace/3 and/’, using/3 (ST)2ot and/3’ (ST)2ot --_11 After
simplifying, the result is

/ k t.A ez.A 1=1
k

ot>l

(isots-lB(s, s) i-s(ot 1)2k-S-tB(s 2k + 1,2k s))

k-l
o.A_ 1=1
ot>l

/

(i (or’)s-t B(s, s) (or’ 1)2’-’-1B(s 2k + l, 2k s))
I

(53)
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We have proved the following theorem.

THEOREM 6. Suppose that F (z) is an entire modular integral ofweight 2k E 2Z+

on I" (1), with rational periodfunction q (z) given by (21); suppose that F has the
Fourier expansion (1) with zero constant term, so that (24) holds. Let do(s) be defined
by (25)for a > ft.

Thenfor a > 4- 1, do(s) is also given by (26) and (27), and
(a) do (s) has a meromorphic continuation to the whole s-plane with, at worst, simple
poles at integer points m < 2k. do(s) is representedfor a > fl by

do(s)- D(s) 4- E(s).

D(s) is given by (28) and is entire, and E (s) is given by (29) and has a meromorphic
continuation to the whole s-plane. Furthermore,
(b) do(s) is bounded in every lacunary vertical strip of theform (31), and
(c) do(s) satisfies the functional equation (32) where R(s) is given by (53).

5. The second relation

We have already observed that the remainder term R(s) satisfies one relation,
(34). In this section we will describe a second relation which R(s) must satisfy. This
second relation follows from the fact that the corresponding rational period function
q (z) satisfies (5).

Suppose that ot is one of the poles of q(z) which is denoted by ot or or’ in (21).
(In order to simplify the notation we will suppress the prime if ot is negative.) Let
fl (ST)2 and ?, (ST)2fl, so that ot (ST)2,. Then fl represents one of the
poles of q (z) which is denoted by fl or fl’ in (21). Fix l, < < k and put

ql(z)
(z )’

q2(z) (qllST)(z)
Z2k-l(Z fl)l’

( )
q3(z) (qlI(ST)2)(Z)

(Z 1)2k-1 (Z ’)l

(54)

Then by (21) q q0 is a linear combination of terms of the form

ql --q2,

and IST maps ql --+ q2 q3 --+ ql. Each term satisfies the second relation (5),
since

IST q2 q3
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and

I(ST)2
q3 ql.

In order to write the terms of R(s) which correspond to ql, q2 and q3 we put

Rj (s) 2k
qj (iy)y mdY (55)

Y

for j 1,2, 3. Then R (s) is a linear combination of terms of the form

[ R1-R2.

We know that R1 and R2 are meromorphic in the entire s-plane, since they have
been written explicitly in (49). Since the integral defining R3(s) converges in the
strip 0 < o" < 2k, we have R1 (s), R2(s) and R3(s) all defined at least in the strip
0<or <2k.

Let a, b and 4 be real numbers, let r, m and be nonnegative integers, and put

Rr rn l(S; a, b, ) 2k fee y d__y (56)
(iy a)r(iy b)m(iy q)t y

The parameters a, b and 4 will represent poles of terms of the rational period function,
and r, rn and will denote the respective orders ofthe poles. The region ofconvergence
for the integral in (56) depends on the values of a, b, 4, r, m, and 1. With this notation
we have

Rl(S) Ro,o,l(S; O, 1, or),

R2(s) l R2k_l,O,l(S; O, 1, fl), (57)

R3(s) (F 1)IRo,zk-l,l(S; O, 1, V),

with/ (ST)20t, ?’ (ST)2/3 and c (ST)2v.
Define the mapping p by

19(Rr,m,l(S; O, 1, 4))) i2kRr,m,l(2k S; --1,0, q 1). (58)

It is clear that p is linear, i.e., that

p(alR1 nt- a2R2) alp(R1) nt- azp(R2)

for any constants al and a2 and functions R1 and R2 of the form (56). The mapping p
is the image of the mapping IST on the modular integral side of the correspondence.

The next lemma will allow us to rewrite the right hand side of (58).

LEMMA 7.

Rr,m,l(2k s; 1, O, 4) 1) -2k-zm ((ST)Zqb)1R2k_r_m_l,r,l(S; 0, 1, (ST)Zb)
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The proof uses the integral definition (56), a change of variables, and some simple
manipulations.

Using Lemma 7 we may write the mapping p in an alternative way as

p(Rr,m,l(S; 0, 1, b)) -2m ((ST)2qb) R2k-r-m-l,r,l(S; 0, 1, (ST)2b). (59)

We can now use p to state a relation which/ satisfies and which reflects the fact that
satisfies (5).

R, R2 and R3 be given by (55) and (54). Suppose that [THEOREM 8. Let
R R2, and suppose that p is the mapping defined by (58). Then R satisfies the
relation

/ + p(/) + p2(/) O.

Proof We first show that p: R -- R2 R3 -- R. Using (59)we have

p(R (s)) p(Ro,o,t(s; O, 1, ))

flIR21_l,O,l(S; O, 1, fl)

Rz-(s).

Also,

p(R2(s)) fll p(R21_l,O,l(S; O, 1, fl))

fll ,1Ro,2k-l,l (S; 0, 1, y)

(y 1)lRo,zk_l,l(S; O, 1, y)

R3 (s),

since/ STg/ -___2. Finally,

p(R3(s)) (y 1)tp(Ro,2k-l,t(s; O, 1, y))

(y 1)lotliZlRo,o,l(S; O, 1,

R0,0,(s; 0, 1, or)

R1 (s),

since y STot 1/or, or y 1/c.
Thus we have p(/) R2 R3 and p2(/) R3 R, so that/ + p(/) + p2(/)

--0.
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We can now extend the second relation to the entire remainder term.

COROLLARY 9. Suppose that R(s) is the remainder term for a Dirichlet series
which corresponds to an entire modular integral F with rational periodfunction q
on F (1). Then R(s) satisfies

R A- p(R) A- p2(R) --0, (60)

where p is the mapping (58).

Proof Any rational period function on F(1) can be written as in (21) so that
q q0 is a linear combination of terms of the form c) ql q2 with q and q2 given
by (54). Then, since q0 makes no contribution to the remainder term, R(s) is a linear
combination of terms of the form/} R1 R2 where R and R2 are given by (55),
hence by (57). Theorem 8 implies that/ satisfies (60). The corollary follows from
the fact that p is a linear map.

6. The converse Hecke theorem

We now prove the following converse to Theorem 6.

THEOREM 10. Suppose the Dirichlet series

an
4(s)

n’
(61)

n=l

converges absolutely in the half-plane cr > g. Suppose that thefunction (s) defined
by

(s) (2zr)-"r(s)q(s) (62)

satisfies"
(a) (s) has a meromorphic continuation to the whole s-plane with, at worst,

simple poles at integer points s;
(b) (s) is bounded in every lacunary vertical strip of theform

S(rl, or2; to)" rl _< r _< r2, Itl >_ to > 0; and (63)

(c) (s) satisfies the functional equation

(2k s) i2k(s) R(s), (64)

where R(s) is given by (53).
Then (s) is the Dirichlet series associated with an entire modular integral F of

weight 2k on F (1) with rational periodfunction q (z), where q (z) is given by (21).
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Proof Following Hecke [5], [6] we take the inverse Mellin transform of and
interchange the sum and integral to get

f
c’+i 7.(s)y-’ds an e-2zrny F(iy), (65)

2zri ’-i n=l

for any c > 0. Let L be a positive integer with L > 9/and L > 2k, and fix c between
L and L 4- 1. We move the line of integration to a 2k c, use the functional
equation (64) and make a change of variables to get

-2k [, 2k-c+icxz

I R(s)Y-’ds(Flr)(iy)- F(iy) -2--i 2-.-i
L-1

2zri Z _-emS{(s)Y-’}" (66)
m=2k-L

We will be done if we can show that the right hand side of (66) is q(iy), with q(z)
given by (21 ). The modular relation (for z 6 7-/) then follows by the identity theorem.

In order to evaluate the integral in (66) we must evaluate

f2k-c+i s+2k-216s-1B(S, s)y-’ds,
27ri d 2k-c-i oe

and

2k-c+i is-2/6s-2/+/B(s 2k + l, 2k s)y-’ds,
2zr 2k-c-io

forl6Z, <l <k, and6 6R, 6-0. If we leta-sandb-lin(48) wehave
O yS dy is_218s_ B(s, s),

(iy 6)l y

for 0 < a < and E R, :/: 0. Since is of bounded variation, we have the
(iy-8)

inverse Mellin transform [12, Theorem 9a]

f.+i i’-2’- B(s, s)y-’ds
2rc .-i (iy

for 0 < c < and y > 0. Letting c 1/2 we have

f/+i is+2k-216s-I B(s, s)y-’ds (67)
2zri a 1/2-io (iy 6)’

for any y > 0. We move the line of integration from a 2k c to a 1/2, and
pick up the negatives of the residues at s 2k L, 2k L 4- 0. Then we
apply (67) to get

i2k
is+2k-21s-I B(s, s)y-’ds

am(, l)
2zri 2-.-i (iy ) (iY)

(68)
m=2k-L
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In a similar way we have that

f2k-.+io i’-2k6’-2+t B(s 2k + l, 2k s)y-’ds
27ri ,12k-c-ix

i-2k61 2k-I

(iy)Z-t (iy 6) Z bm (6 l)
(69)

m=Zk-L (iy)m

The sum in (66) is a rational function with at worst a pole at zero. This, along with
(68) and (69), implies that the right hand side of (66) is q(iy), with q(z) a rational
function. Thus q is a rational period function of weight 2k. As a result, any pole of
q at zero has order at most 2k. Substituting (68) and (69) into (66), shows that q(z)
has the form (21).
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