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L2 COHOMOLOGY OF THE BERGMAN METRIC FOR
WEAKLY PSEUDOCONVEX DOMAINS

HAROLD DONNELLY

1. Introduction

Suppose that f2 is a bounded pseudoconvex domain in Cn The Bergman metric
of f2 is a naturally defined Kaehler metric. We restrict our attention to those f2
whose Bergman metric is complete. By a theorem of Ohsawa 12], this includes all
pseudoconvex domains with C boundary. Every biholomorphic automorphism of
g2 induces an isometry in the Bergman metric. The Hopf-Rinow theorem therefore
implies that the Bergman metric of a homogeneous domain is complete.

Let H (f2) denote the space of square integrable harmonic/-forms relative to the
Bergman metric. The following result was proved in 1983 [6]:

THEOREM 1.1. If f2 is strictly pseudoconvex, then H (f2) O, for n.

Ohsawa and Takegoshi developed this work by giving both alternative proofs of
Theorem 1.1 and applications to extension problems in several complex variables
13], 14]. Ideas of Gromov [8], were applied in [5] to give a conceptually clear proof
of the results from [6].

In [5] the author developed a result of Gromov to give a criterion on the Bergman
metric for the vanishing ofH (f2) for :/: n on domains in Cn for which the Bergman
metric is complete. This criterion is the existence of a positive constant c2 such that
the estimate in Proposition 2.3 holds for all non-zero tangent vectors at all points. This
approach led to a simpler proof of the earlier result in [6] for strictly pseudoconvex
domains.

In the present paper we investigate this criterion more generally. We prove that
it holds for pseudoconvex domains of finite type in C2 and for locally convexifiable
domains of finite type in Cn. We also verify it for homogeneous domains and for the
domains with large automorphism groups given by Izl2 -+- Iwl2p < 1, p > 1, in all
dimensions. We provide an example of a bounded pseudoconvex Reinhardt domain
in C for which the criterion fails. The defining equation is Iwl = / Izz21= + Izll +
Iz=l < 1. We do not determine however whether the cohomology vanishes for this
domain.

The author thanks J. D’Angelo and D. Catlin for helpful conversations during
the development of this work. D’Angelo suggested that we consider the domains
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Izl2+lwl2p < 1, p > 1. Catlinsuggestedthedomainslwl2+lzlz212+lzll+lz2l t <
1. The author also thanks the referee for improvements of the original manuscript.

2. Vanishing of L2-cohomology for the Bergman metric

Our earlier paper [5] developed an idea by Gromov [8] for establishing vanishing
theorems concerning the L2-cohomology of complete Kaehler metrics. In the present
section, we summarize the relevant results, of [5], pertaining to the Bergman metric of
a pseudoconvex domain f2 in Cn. The Bergman metric is complete if either (i) f2 has
C boundary 12] or (ii) f2 admits a transitive group ofbiholomorphic automorphisms.
In this paper, we always assume that the Bergman metric of f2 is complete.

Let M be a complete Kaehler manifold of complex dimension n. Suppose that

H(M) denotes the space of square integrable harmonic/-forms. If one takes the
closure of the image of d, then H(M) may be identified with the L2 cohomology of
the complex

A2O(M) _d A(M)_d A22(M)---> A22n(M).

That is, H(M) ker d/imd. The following result is a brilliant observation by
Gromov [8].

PROPOSITION 2.1. Suppose that the Kaehlerform w ofM can be written as w
do, where r} is bounded in supremum norm. Then HiM 0,for n.

Suppose that f2 is a pseudoconvex domain in Cn The Bergman kernel K (z, w)
is the integral kernel for projection from L2f2 to the space of square integrable
holomorphic functions. Here L2f2 is the Hilbert space associated to the under-
lying Euclidean metric. The Kaehler form of the associated Bergman metric is
w -1 O0 logK(z,z) drl with r/= -"0 logK ---fK-OK. Sup-
pose that go is the Hermitian metric corresponding to the differential form w. By
applying Proposition 2.1 to the Bergman metric, with this natural choice of , we
deduce:

PROPOSITION 2.2. Assume thatfor all non-zero X Tf2, we have

10(X)l2

go(X, X)
< Cl

where c is independent of both X and its basepoint z e g2. Then Hf2 O, for
in.

The criterion of Proposition 2.2 can be reformulated in terms of certain extremal
problems involving holomorphic functions f defined on f2. Let Ilfllz denote the L2
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norm of f with respect to the Lebesgue measure of 2. If z 6 f2, it follows from
elliptic regularity that sup{If(z)12lllfll2 <_ 1} is finite. Here the supremum is taken
over all holomorphic functions defined on ft. One has the following result [5]"

PROPOSITION 2.3. Suppose thatfor all X T2,

sup{lf(z)12lXzf-0 and Ilfll2 _< 1}
sup{lf (z)12lllfll2 <_ 1}

with C2 independent ofboth z and X. Then Hf 0,for n.

For the unit ball in C", the Bergman kernel is given in closed form by K (z, z)
cn (1 -Izl2)-n-1 The hypothesis of Proposition 2.2 is readily verified. Moreover, the
ball is the model for all strictly pseudoconvex domains in C". Using the solution of
Oh --/3 in weighted Lz-spaces [9], we verified [5] that the criterion of Proposition 2.3
holds for all strictly pseudoconvex domains in Cn. The consequence that Hf 0,
for - n, was proved much earlier in [6]. However, the main purpose of [5] was to
give a conceptually simple proof that Hf 0, when is strictly pseudoconvex.

3. Homogeneous domains

Let f2 be a pseudoconvex domain in C". Assume that T: f2 f2 is a holomorphic
automorphism of f2. If g: f2 C is a holomorphic function, and Jr(w) is the
Jacobian of T, then define f: -- C by requiring that g(w) f(Tw)Jr(w).
Clearly, f is holomorphic and Ilgl12 ilfl12, where Ilfl12 is the L2 norm with respect
to Lebesgue measure. The Bergman kernel K has the characterization K(z, z)
sup{lf(z)12[llfllz < 1}, where the supremum is taken over holomorphic functions

f: f2 C. Setting z Tw, one deduces that K(z,z)= K(w, w)lJ(w)1-2. If
r/= -O log K, it follows that r/= T*O 0 log Jr. Moreover, the Bergman metric
g,o is invariant under T, g,o T*g,o. The crucial ratio of Proposition 2.2 thus satisfies
the transformation rule

IT*r/(X)I2 Ir/(X) -k- 0 log Jr(X)l2

(3.1)
T*go(X,X) goo(X,X)

One may employ (3.1) in the proof of:

PROPOSITION 3.2. If 2 is a homogeneous pseudoconvex domain in Cn, then the
L2 cohomology of its Bergman metric satisfies H O, n.

Proof. Let p 6 f2 be any fixed basepoint. Since the group of biholomorphic
automorphisms is transitive, we may pull back r/and go from the cotangent bundle at
any z 6 f2 to our chosen basepoint p. The key ratio of Proposition 2.2 is not invariant
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but its transformation property is characterized in formula (3.1). The criterion for
vanishing of L2-cohomology reduces to showing that sup 10 log Jr(p)[ < cx, where
the supremum is taken over all biholomorphic automorphisms T Aut. Since p is
fixed, the norm of 0 log Jr may be measured in either the Euclidean or the Bergman
metric. By applying elliptic regularity theory to the holomorphic functions Jr(w),
one deduces that

log Jr(P)l--
O Jr(p)
Jr(p)

_< Cl sup
wEU Jr(p)

where U is any neighborhood of p and Cl depends upon U. However, it follows
from [7] that there exists a U so that the ratio Jr(w)/Jr(p) is close to 1, uniformly
in T. For the special case of bounded symmetric domains, one may cite 1 instead
of [7]. [3

The formula (3.1) is useful when f2 admits a large but not necessarily transitive
group of automorphisms. To illustrate this point, we consider the domains tip in Ce/m

given by Izl 2 + Iwl2p < 1, p > 1. The boundary of p is weakly pseudoconvex
everywhere and strictly pseudoconvex except at points where w 0. Here z
(Zl, z. ze) and to (tol, to2 tom). By unitary rotation, which has constant
Jacobian, one need only consider the ratio of Proposition 2.2 at points having the form
z (Izl, 0, 0 0) and w (Iwl, 0, 0 0). Also, f2p admits automorphisms
Sa, 0 < a < 1, given by

Zl -+- a Z2/1 a2 ze/1 a2 w(1 a2) 1/2p)Sa(Z, to) + azl + azl + azl (1 aZl) 1/p

The inverse of Sa is simply S-a. Observe that Sa (0, w) (a, 0 0, w(1 -a2) 1/2p).
Since z 0 only cuts g2 at strictly pseudoconvex boundary points, it suffices to show
that 10 log Js(O, w)l, with S Sa, is uniformly bounded in a, because (3.1) holds and
Proposition 2.2 has already been verified at strictly pseudoconvex boundary points.
Recall that the Bergman metric is asymptotic to the model of the ball at strictly
pseudoconvex boundary points. An elementary calculation gives OlogJs(O, w)
-a(1 + + m/p)Ozl. This last differential form is clearly bounded in both the
Euclidean and Bergman metrics. Consequently, one has:

PROPOSITION 3.3. Ifp > 1, the domain Izl 2-t- Iwl2p < 1, in Cg’+m, has Hf2 0

for 5 g. -t- m. Here the L2 cohomology is taken with respect to the Bergman metric.

An explicit formula for the Bergman kernel of the domains Izl 2 -t- Iwl2p < was
given by J. D’Angelo [4].
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4. Domains of finite type in C2

David Catlin [2] estimated the size of the Bergman kernel and the Bergman metric
for domains 2 of finite type in C2. The idea behind his method is to embed small
polydiscs B near each point z0 in the boundary of f2. The dimensions of the polydiscs
depend upon the type of bf2 at z0. The Bergman kernels of the B are shown to be
comparable at the center of the polydiscs. Rescaling the polydiscs gives the order
of magnitude of the Bergman kernel. Catlin develops these ideas to estimate the
Bergman, Caratheodory, and Kobayashi metrics.

This section will show that Catlin’s approach can readily be adapted to establish
the criterion of Proposition 2.3 for domains of finite type in C2. We begin with the
following extension of Theorem 6.1 of [2].

THEOREM 4.1. Let f2 be a bounded pseudoconvex domain in Cn with smooth
boundary. Assume that (?l, 2 n) is a given point in D, 1, 2 [n are
given positive numbers, and that there exists afunction E C (-) such that:

(i) (z) _< C1, Z E ’.
(ii) is plurisubharmonic in 2.
(iii) f2 contains the polydisc B {zllzi il i, 1, 2 n}.
(iv) In , qb satisfies

)2(z) -2 12
i,j=l OZiOJ

titj >_ C2
i=1

[i Iti Z B.

(V) IfD denotes any mixedpartial derivative in zi andi oftotal order ti, then
n

DUe D’ Dn satisfies IO(z)l <_ c I-I ii 06 for z B, I1 _< 3.
i=1

Then the hypothesis ofProposition 2.3 holds. Specifically

sup{lf (E)12lxf 0 and Ilfll2 <_ 1}

sup{If (E)1211lfllz <_ 1}
>c3>0

with C3 independent ofboth X T2 and its basepoint f2.

Proof Suppose we let N(2) sup{lf()121Xf .-- 0 and Ilfl12 1} and
D(2) sup{lf()lZlllfll2 < 1} where the supremum is taken over holomorphic
functions defined on f2. Similarly, let N(B) and D(B) denote the analogous quantities
where the supremum is taken over holomorphic functions defined on B. Since B
it follows from the definitions that N(f2) < N(B) and D(2) < D(B). It suffices to
show that N(g2) >_ caN(B). If this inequality is established then

N(f2) N(B)
> C6 > C > O.

O() D(B)
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The last inequality follows by rescaling the polydisc B to a product of unit discs.
Both N and D scale in the same ratio, according to the L2 norm.

The proof that N(fi) > caN(B) is a standard application of the solution of the
inhomogeneous 0 equation in weighted L2 spaces 10]. Suppose that f is a holomor-
phic function, defined on B, satisfying Xf 0, 11fl[2 1, and [f()12 N(B).
The existence of such an optimizer f was shown in [5]. We follow the proof of
Theorem 6.1 in [2], with s 0, to extend f from B to fi. One constructs a
cut-off function 6 CB with ap on a small neighborhood of the center
of B. The theory of H6rmander [10] provides the solution of 0u O(f) in

L2fi with weight exp(-40ll(z E)//II --z. Here (z )//5 ((Zl 1)//1,
(z2 )//32 (zn n/,,). Because the weight function is bounded below on
all of fi and bounded above on the support of O(q/f) (Oap)f, one has Ilullz <_ c7,

in the standard L2-norm of fig. Let v apf u. Then v is holomorphic in fi with

Ilvllz <_ c8. Because of the singularity of our weight function at , Xv Xf 0
and v() f(). Since clv is an acceptable test function for the extremal problem
determining N(fi), one has N(fi) > caN(B). The proof that D(fi) > csD(B) is
entirely similar, although this estimate is not needed here. [2]

In our next section we will give examples of domains of finite type in Cn, n > 3,
where the criterion of Proposition 2.3 fails. In particular, the hypotheses of Theorem
4.1 cannot be satisfied in these examples. However, up to a locally defined biholo-
morphic equivalence with bounded Jacobian, Catlin [2] proved that the hypotheses
of Theorem 4.1 hold for domains of finite type in C2. Thus one has:

THEOREM 4.2. Let f2 be a domain offinite type in C2. Then Hfi 0, 2,
where the symbol H denotes the L2 cohomology groupfor the Bergman metric.

McNeal 11 proved that the hypotheses of Theorem 4.1 hold for locally convexi-
fiabl domains of finite type in Cn. This gives:

THEOREM 4.3. Let fi be a locally convexifiable domain offinite type in Cn Then

Hfi 0, n, where the symbol H denotes the L2 cohomologyfor the Bergman
metric.

5. Counterexamples in Cn, n > 3

We have proved that the criterion of Proposition 2.3 holds for domains of finite
type in C2. Our next result is that there exist bounded domains with real analytic
boundary in Cn, for each n > 3, where the criterion of Proposition 2.3 fails. Recall
that bounded domains, with real analytic boundary, necessarily are of finite type [3].
The existence of such counterexamples forecloses the natural strategy, developed
in [5], to establish vanishing cohomology of the Bergman metric for pseudoconvex
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domains. However, we have not shown that H 0, for some n, in these or
any other examples of pseudoconvex domains.

Consider the bounded analytic domain f2 in Ca given by Iwl= + Izz=l2 + Iz +
Iz2110 < 1. Given e > 0, we want to establish the estimate

N sup{If(p)121Xpf 0, Ilfll2 _< 1}
(5.1)

D sup{If (p)12111fll2 <_ 1}

for some p 6 and X Tpf2. In fact p (w, zl, Z2) (1 3, ,, 0), with small
The quantity N/D is the crucial ratio of Proposition 2.3.and ?,, and X z

We first estimate the numerator N. Consider the product domain D8 x fiB. Here
D denotes a disc of radius , centered at the origin in C, and f2 denotes the domain

Izzzl 2 / Izl / Iz211 < in C2. We translate D x f2 so that its center moves from
the origin to (1 3, 0, 0) in C3. This embeds D xf2 C f2. The extremal property
characterizing N immediately yields domain monotonicity N N(f2) _< N(D8
8). Since the Bergman kernel of D8 is of order 3-2 at the origin, N(D x f2) <_
c13-2N(). To establish this last upper bound, we use the characterization [5] of N
in terms of an orthonormal basis for square integrable holomorphic functions, Since
X will be tangent to the .second factor f, the orthonormal basis may be chosen to
consist of products of functions defined on each factor.

Let N N(f2.). To bound N8 from above, at the point (,, 0), we normalize the
standard basis, z] z, for square integrable holomorphic functions on f2, and expand
the extremal for N in this orthonormal basis. Since z2 = 0, at (),, 0), the extremal
must depend only upon the z]. It is elementary to estimate, for >_ 1,

12i r2i+l r2 3
3 q"

IZl " 3 dr+ - rdr , i-

and

akrdr + (-)rdr 3llog31.

Here indicates commensurability; the ratio of the two sides is bounded above and
below by absolute constants, independent of 3 and i. To determine these elemen-
tary estimates, we use the observation that f2 is commensurable to the domains
{iZlZ212 < C23} N {IZlI10 .< C23} I {Izzl < c26}. It follows that there are L2-
normalized orthogonal hotomorphic functions commensurable to 0 = (31 log 31)-1/2

i=0 aii withand (i 3-i (z/3r). We expand the extremal for N as f
12i=0 [ai < c3.
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We now take X z, and y 6 log 61 One computes

Xf al X,pl + ai X(/)i
i=2

a16-1/26-’ + Z ai6-1/2i1/2i 6- Zl

i=2

So Xf(y, 0) 0 gives

if-I)

al aii’ log 6l
i=2

-I log 61.1/4 aii?llog6l-
i=2

-2)

Thus loll < c4l log 61-1/4. Consequently,

If(w, 0)l la01101 + lalllll + laillil
i=2

_< c5(;-1/21 log 1-1/2 + log 1-1/4;-1/21 log 1-1/4

+ -lailillogl-)
i=2

c6(-llogl- +-llogl- lailillogl-)
i=2

c7-llogl-.

Since f is the extremal for No, we have N < c86-1 log61- at (y, 0). Thus
N < c96-31 log 61- at (1 6, y, 0), with X 0z--?"
We now turn to the denominator D of (5.1). A lower bound for D will be given by

w-aproviding a specific test function. The fractional linear transformation Taw -aw’
0 < a < 1, is a biholomorphic self map of the unit disc in C. One calculates
0--- (Taw) (1 a2)(1 aw)-2 The change of variable formula for double inte-

grals gives

flwl_<l a2

(1 --aw)2

2

Moreover, for 0 < s < 1,

(1 s)-2 fwl_< l-s a2 [2 flz(1 --aw)2
i<1

a2 [2 I1 a2127r
(1 a(1 s)z)2 I1 a2(1 s)2l 2"
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Differentiation yields, for small s and a 1 8,

--a2 12
(1 --aw)2

(1 -a)2

(1 a2(1 s)2)3"

Our test function will be the L2-normalization of Zl(1 a2)(1 aw)-2.
Using Fubini’s theorem,

(1 --aw)2 IZl ’
I=l-s

a2

(1 -aw)2 12IZl ds.

Earlier in this section we found that fas Izll2 " s+1/2" Therefore

(1 a)2
1+1/2 ds.

(1 a(1 s)2)
s

Note thata= 1-8. Thusa(1-s)=(1-8)(1-s)=l-8-s+Ss. So

82 fI - S 1+1/2 ds +
82- S 1+1/2 ds , 81+1/2

Our L2-normalized test function for D is commensurable to f (1 a2)zl (1
aw)-28-1/28-. Evaluating at w -8, Zl ’ 8-011og81--, gives f
8-18-1/21 logSI-1/4. So D _> c98-31 logS[-1/2.

Finally, the ratio in (5.1), at (1 8, V, 0) satisfies

N 8-31 logS1-1
< cl0 cl01 logSl- < e.

D 8-31 log 81-1/2
for 8 sufficiently small. Therefore, the criterion ofProposition 2.3 fails for the domain
in C3 given by

(5.2) Iwl 2 + IZlZ212 + IZll l + IZ211 < 1.

Similar counterexamples exist in Cn, n >_ 4. One uses the defining equation (5.2)
where w (1 8, 0), with 0 the origin in Cn-3. Small modifications of the above
argument yield (5.1) in this more general situation.
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