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1. Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive
integers whose sum is n. It is of interest to examine the number of partitions of
n under some additional restriction on the summands. Various partition functions
arise in the representation theory of permutation groups (see [2]). For example, if
p is prime, then let be (n) denote the number of partitions of a non-negative integer
n where the summands are not multiples of p. If n is a positive integer, then bp (n)
denotes the number of irreducible representations of the symmetric group Sn over the
finite field with p elements [2, Lemma 6.1.2].

For bk (n), the number of partitions of n into parts none of which is a multiple of
k, the generating function is given by the infinite product

(1)
c l _qkn

n=0 n--1 1--qn

There are other important examples ofpartition generating functions which contain
similar infinite products. In particular we shall consider certain partition generating
functions which contain infinite products of the form

H (1 _qn) H (1 _qn)
<_n=--g (mod 8) <_n=---g (mod )

where 0 < g < 8. For example the two Rogers-Ramanujan identities (see 1 ]),
cx qn +an cx

(1 q)(1 q2)... (1 qn) (1 qSn+a+l)(1 qSn+4-a)’n=O

where a 0 or 1, involve such products.
For rg,8 (n) the number ofpartitions ofn into parts that are congruent to +g (mod 8)

/8+1where 0 < g < 2 ], the generating function for r,,(n) is given by the infinite
product

(2) rg’8(n)qn H (1 _qn) H (1 _qn)n=0 <n----g (mod 8) <n=---g (mod 8)

Received March 6, 1996.
1991 Mathematics Subject Classification. Primary 11P83, 05A17.
The first author was supported by grants from the National Science Foundation.

(C) 1997 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

142



PARITY OF FOURIER COEFFICIENTS 143

We shall also examine the coefficients c(n) of Klein’s modular function j (z). Its
Fourier expansion is given by

’n=l or3 (n)q(3) j(z)
(1 / 240 n)3 x

q Hn%I(I qn)24 z...,
c(n)q

n=-I

where or3 (n) := -dln d3"
In this paper we consider the parity of the Fourier coefficients of certain modular

forms which include the arithmetic functions bk(n), rg,(n), and c(n). It is conjec-
tured (see [6]), that the number of non-negative integers n < x for which p(n) is
even is x. Very little is known about this specific conjecture; however there are
weaker conjectures regarding the parity of the partition function which are more easily
attacked. In [12], Subbarao conjectured that in an arithmetic progression r (mod t)
there are infinitely many integers N =_ r (mod t) for which p(N) is even, and that
there are infinitely many integers M r (mod t) for which p(M) is odd.

Using the theory of modular forms, the first author proved that in any arithmetic
progression r (mod t) there are infinitely many N r (mod t) for which p(N) is
even, and there are infinitely many M _= r (mod t) for which p(M) is odd provided
that there is at least one such M. Moreover the smallest such M (if there are any) is less
than 101t7 Using these results and a fair bit of machine computation, the conjecture
has now been verified for every arithmetic progression (mod t) where _< 100, 000.

In [9], Serre pointed out that the argument in [3] and [4] could be generalized to a
broader family of modular forms. We carry out these suggestions and show that the
same parity properties also hold for any meromorphic half-integral or integral weight
modular forms with respect to F1 (N) possessing integer coefficients, provided that
all of its poles are at cusps.

2. Facts about modular forms

If N is a positive integer, define the following level N congruence subgroups of
SL2 (Z) by

F0(N)={( bd)’ad-bc=l, c--O (modN)]
and

I-’I(N)={( bd)’ad-bc=l, a=-d=--l(modN), c--O (modN)}.
These subgroups of SL2(Z) act on Y), the upper half of the complex plane, as follows:
if a (a ) SL2(Z) and z is in Y) define az by az az+.__b If k is an integer andcz+d
f(z) is a meromorphic function on then f(z) is a modularform of weight k with
respect to F if

f (Az) (cz + d)kf (z)
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for all A e F _c SL2(Z) and all z ,. If f(z) is holomorphic on as well as at the
cusps of F (i.e., the rationals), then f(z) is called a holomorphic modularform. Of
particular interest are those holomorphic modular forms which vanish at cusps, the
cuspforms.

Note that any modular form of weight k with respect to F0(N) is automatically
one with respect to FI(N) since FI(N) c_ F0(N). A weight k modular form with
respect to F1 (N) has Nebentypus character X if

(4) f(Az) x(d)(cz + d)kf (z)

for all A F0(N) where g is a Dirichlet character modulo N. The finite-dimensional
C-vector space of holomorphic modular forms of weight k and Nebentypus X is
denoted Mk(N, g); its subspace of cusp forms is denoted Sk(N, g). If NIN’ then
Mk(N)

_
Mk(N’) (resp. Sk(N) c__ S(N’)) and for fixed N the Mk(N) form a graded

algebra; i.e., if f is of weight k and g is of weight k’ then fg is of weight k + k’.
In the variable q e2riz, these modular forms have the Fourier expansion

f (z) , a(n)qn

n>No

where the Fourier coefficients a(n) are complex numbers. In [8], Serre proved that
if f(z) Yn=0 a(n)qn is a holomorphic modular form with integer weight k with
respect to some congruence subgroup of SL2 (Z) where the coefficients a (n) are in the
integer ring Or of some number field K, then for any positive integer rn the number
ofn < x such thata(n) 0(modm) is O( x) for some ct > 0; i.e., if rn is a
positive integer, then

a(n) =_ O (modm)

for almost all n. In particular a(N) is a multiple of rn for almost all N ----_ r (mod t).
"n=0 a(n)qn is a holomorphic modular formIf rn is a positive integer and g(z)

of integer weight k with respect to F P (N) for some positive integer N with
algebraic integer Fourier coefficients from a fixed number field, let Ordm(g(z)) be
the smallest integer n such that a(n) 0 (mod m). Sturm [11] proved if

Ordm(g(z)) > 1-[SL2(Z)" F],

then Ordm(g(z)) x. (i.e., a(n) =-- 0 (mod m) for all n).
Shimura [10] developed a theory of half-integer weight modular forms which

satisfy an analogue of (4) with some auxiliary characters. An important point in
Shimura’s theory is that the level N of a half-integer weight form is necessarily a
multiple of 4.

nThe classical theta function (R)(z) 1 + 2 -’n q is a holomorphic modular
form of weight with respect to 1-’0(4). We note that (R)(z) (mod 2). Another
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example is the Dedekind Eta-function, a weight 1/2 cusp form on F0(576) defined by

(5) r/(24z) q H(1 q24n).
n=l

Many modular forms are products of the Dedekind Eta-function; for example Ra-
manujan’s A-function, the unique normalized weight 12 cusp form with respect to
SL2(Z), and tO(z) are given by

(6)

A (z) r/24(z) q H(1 qn)24,
n=l

r/5 (2z)
(z)

r/2 (Z)r/2(4Z)"
It is well known that

A(Z) y q(2n+1)2 (mod 2).
n=0

The generalized Dedekind Eta-products are also fundamental modular forms. If
0 _< g < 8 are non-negative integers, then the generalized Dedekind Eta-product
Og,8(z) is defined by

(7) r/g,8(z) ": eriP2()Sz H (1 qn) H (1 qn).
<n=--g (mod 8) <_n-g (mod 8)

Here P2(t) is defined by P2(t) "= {t}2 {t} + g where {t} is the fractional part of

t. If g 0 (resp. g 1/28), then Og,8(z) is r/2(Sz) (resp. 28z/2)
028z) )" If g :/: 0, 1/28, then

Og,8(z) is a weight 0 meromorphic modular form that does not vanish on the upper
half of the complex plane. For more on the arithmetic of these modular forms see
[7]. Hence we see the generating functions for rg,8(n) in (2) are, up to a power of q,
the Fourier expansions of o,(z)

3. The general theorem

THEOREM 1. Suppose that f (z) 2n>No a(n)qn is a modular form of half
integer or integer weight k with respect to I" (N) for some positive integer N. If
f (z) is holomorphic on the upper halfofthe complex plane and the coefficients a(n)
are integers, then in any arithmetic progression r (mod t) there are infinitely many
N r (mod t) for which a(N) is even, and there are infinitely many M r (mod t)
for which a(M) is odd, provided there is at least one such non-zero M.

Proof. First suppose that f (z) is a half integer weight form, then

f (z) =- f (z) tO(z) (mod 2)



146 KEN ONO AND BRAD WILSON

where f(z). (R)(z) is a modular form with integer weight k + with respect to 1-’1 (N).
Hence if f(z) is a half integer weight modular form with respect to F1 (N), then there
exists an integer weight modular form with the same Fourier expansion modulo 2.
So we may assume that f (z) is an integer weight k form.

Since f (z) is holomorphic on ., its only poles (if there are any) occur at cusps.
Since A(z) is a cusp form, there is a minimal non-negative integer j for which
Ft(z) f(z) A2j (tz) is holomorphic at the cusps. Hence Ft(z) is in M2J.12+k(Nt)
since A(tz) is in S2(t).

Since

(8) A(2Jtz) 2j.t(2n+l)(tz) =-- q (mod 2),
n--0

the modular form Ft (z) has the convenient (mod 2) factorization

(9) F(z) ct(n)q =-- a(n)q (mod 2).
n=O n=O

We now prove there are infinitely many integers N _= r (mod t) for which a(N) is
even. Suppose a(N) is odd for all but finitely many N r (mod t); in particular that
a (n) is odd for all n >_ no with n =- r (mod t). Without loss of generality we may
assume that j > 1. Comparing the coefficient of q2jtk2+n on both sides of (9) we find
that

ct(2Jtk2 + n) =- a(2Jt(k2 i2) +n) (mod 2).
i>l, odd

Note that each 2J (k2 2) +n =-- n =- r (mod t). Nowifi < k then 2J (k2 z) +n >
-No+n > no so that a(2Jt(k2 i2) + n) is odd. If k is odd and > k > 2J+2

then 2Jt(k2-i2) +n < No so thata(2Jt(k2-i2) +n) 0. Therefore, for
k+l (mod 2). We have now proved that for allsuch k, we have Ct(2jtk2 + n) =-- --sufficiently large k (mod 4) we have ct(n) odd for all n r (mod t) in the

interval [2 tk2 + no, 2J t(k + 2)2 + r t] (assuming, without loss of generality that
0 < r < 1). By taking all such intervals into account we have a positive proportion
of ct(n) with n r (mod t) which are odd, contradicting Serre’s Theorem [8] since
F(z) is in M2J.2+k(Nt). Therefore there are infinitely many integers N r (mod t)
for which a(N) is even.
We now establish the existence of infinitely many M r (mod t) for which a(M)

is odd provided that there is at least one such M. To study the Fourier coefficients
attached to those exponents that are in the arithmetic progression r (mod t), we define
Fr, (z) by

Fr, (Z) := y ct (n)qn

n=--r (mod t)

By [4, Lemma 2], Fr,t(z) is in M2J.,2+k(-) where d :-- gcd(r, t).
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Suppose there are only finitely many M r (mod t) for which a(M) is odd. In
particular suppose a(tm + r) is even if m > m0. Then from (8) we find

(10) fr’t(z)(Za(tm-lr)qtm+r)(q2jt(2n+l)2)m<mon=0

(mod 2).

This means

(11) Fr,t(Z) y q2jtzn+)2+b’ (mod 2)
<i <s n--0

where b, b2 bs are the only integers for which bi r (mod t) and a(bi) are odd.
If a(0) is odd and 0 -_- r (mod t), then replace Fr,t(Z) by Fr,t(Z) A2j (tz)(R)2k(z).
Therefore without loss of generality we may assume that a (0) is even, and that

Fr,t(Z) q2Jt(2n+l)z+bi (mod 2)
l<i<s n--0

4ut3a where the bi are distinct non-zero integers. By [4, Lemma 1],is in M2.2+( d
it is known that there is no such integer weight holomorphic modular form unless
Ft,r(Z) 0 (mod 2). However this is not the case if there is at least one non-zero
M r (mod t) for which a(M) is odd.

4. Applications

In this section we apply the main theorem to certain well poised modular forms.

COROLLARY 1. Let b(n) be bk(n), rg,(n), or c(n) for any k > 2 or 0 < g <
+1 then there are infinitely many N =-- r (mod t) for which b(N) is even There2

are infinitely many M =_ r (mod t) for which b(M) is odd provided there is at least
one such M.

Proof By Theorem it is enough to find a modular form whose Fourier coeffi-
cients are, up to change of variable, congruent modulo 2 to bk(n), rg,(n), and c(n).
After change of variables, (1) gives bk(n) as an Eta-product, (2) and (7) give rg,(n)
as coefficients of. (3) gives c(n) as the coefficients of the modular function
j(z).

COROLLARY 2. If 2 < k < 25, then for every arithmetic progression r (mod t)
where 0 < r < < 10 there are infinitely many M =_ r (mod t) for which b(M) is
odd exceptfor r R where (k, R, t) is any ofthefollowing:

(2, {3, 4}, 5), (2, {3, 4, 6}, 7), (4, 2, 3), (4, {2, 4}, 5), (4, {2, 5}, 6),

(12) (4, {2, 4, 5}, 7), (4, {2, 4, 5, 7, 8}, 9), (5, 2, 4), (5, {2, 6}, 8),

(13, 2, 6), (16, {2, 8}, 9), (17, 2, 8).



148 KEN ONO AND BRAD WILSON

For these cases,

for all n.

bk(tn -b r) 0 (mod 2)

Proof. By Corollary 1, it is enough to find a single M r (mod t) for which
bk(M) is odd. Computations using recurrences for bk(n) from [5] find an M for each
case not listed in (12).

The congruences for k 2, 4, and 16 follow directly from well known q-series
infinite product identities. The congruences for k 5, 13, 17 were verified by
machine computation using Sturm’s theorm. For instance to prove that

b13(6n+2)=-0 (mod2)

we examine the modular form f (z) defined by

o r/(13z)r/6 (6z)r/8 (78z) r/4 (z)
f (z) y a(n)qn

n=0 O(z)o2(2Z)

This is a weight 8 holomorphic modular form on 1’0(234) with coefficients given by

o ( ) nl -I -I 1-q4n
a(n)qn-28 bl3(n)qn (1 q6n)6 (1 q78n)8

n=O n=O n=l n=l (1 qn)"

The final factor doesn’t affect parity questions since

o 1 q4nI-I (mod 2).n=lll (1 q2n)2

All powers of q in I-In (1 q78n)8 and Hn=l (1 q6n)6 are multiples of 6 so if there
is a minimal n’ such that b13 (6n’ -F 2) 1 (mod 2) then a(6n’ + 30) (mod 2);
i:e., to prove b3(6n + 2) is always even it is enough to show a(6n) is always even.
Acting by the Hecke operator T(6) we get the weight 8 holomorphic modular form
on 1’0(234):

f(z)lT(6) a(6m)qm.
n--0

By Sturm’s theorem, to prove a(6m) 0 (mod 2) for all rn it suffices to check all
rn < 336, since

k 1- =336.12[SLz(Z)" 1"0(234)] 234.3 4 14
2 3 13

Computations verify b13 (6n + 2) 0 (mod 2) for all n _< 400 so for all n. ffl
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COROLLARY 3. /f3 _< 8 _< 20, 0 < g < L-KJ, gcd(8, g) and 0 <_ r < <_
75, then there are infinitely many M r (mod t) for which rg,(M) is odd except
when (g, ) is (1, 4).

Proof
rg,(M) is odd. This is easily done with a computer search.

For (g, ) (1, 4) we get legitimate congruences since

l_q2n o

Z rl’4(n)qn-- H H(1 if- qn)=__
n=0 n=l 1--qn

q
n=l n=-x

by Euler’s Pentagonal Number Formula. I3

By Corollary it is enough to produce a single M _= r (mod t) for which

(mod 2)

As a final application we consider the coefficients of j (z). By (3) we see

(mod 2).

In particular c(n) is even for all n 7(mod 8). By machine computation, we obtain:

COROLLARY 4. If 0 <_ r < <_ 1000, then there exist infinitely many integers
M ---- r (mod t) for which c(M) is odd provided that the arithmetic progression
r (mod t) has a non-empty intersection with the progression 7 (mod 8).
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