# PARITY OF FOURIER COEFFICIENTS OF MODULAR FORMS 

Ken Ono and Brad Wilson

## 1. Introduction

A partition of a non-negative integer $n$ is a non-increasing sequence of positive integers whose sum is $n$. It is of interest to examine the number of partitions of $n$ under some additional restriction on the summands. Various partition functions arise in the representation theory of permutation groups (see [2]). For example, if $p$ is prime, then let $b_{p}(n)$ denote the number of partitions of a non-negative integer $n$ where the summands are not multiples of $p$. If $n$ is a positive integer, then $b_{p}(n)$ denotes the number of irreducible representations of the symmetric group $S_{n}$ over the finite field with $p$ elements [2, Lemma 6.1.2].

For $b_{k}(n)$, the number of partitions of $n$ into parts none of which is a multiple of $k$, the generating function is given by the infinite product

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{k}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1-q^{k n}}{1-q^{n}} \tag{1}
\end{equation*}
$$

There are other important examples of partition generating functions which contain similar infinite products. In particular we shall consider certain partition generating functions which contain infinite products of the form
where $0 \leq g \leq \delta$. For example the two Rogers-Ramanujan identities (see [1]),

$$
\sum_{n=0}^{\infty} \frac{q^{n^{2}+a n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+a+1}\right)\left(1-q^{5 n+4-a}\right)}
$$

where $a=0$ or 1 , involve such products.
For $r_{g, \delta}(n)$ the number of partitions of $n$ into parts that are congruent to $\pm g(\bmod \delta)$ where $0<g<\left\lfloor\frac{\delta+1}{2}\right\rfloor$, the generating function for $r_{g, \delta}(n)$ is given by the infinite product

$$
\begin{equation*}
\sum_{n=0}^{\infty} r_{g, \delta}(n) q^{n}=\prod_{1 \leq n \equiv g} \frac{1}{\left(1-q^{n}\right)} \prod_{1 \leq n \equiv-g} \frac{1}{(\bmod \delta)} \frac{\left.1-q^{n}\right)}{(1-1} \tag{2}
\end{equation*}
$$

Received March 6, 1996.
1991 Mathematics Subject Classification. Primary 11P83, 05A17.
The first author was supported by grants from the National Science Foundation.

We shall also examine the coefficients $c(n)$ of Klein's modular function $j(z)$. Its Fourier expansion is given by

$$
\begin{equation*}
j(z)=\frac{\left(1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}\right)^{3}}{q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}}=\sum_{n=-1}^{\infty} c(n) q^{n} \tag{3}
\end{equation*}
$$

where $\sigma_{3}(n):=\sum_{d \mid n} d^{3}$.
In this paper we consider the parity of the Fourier coefficients of certain modular forms which include the arithmetic functions $b_{k}(n), r_{g, \delta}(n)$, and $c(n)$. It is conjectured (see [6]), that the number of non-negative integers $n \leq x$ for which $p(n)$ is even is $\sim \frac{1}{2} x$. Very little is known about this specific conjecture; however there are weaker conjectures regarding the parity of the partition function which are more easily attacked. In [12], Subbarao conjectured that in an arithmetic progression $r(\bmod t)$ there are infinitely many integers $N \equiv r(\bmod t)$ for which $p(N)$ is even, and that there are infinitely many integers $M \equiv r(\bmod t)$ for which $p(M)$ is odd.

Using the theory of modular forms, the first author proved that in any arithmetic progression $r(\bmod t)$ there are infinitely many $N \equiv r(\bmod t)$ for which $p(N)$ is even, and there are infinitely many $M \equiv r(\bmod t)$ for which $p(M)$ is odd provided that there is at least one such $M$. Moreover the smallest such $M$ (if there are any) is less than $10^{10} t^{7}$. Using these results and a fair bit of machine computation, the conjecture has now been verified for every arithmetic progression $(\bmod t)$ where $t \leq 100,000$.

In [9], Serre pointed out that the argument in [3] and [4] could be generalized to a broader family of modular forms. We carry out these suggestions and show that the same parity properties also hold for any meromorphic half-integral or integral weight modular forms with respect to $\Gamma_{1}(N)$ possessing integer coefficients, provided that all of its poles are at cusps.

## 2. Facts about modular forms

If $N$ is a positive integer, define the following level $N$ congruence subgroups of $S L_{2}(\mathbb{Z})$ by

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a d-b c=1, c \equiv 0 \quad(\bmod \mathrm{~N})\right\}
$$

and

$$
\Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a d-b c=1, a \equiv d \equiv 1(\bmod \mathrm{~N}), c \equiv 0 \quad(\bmod N)\right\}
$$

These subgroups of $S L_{2}(\mathbb{Z})$ act on $\mathfrak{H}$, the upper half of the complex plane, as follows: if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ and $z$ is in $\mathfrak{H}$, define $A z$ by $A z=\frac{a z+b}{c z+d}$. If $k$ is an integer and $f(z)$ is a meromorphic function on $\mathfrak{H}$ then $f(z)$ is a modular form of weight $k$ with respect to $\Gamma$ if

$$
f(A z)=(c z+d)^{k} f(z)
$$

for all $A \in \Gamma \subseteq S L_{2}(\mathbb{Z})$ and all $z \in \mathfrak{H}$. If $f(z)$ is holomorphic on $\mathfrak{H}$ as well as at the cusps of $\Gamma$ (i.e., the rationals), then $f(z)$ is called a holomorphic modular form. Of particular interest are those holomorphic modular forms which vanish at cusps, the cusp forms.

Note that any modular form of weight $k$ with respect to $\Gamma_{0}(N)$ is automatically one with respect to $\Gamma_{1}(N)$ since $\Gamma_{1}(N) \subseteq \Gamma_{0}(N)$. A weight $k$ modular form with respect to $\Gamma_{1}(N)$ has Nebentypus character $\chi$ if

$$
\begin{equation*}
f(A z)=\chi(d)(c z+d)^{k} f(z) \tag{4}
\end{equation*}
$$

for all $A \in \Gamma_{0}(N)$ where $\chi$ is a Dirichlet character modulo $N$. The finite-dimensional $\mathbb{C}$-vector space of holomorphic modular forms of weight $k$ and Nebentypus $\chi$ is denoted $M_{k}(N, \chi)$; its subspace of cusp forms is denoted $S_{k}(N, \chi)$. If $N \mid N^{\prime}$ then $M_{k}(N) \subseteq M_{k}\left(N^{\prime}\right)\left(\right.$ resp. $\left.S_{k}(N) \subseteq S_{k}\left(N^{\prime}\right)\right)$ and for fixed $N$ the $M_{k}(N)$ form a graded algebra; i.e., if $f$ is of weight $k$ and $g$ is of weight $k^{\prime}$ then $f g$ is of weight $k+k^{\prime}$.

In the variable $q=e^{2 \pi i z}$, these modular forms have the Fourier expansion

$$
f(z)=\sum_{n \geq N_{0}}^{\infty} a(n) q^{n}
$$

where the Fourier coefficients $a(n)$ are complex numbers. In [8], Serre proved that if $f(z)=\sum_{n=0}^{\infty} a(n) q^{n}$ is a holomorphic modular form with integer weight $k$ with respect to some congruence subgroup of $S L_{2}(\mathbb{Z})$ where the coefficients $a(n)$ are in the integer ring $O_{K}$ of some number field $K$, then for any positive integer $m$ the number of $n \leq x$ such that $a(n) \not \equiv 0(\bmod m)$ is $O\left(\frac{x}{\log ^{\alpha} x}\right)$ for some $\alpha>0$; i.e., if $m$ is a positive integer, then

$$
a(n) \equiv 0 \quad(\bmod m)
$$

for almost all $n$. In particular $a(N)$ is a multiple of $m$ for almost all $N \equiv r \quad(\bmod t)$.
If $m$ is a positive integer and $g(z)=\sum_{n=0}^{\infty} a(n) q^{n}$ is a holomorphic modular form of integer weight $k$ with respect to $\Gamma \supseteq \Gamma_{1}(N)$ for some positive integer $N$ with algebraic integer Fourier coefficients from a fixed number field, let $\operatorname{Ord}_{m}(g(z))$ be the smallest integer $n$ such that $a(n) \not \equiv 0(\bmod m)$. Sturm [11] proved if

$$
\operatorname{Ord}_{m}(g(z))>\frac{k}{12}\left[S L_{2}(\mathbb{Z}): \Gamma\right]
$$

then $\operatorname{Ord}_{m}(g(z))=\infty$. (i.e., $a(n) \equiv 0(\bmod m)$ for all $\left.n\right)$.
Shimura [10] developed a theory of half-integer weight modular forms which satisfy an analogue of (4) with some auxillary characters. An important point in Shimura's theory is that the level $N$ of a half-integer weight form is necessarily a multiple of 4 .

The classical theta function $\Theta(z)=1+2 \sum_{n=1}^{\infty} q^{n^{2}}$ is a holomorphic modular form of weight $\frac{1}{2}$ with respect to $\Gamma_{0}(4)$. We note that $\Theta(z) \equiv 1(\bmod 2)$. Another
example is the Dedekind Eta-function, a weight $\frac{1}{2}$ cusp form on $\Gamma_{0}(576)$ defined by

$$
\begin{equation*}
\eta(24 z)=q \prod_{n=1}^{\infty}\left(1-q^{24 n}\right) \tag{5}
\end{equation*}
$$

Many modular forms are products of the Dedekind Eta-function; for example Ramanujan's $\Delta$-function, the unique normalized weight 12 cusp form with respect to $S L_{2}(\mathbb{Z})$, and $\Theta(z)$ are given by

$$
\begin{align*}
& \Delta(z)=\eta^{24}(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} \\
& \Theta(z)=\frac{\eta^{5}(2 z)}{\eta^{2}(z) \eta^{2}(4 z)} \tag{6}
\end{align*}
$$

It is well known that

$$
\Delta(z) \equiv \sum_{n=0}^{\infty} q^{(2 n+1)^{2}} \quad(\bmod 2)
$$

The generalized Dedekind Eta-products are also fundamental modular forms. If $0 \leq g<\delta$ are non-negative integers, then the generalized Dedekind Eta-product $\eta_{g, \delta}(z)$ is defined by

$$
\begin{equation*}
\eta_{g, \delta}(z):=e^{\pi i P_{2}\left(\frac{g}{\delta}\right) \delta z} \prod_{1 \leq n \equiv g}\left(1-q^{n}\right) \prod_{1 \leq n \equiv-g} \prod_{(\bmod \delta)}\left(1-q^{n}\right) \tag{7}
\end{equation*}
$$

Here $P_{2}(t)$ is defined by $P_{2}(t):=\{t\}^{2}-\{t\}+\frac{1}{6}$ where $\{t\}$ is the fractional part of $t$. If $g=0$ (resp. $g=\frac{1}{2} \delta$ ), then $\eta_{g, \delta}(z)$ is $\eta^{2}(\delta z)$ (resp. $\frac{\eta^{2}(\delta z / 2)}{\eta^{2}(\delta z)}$ ). If $g \neq 0, \frac{1}{2} \delta$, then $\eta_{g, \delta}(z)$ is a weight 0 meromorphic modular form that does not vanish on the upper half of the complex plane. For more on the arithmetic of these modular forms see [7]. Hence we see the generating functions for $r_{g, \delta}(n)$ in (2) are, up to a power of $q$, the Fourier expansions of $\frac{1}{\eta_{8, \delta}^{\delta(z)}}$.

## 3. The general theorem

THEOREM 1. Suppose that $f(z)=\sum_{n \geq N_{0}} a(n) q^{n}$ is a modular form of half integer or integer weight $k$ with respect to $\bar{\Gamma}_{1}(N)$ for some positive integer $N$. If $f(z)$ is holomorphic on the upper half of the complex plane and the coefficients $a(n)$ are integers, then in any arithmetic progression $r(\bmod t)$ there are infinitely many $N \equiv r(\bmod \mathrm{t})$ for which $a(N)$ is even, and there are infinitely many $M \equiv r(\bmod \mathrm{t})$ for which $a(M)$ is odd, provided there is at least one such non-zero $M$.

Proof. First suppose that $f(z)$ is a half integer weight form, then

$$
f(z) \equiv f(z) \cdot \Theta(z) \quad(\bmod 2)
$$

where $f(z) \cdot \Theta(z)$ is a modular form with integer weight $k+\frac{1}{2}$ with respect to $\Gamma_{1}(N)$. Hence if $f(z)$ is a half integer weight modular form with respect to $\Gamma_{1}(N)$, then there exists an integer weight modular form with the same Fourier expansion modulo 2. So we may assume that $f(z)$ is an integer weight $k$ form.

Since $f(z)$ is holomorphic on $\mathfrak{H}$, its only poles (if there are any) occur at cusps. Since $\Delta(z)$ is a cusp form, there is a minimal non-negative integer $j$ for which $F_{t}(z):=f(z) \cdot \Delta^{2^{j}}(t z)$ is holomorphic at the cusps. Hence $F_{t}(z)$ is in $M_{2^{j} \cdot 12+k}(N t)$ since $\Delta(t z)$ is in $S_{12}(t)$.

Since

$$
\begin{equation*}
\Delta^{2^{j}}(t z) \equiv \Delta\left(2^{j} t z\right) \equiv \sum_{n=0}^{\infty} q^{2^{j} \cdot t(2 n+1)^{2}} \quad(\bmod 2) \tag{8}
\end{equation*}
$$

the modular form $F_{t}(z)$ has the convenient $(\bmod 2)$ factorization

$$
\begin{equation*}
F_{t}(z)=\sum_{n=0}^{\infty} c_{t}(n) q^{n} \equiv\left(\sum_{n \geq N_{0}} a(n) q^{n}\right) \cdot\left(\sum_{n=0}^{\infty} q^{2^{j} \cdot t(2 n+1)^{2}}\right) \quad(\bmod 2) \tag{9}
\end{equation*}
$$

We now prove there are infinitely many integers $N \equiv r(\bmod \mathrm{t})$ for which $a(N)$ is even. Suppose $a(N)$ is odd for all but finitely many $N \equiv r(\bmod t)$; in particular that $a(n)$ is odd for all $n \geq n_{0}$ with $n \equiv r(\bmod t)$. Without loss of generality we may assume that $j \geq 1$. Comparing the coefficient of $q^{2^{j} t k^{2}+n}$ on both sides of (9) we find that

$$
c_{t}\left(2^{j} t k^{2}+n\right) \equiv \sum_{i \geq 1, i \text { odd }} a\left(2^{j} t\left(k^{2}-i^{2}\right)+n\right) \quad(\bmod 2)
$$

Note that each $2^{j} t\left(k^{2}-i^{2}\right)+n \equiv n \equiv r(\bmod t)$. Now if $i \leq k$ then $2^{j} t\left(k^{2}-i^{2}\right)+n \geq$ $n \geq n_{0}$ so that $a\left(2^{j} t\left(k^{2}-i^{2}\right)+n\right)$ is odd. If $k$ is odd and $i>k>\frac{-N_{0}+n}{2^{j+2} t}-1$ then $2^{j} t\left(k^{2}-i^{2}\right)+n<N_{0}$ so that $a\left(2^{j} t\left(k^{2}-i^{2}\right)+n\right)=0$. Therefore, for such $k$, we have $c_{t}\left(2^{j} t k^{2}+n\right) \equiv \frac{k+1}{2}(\bmod 2)$. We have now proved that for all sufficiently large $k \equiv 1(\bmod 4)$ we have $c_{t}(n)$ odd for all $n \equiv r(\bmod t)$ in the interval $\left[2^{j} t k^{2}+n_{0}, 2^{j} t(k+2)^{2}+r-t\right]$ (assuming, without loss of generality that $0 \leq r \leq t-1)$. By taking all such intervals into account we have a positive proportion of $c_{t}(n)$ with $n \equiv r(\bmod \mathrm{t})$ which are odd, contradicting Serre's Theorem [8] since $F_{t}(z)$ is in $M_{2^{j} \cdot 12+k}(N t)$. Therefore there are infinitely many integers $N \equiv r(\bmod \mathrm{t})$ for which $a(N)$ is even.

We now establish the existence of infinitely many $M \equiv r(\bmod t)$ for which $a(M)$ is odd provided that there is at least one such $M$. To study the Fourier coefficients attached to those exponents that are in the arithmetic progression $r(\bmod t)$, we define $F_{r, t}(z)$ by

$$
F_{r, t}(z):=\sum_{n \equiv r(\bmod \mathrm{t})} c_{t}(n) q^{n}
$$

By [4, Lemma 2], $F_{r, t}(z)$ is in $M_{2^{j \cdot 12+k}}\left(\frac{N t^{3}}{d}\right)$ where $d:=\operatorname{gcd}(r, t)$.

Suppose there are only finitely many $M \equiv r(\bmod \mathrm{t})$ for which $a(M)$ is odd. In particular suppose $a(\mathrm{tm}+r)$ is even if $m>m_{0}$. Then from (8) we find

$$
\begin{equation*}
F_{r, t}(z) \equiv\left(\sum_{m \leq m_{0}} a(t m+r) q^{t m+r}\right)\left(\sum_{n=0}^{\infty} q^{2^{j} t(2 n+1)^{2}}\right) \quad(\bmod 2) \tag{10}
\end{equation*}
$$

This means

$$
\begin{equation*}
F_{r, t}(z) \equiv \sum_{1 \leq i \leq s} \sum_{n=0}^{\infty} q^{2^{j} t(2 n+1)^{2}+b_{i}} \quad(\bmod 2) \tag{11}
\end{equation*}
$$

where $b_{1}, b_{2}, \ldots b_{s}$ are the only integers for which $b_{i} \equiv r(\bmod \mathrm{t})$ and $a\left(b_{i}\right)$ are odd. If $a(0)$ is odd and $0 \equiv r(\bmod t)$, then replace $F_{r, t}(z)$ by $F_{r, t}(z)-\Delta^{2^{j}}(t z) \Theta^{2 k}(z)$. Therefore without loss of generality we may assume that $a(0)$ is even, and that

$$
F_{r, t}(z) \equiv \sum_{1 \leq i \leq s} \sum_{n=0}^{\infty} q^{2^{j} t(2 n+1)^{2}+b_{i}} \quad(\bmod 2)
$$

is in $M_{2^{j} \cdot 12+k}\left(\frac{4 N t^{3}}{d}\right)$ where the $b_{i}$ are distinct non-zero integers. By [4, Lemma 1], it is known that there is no such integer weight holomorphic modular form unless $F_{t, r}(z) \equiv 0(\bmod 2)$. However this is not the case if there is at least one non-zero $M \equiv r(\bmod \mathrm{t})$ for which $a(M)$ is odd.

## 4. Applications

In this section we apply the main theorem to certain well poised modular forms.
COROLLARY 1. Let $b(n)$ be $b_{k}(n), r_{g, \delta}(n)$, or $c(n)$ for any $k \geq 2$ or $0<g<$ $\left\lfloor\frac{\delta+1}{2}\right\rfloor$, then there are infinitely many $N \equiv r(\bmod t)$ for which $b(N)$ is even. There are infinitely many $M \equiv r(\bmod \mathrm{t})$ for which $b(M)$ is odd provided there is at least one such $M$.

Proof. By Theorem 1 it is enough to find a modular form whose Fourier coefficients are, up to change of variable, congruent modulo 2 to $b_{k}(n), r_{g, \delta}(n)$, and $c(n)$. After change of variables, (1) gives $b_{k}(n)$ as an Eta-product, (2) and (7) give $r_{g, \delta}(n)$ as coefficients of $\frac{1}{n_{g, \delta}(z)}$. (3) gives $c(n)$ as the coefficients of the modular function $j(z)$.

COROLLARY 2. If $2 \leq k \leq 25$, then for every arithmetic progression $r(\bmod \mathrm{t})$ where $0 \leq r<t<10$ there are infinitely many $M \equiv r(\bmod \mathrm{t})$ for which $b_{k}(M)$ is odd except for $r \in R$ where ( $k, R, t$ ) is any of the following:

$$
\begin{align*}
& (2,\{3,4\}, 5),(2,\{3,4,6\}, 7),(4,2,3),(4,\{2,4\}, 5),(4,\{2,5\}, 6), \\
& (4,\{2,4,5\}, 7),(4,\{2,4,5,7,8\}, 9),(5,2,4),(5,\{2,6\}, 8),  \tag{12}\\
& (13,2,6),(16,\{2,8\}, 9),(17,2,8) .
\end{align*}
$$

For these cases,

$$
b_{k}(t n+r) \equiv 0 \quad(\bmod 2)
$$

for all $n$.
Proof. By Corollary 1, it is enough to find a single $M \equiv r(\bmod t)$ for which $b_{k}(M)$ is odd. Computations using recurrences for $b_{k}(n)$ from [5] find an $M$ for each case not listed in (12).

The congruences for $k=2,4$, and 16 follow directly from well known $q$-series infinite product identities. The congruences for $k=5,13,17$ were verified by machine computation using Sturm's theorm. For instance to prove that

$$
b_{13}(6 n+2) \equiv 0 \quad(\bmod 2)
$$

we examine the modular form $f(z)$ defined by

$$
f(z)=\sum_{n=0}^{\infty} a(n) q^{n}=\frac{\eta(13 z) \eta^{6}(6 z) \eta^{8}(78 z) \eta^{4}(z)}{\eta(z) \eta^{2}(2 z)}
$$

This is a weight 8 holomorphic modular form on $\Gamma_{0}(234)$ with coefficients given by

$$
\sum_{n=0}^{\infty} a(n) q^{n-28}=\left(\sum_{n=0}^{\infty} b_{13}(n) q^{n}\right) \prod_{n=1}^{\infty}\left(1-q^{6 n}\right)^{6} \prod_{n=1}^{\infty}\left(1-q^{78 n}\right)^{8} \prod_{n=1}^{\infty} \frac{1-q^{4 n}}{\left(1-q^{2 n}\right)^{2}}
$$

The final factor doesn't affect parity questions since

$$
\prod_{n=1}^{\infty} \frac{1-q^{4 n}}{\left(1-q^{2 n}\right)^{2}} \equiv 1 \quad(\bmod 2)
$$

All powers of $q$ in $\prod_{n=1}^{\infty}\left(1-q^{78 n}\right)^{8}$ and $\prod_{n=1}^{\infty}\left(1-q^{6 n}\right)^{6}$ are multiples of 6 so if there is a minimal $n^{\prime}$ such that $b_{13}\left(6 n^{\prime}+2\right) \equiv 1(\bmod 2)$ then $a\left(6 n^{\prime}+30\right) \equiv 1(\bmod 2)$; i.e., to prove $b_{13}(6 n+2)$ is always even it is enough to show $a(6 n)$ is always even. Acting by the Hecke operator $T(6)$ we get the weight 8 holomorphic modular form on $\Gamma_{0}(234)$ :

$$
f(z) \mid T(6)=\sum_{n=0}^{\infty} a(6 m) q^{m}
$$

By Sturm's theorem, to prove $a(6 m) \equiv 0(\bmod 2)$ for all $m$ it suffices to check all $m \leq 336$, since

$$
\frac{k}{12}\left[S L_{2}(\mathbb{Z}): \Gamma_{0}(234)\right]=\frac{8}{12} \cdot 234 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{14}{13}=336
$$

Computations verify $b_{13}(6 n+2) \equiv 0(\bmod 2)$ for all $n \leq 400$ so for all $n$.

Corollary 3. If $3 \leq \delta \leq 20,0<g<\left\lfloor\frac{\delta+1}{2}\right\rfloor, \operatorname{gcd}(\delta, g)=1$ and $0 \leq r<t \leq$ 75 , then there are infinitely many $M \equiv r(\bmod \mathrm{t})$ for which $r_{g, \delta}(M)$ is odd except when $(g, \delta)$ is $(1,4)$.

Proof. By Corollary 1 it is enough to produce a single $M \equiv r(\bmod t)$ for which $r_{g, \delta}(M)$ is odd. This is easily done with a computer search.

For $(g, \delta)=(1,4)$ we get legitimate congruences since

$$
\sum_{n=0}^{\infty} r_{1,4}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1-q^{2 n}}{1-q^{n}}=\prod_{n=1}^{\infty}\left(1+q^{n}\right) \equiv \sum_{n=-\infty}^{\infty} q^{\frac{3 n^{2}+n}{2}} \quad(\bmod 2)
$$

by Euler's Pentagonal Number Formula.
As a final application we consider the coefficients of $j(z)$. By (3) we see

$$
j(z)=\sum_{n=-1}^{\infty} c(n) q^{n} \equiv q^{-1} \prod_{n=1}^{\infty}\left(\frac{1}{1-q^{n}}\right)^{24} \equiv q^{-1} \prod_{n=1}^{\infty} \frac{1}{\left(1-q^{8 n}\right)^{3}} \quad(\bmod 2)
$$

In particular $c(n)$ is even for all $n \not \equiv 7(\bmod 8)$. By machine computation, we obtain:
COROLLARY 4. If $0 \leq r<t \leq 1000$, then there exist infinitely many integers $M \equiv r(\bmod t)$ for which $c(M)$ is odd provided that the arithmetic progression $r(\bmod t)$ has a non-empty intersection with the progression $7(\bmod 8)$.

## REFERENCES

1. G. Andrews, The theory of partitions, Addison-Wesley, Reading, 1976.
2. G. James and A. Kerber, The representation theory of the symmetric group, Addison-Wesley, Reading, 1979.
3. K. Ono, On the parity of the partition function in arithmetic progressions, Electron. Res. Announce. Amer. Math. Soc. 1 1995, 35-42.
4. On the parity of the partition function, J. Reine Angew. Math., to appear.
5. K. Ono, N. Robbins, and B. Wilson, Some recurrences for arithmetical functions, J. Indian Math. Soc., to appear.
6. T. R. Parkin and D. Shanks, On the distribution of parity in the partition function, Math. Comp. 21 (1967), 466-480.
7. S. Robins, Generalized Dedekind $\eta$-products, Contemp. Math., The Rademacher Legacy to Mathematics 166 (1994), 119-128.
8. J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, Enseign. Math. 22 (1976), 227-260.
9. J.-P. Serre, personal letter to K. Ono, October 14, 1994.
10. G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481.
11. J. Sturm, On the congruence of modular forms, Lect. Notes in Math., vol. 1240, Springer-Verlag, New York, 1984.
12. M. Subbarao, Some remarks on the partition function, Amer. Math. Monthly 73, 851-854.

Ken Ono, School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
ono@math.ias.edu

Department of Mathematics, Penn State University, University Park, PA 16802 ono@math.psu.edu

Brad Wilson, Department of Mathematics, SUNY College at Brockport, Brockport, NY 14420
bwilson@acspr1.acs.brockport.edu

