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GENERALIZED PUISEUX EXPANSIONS
AND THEIR GALOIS GROUPS

SANJU VAIDYA

Section 1. Introduction

Let k be an algebraically closed field of characteristic p and let X be an inde-
terminate. Let k((X)) be the quotient field of the ring of formal power series (no
convergence involved) in X over the field k. The field k((X)) is called the field
of meromorphic functions of X over k. It is well known that in case p = 0, the
Puiseux field U k((X 'lu)) of all Puiseux expansions is an algebraic closure of the
field k((X)). Butif p # 0, this is not the case. Chevalley [3] proved that polynomial
ZP — Z — X~ does not have a root in the Puiseux field.

Abhyankar [1] introduced the notion of generalized Puiseux expansion and proved
the factorization of the said polynomial Z? — Z — X ~! into generalized Puiseux expan-
sions. Using this, Huang, a doctoral student of Abhyankar, constructed a generalized
Puiseux field and proved that it contains an algebraic closure of the meromorphic
series field. The generalized Puiseux field consists of functions from the set Q of
all rational numbers to the field £ with some conditions on their support. In greater
detail, a function f from the set Q to the field k is in the generalized Puiseux field
iff its support S(f) is a well ordered subset of the set Q and there exists an integer
m = m(f) such that for every @ € S(f) we have am = Z& for some integers n,
and i,. Huang [4] proved many fascinating results for generalized Puiseux elements
whose supports are subsets of the set {'71, %;l-, R SR .}. For instance, he proved
a criterion which says that such elements are algebraic over the field k((X)) iff they
are periodical in case the field k is equal to algebraic closure of its prime field.

In this paper, we will investigate some functions of the generalized Puiseux field
that are algebraic over the meromorphic series field; moreover, we will calculate
their Galois groups. It turns out that Galois group of certain functions over the
meromorphic series field is a semidirect product of a cyclic group and a direct sum of
p cyclic groups. We also exhibit functions whose Galois groups are dihedral group,
a certain type of Burnside group and a direct sum of p cyclic groups. Additionally,
we will extend the criterion of Huang to a certain type of functions of the generalized
Puiseux field in case the field k is not equal to algebraic closure of its prime field.
We will also extend Huang’s criterion to some generalized Puiseux elements whose
supports are contained in the set {‘75"-: i € N}, where (I;);cn is a sequence of positive
integers satisfying certain constraints.
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In Section 2 we will describe the notation and terminology to be used throughout
the paper. In Section 3 we will review some of the results and the criterion about
some special elements of the generalized Puiseux field. These results are proved in
Sections II and III of Huang [4]. In subsection (4.2) we will extend the criterion
to certain type of elements of the generalized Puiseux field, while subsection (4.1)
prepares the groundwork for it. Finally in Section 5, we will calculate Galois groups
of some generalized Puiseux elements over the meromorphic series field.

Section 2. Notation and terminology

We will use the notation and terminology introduced in Sections IT and ITI of Huang
[4].

Here is greater detail. Let k be an algebraically closed field of characteristic p,
where p is a prime number. Let X be transcendental over the field k. Let k((X))
denote the field of meromorphic functions in X over the field k. Let U2 k(X 5))
denote the Puiseux field. Let us define the set A(p) by putting

A(p) = {f = Z a,X%: ay, € k, S(f) is a well ordered subset of Q
aeS(f)
and for each f there exists a natural number m = m(f) such

l
that for every a € S(f), am = ;: with I, n, € Z} ,
p(!

where the set Q is the set of all rational numbers which is a totally ordered group
under addition with the usual ordering < and a subset A of the set Q is well ordered
if every non-empty subset S of the set A has a minimal element. Let us define the
addition and multiplication for the elements in the set A(p) as follows:

If f =3 yes(r)@X®and g = 3,5, baX* are any elements of the set A(p),
then

f+g= Z (aq + by)X*

aeS(fHUS(g)
and
fo= Y apxtr = Y ( 3 a,,by) xe.
(B,¥)ES(f)xS(8) aeS(f)+S(g) \B+y=«a

Then the set A(p) is a field under the operations of addition and multiplication and it
may be called the generalized Puiseux field.
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Section 3. A criterion

In this section, we will review some of the results and the criterion about some
special type of elements of the generalized Puiseux field. These results are proved in
Section II and IIT of Huang [4].

Before we do that, let us recall the following fundamental result which is proved
in Chevalley [3].

THEOREM (3.1). Thle polynomial ZP — Z — X~ does not have a root in the
Puiseux field U2  k((X7)). Hence the Puiseux field is not algebraically closed.

Abhyankar [1] introduced the notion of the generalized Puiseux expansion and
proved the following factorization of the polynomial Z? — Z — X! into generalized
Puiseux expansions.

THEOREM (3.2). The polynomial ZP — Z — X! can be factored as follows.

p—1

ZP—Z—X-1=]"[(z—i—iX?})
j=1

i=0

Using this factorization, in Section II of [4], Huang constructed the generalized
Puiseux field A(p) and proved the following.

THEOREM (3.3). The generalized Puiseux field A(p) contains an algebraic clo-
sure of the field k((X)).

In Section III of [4], Huang investigated functions f of the generalized Puiseux
field A(p) with supports S(f) C {‘71, —;%, ..., =% ...} and proved many elegant
results. Some of them are described in Lemma (3.6), Corollary (3.7), Criterion (3.8),
and Theorem (3.9). To understand them, we need the following definition.

=1
Definition 3.4). Let f = Y 02 a;X P, with a; € k for every i € N. We say
that f is periodical if a; = a;4, fori > mandn > 1.

Remark (3.5). If an element is periodical then it is algebraic over the field k ((X)).

=1
LEMMA (3.6). Let F be a finite field contained ink. Let f =Y o, a; X 7', with
a; € F, for everyi € N. Then the element f is algebraic over the field k((X)) iff it
is periodical.
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-1
COROLLARY (3.7). Let F), be the prime field of the field k. Let f = 3" a;X P,

with a; € F,, for everyi € N. Then the element f is algebraic over the field k((X))
iff the real number Y <, %‘; is a rational number.

-1
CRITERION (3.8). Let f =Y o, a; X P, witha; € k, for everyi € N. Assume
that k is an algebraic closure of its prime field. Then the element f is algebraic over
the field k((X)) iff it is periodical.

In Theorem 9 of Section V of [4], Huang found the minimal polynomial of the
-1

element f = Z:’il a; X 7, with a; € k, for every i € N, if it is algebraic over the
field k((X)). For that, he introduced the following notations.

Let Z be transcendental over the field k((X)). Given any positive integer n and
constants oy, a5, ..., «, in the field k, let

H(Z) = 2" -2
Hy(2) = H{(Z) - H! ™ () H1(Z)

and, inductively, .
H,(Z) = H! \(Z) — H!"| (an)H,-1(2).

Now we can state Theorem 9 and Remark 3 of Section V of Huang [4]. They are
respectively stated here in Theorem (3.9) and Remark (3.10).

-1
THEOREM (3.9). Let f = 32, a;X P, with a; € k, for everyi € N. Let
k((X))(f) be an abelian extension of k((X)) of degree p" and all the conjugates of f
be f +miay +maar+- - -+mua, form; =0,1,2,..., p—1foralli and o; € k for
i =1,2,...,n. Then the minimal polynomial of f over k((X)) is H,(Z) — H,(f);
or equivalently,

p—1 p—1
[T [1@-f-mei—- —muan) = Hi(Z) = Hu(f).
m,.=0 M|=0

-1

Remark (3.10). Let f = 302, a;X 7, with a; € k, for every i € N. Assume
that f satisfies a polynomial F(Z) = Zr 4+ b,,.lZ""—I 4+ +b1ZP +byZ + b(X),
where, b; € kforO <i < n —1,b(X) € k((X)), and n is minimal. Then the
polynomial F(Z) is minimal polynomial of the element f over the field k((X)).

Section 4. Extension of the criterion

Subsection (4.1). In this subsection, we will prepare the groundwork to extend
Criterion (3.8) for some special type of generalized Puiseux elements.
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-1
LEMMA (4.1.1). Let f = Z:’il a X7 be algebraic over the field k((X)), where
a; € k for every i € N. Then there exists a positive integer n and constants

€0, C1, €2, - - - Cy in the field k such that ¢, # 0and Y o 1(Z"_o cj 1+1)X P' =0.
Proof. Since the element f is algebraic over the field k((X)), it is clear that the
infinite set {1, f, f?, f " ..., f?, ...} is linearly dependent over the field k((X)).

So there exists a positive mteger n and elements b, by, by, ..., b, in the field k((X))
such that b, # 0 and

€] b=bof +bif”+---+buf".

In equation (1) we may assume that the elements by, by, . . ., b, are in the ring k[[ X]].
Writing equation (1) explicitly, we get

b— Zb Za”X ""—Zb Za XP‘“’

Jj=0 i=j+l1

For 0 < j < n, let ¢; be the constant term of b;. Then

n o0 ; —_

, p =i
E ¢ E ai Xr~ =
Jj=0 i=j+1

Hence the result follows.

In the following Lemmas (4.1.2) and (4.1.3), we will prove some interesting in-

equalities satisfied by permutations on n objects, where n is any positive integer
greater than 1.

LEMMA (4.1.2). Letthere be given any integern > 1. Then for every permutation
o € S, \ {e}, where e is the identity element of the permutation group S,,, we have
' li—o@lpiT > 0.

Proof. We will prove the lemma by using mathematical induction on »n. In case
n = 2, the result is obvious. So let n > 2. We will assume that the result is true
for n — 1. Let there be given any permutation o € S, \ {e}. Then there exists

e{l,2,...,n}suchthato(j) = 1. Letz: {1,2,...,n—1} - {1,2,...,n — 1}
be a function defined by putting

P L{ORSE ifie{l,2,....j—1}
W=+ -1, ifiefjj+1,....n—1}

Then it is easy to see that T € S,_;. Incase j = 1, clearly T € S,_; and 7 is not
equal to the identity element of the group S,—;. Therefore by induction hypothesis
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we have Y77 ![i — 7(i)]p'~"' > 0. Hence it is easy to see that 37 ,[i — o ())1p'~! >
[0(2) — 2]p. Consequently the result follows.

Henceforth assume that j > 1. Then we have Z;’;l [i —t()]p'~! > 0. Therefore,
by expanding the sum, we get

n Jj—1 )
@ D li—o®IpT' =Y [06) — G+ DIp'.
=1

i=j+1 i

Using (2) we have Y7 (i — o (D]p"~' 2 L, [i —o)1p ™ + T/1{ o () — G +
1)]p’. By expanding the sums, we get Y i_,[i —o()]p'' > 1 =Y/ o@)p'~ +
>/=! 6(i)p'. Therefore, using o (j) = 1, we get

u il . .
Dli—o®lp ' = [(p -1 Zo(i)p"'] - -1).
i=l1 i=1

Consequently,

n j—1
3) Dli—o@Ip ™ =(p-1 (Z{a(z‘) - 1]p"“> :

i=l i=1

From (3), and noting that o (j) = 1, we get the result.

LEMMA (4.1.3). Let there be given any integer n > 1. Let € S, be defined
by putting w(i) =n —i + 1 foreveryi € {1,2,...n}). Then for every permutation
o € S, \ {w} we have 30_\li + o (i) — 1]pi~! > Y0 np'~L.

Proof. Let there be given any o € S, \ {w}. Let 0* € S, be defined by putting
o*(@) =n+1—o(i)foreveryi € {1,2,...n}. Thenitiseasytoseethato™* € S,\{e},
where e is the identity element of the permutation group S,. Consequently, using
Lemma (4.1.2) for permutation o*, we get the result.

Subsection (4.2). In Theorems (4.2.1) and (4.2.2), we will extend Criterion (3.8)
for some types of functions in case k£ # an algebraic closure of its prime field F),.
Additionally, in Theorem (4.2.3) and Corollary (4.2.4), we will extend the criterion
for some functions with special support.

THEOREM (4.2.1). Assume that k is not an algebraic closure of its prime field F,,
1

and let Y € k be transcendental over the field F,. Let f = Y0 a;Y'X P’ be such
that for every i € N, the element a; is in k and is algebraic over the prime field F),
of the field k. If the element f is algebraic over the field k((X)), then there exists a
positive integer n such that a; = 0 for every i > n.
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Proof. ByLemma(4.1.1), there exists a positive integer n and constants ¢y, ¢i,
in the field k such that ¢, # 0 and

“) > (Z Cja}iiY(”')”') Xr =0.

i=1 \j=0

Therefore, for every i € N, we have

n R L X
3) Z cja;’iiY(”')p’ =0.
j=0
Let A be the infinite matrix whose order is n + 1 by oo and whose (i, j)th term is
i—1

alyi YU+i=Dr'™" Hence from (4) and (5), it follows that rank(A) < n + 1. We will

prove that a;, = 0 for every i € N. Suppose there exists a positive integer / such
that a@;, # 0. Since rank(A) < n + 1, we have

i—1 f e i—
det(a,”+j+i_2Y(’+’+"2)” ]) =0.

I<i<n+1,1<j<n+1

Therefore, dividing by Y¢~D7""" in the i row forevery i € {1,2,...,n+ 1}, we get
P (i+j—1)p"-‘) _
© det (al+1+“2Y L<i<ntl,1<j<n+1 0.

Letusputm =n + 1. Let w € S, be defined by putting w (i) = m —i + 1 for every
i €{1,2,...,m}. Then itis easy to see that

m m

P (i+o@)-Dp ) _ i—1

ord (I Ial+w(i)+i—2Yl @OmIp )— z :mP' .
i i=1

i=1

We also note that given any o € S, \ {0}, if ai45G)+i—2 # O for every i €
{1,2,...,m}, then

m - ' ' . m )
o (l_[ 0f 12 7O ) =Y i +om - Dp.
i=1

i=1
Consequently, using Lemma (4.1.3), we get

™ det (afy ;Y 707)

1<i<n+1,1<j<n+1

Since statements (6) and (7) contradict each other, a;,, = O forevery i € N.

THEOREM (4.2.2). Assume that k is not an algebraic closure of its prime field F,

and let Y € k be transcendental over the field F,. Let L be a finite field contained
-1

ink. Let f =) 2, fi(")X 7", where f;(Y) € L[Y]foreachi € N. Assume that
there exists a positive integer M such that deg f;(Y) < M for everyi € N. Then the
element f is algebraic over the field k((X)) iff it is periodical.

vy Cn
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Proof. 1If the element f is periodical, then by Remark (3.5), it is algebraic over
the field k((X)). To prove the converse, let the element f be algebraic over the
field k((X)). By Lemma (4.1.1) there exists a positive integer n and constants

1
o, C1, C2, - . ., Cp in the field k such that ¢, # 0 and Z?;(Z;:o cj j’ii)X P =0.

Therefore, for every i € N, we have Z;';o of j’_’:i = 0. So dividing by the constant
cn We get

Cp—1 p"" .
— ,.+n_1] foreveryi € N.
n

n ¢ c

np+i=_[c_:ﬁ+c_:l A+
Thus for every i € N, the polynomial f,; is completely determined by the n-tuple
(fis figts-+v» fian—1). Let FO = (fi, fixts ..., fizn_1). Wenote thatif F) = FO)
for some i # j then fy,; = fu4;. This in turn implies that F@+D = FU+D and
SO futi+1 = fa+j+1. Hence it follows that f,1;1, = fu4j4r foreveryr € N. So
the element f will be periodical. Now for each i € N, the polynomial f;(Y) is in
L[Y], where L is a finite field and deg f;(Y) < M. So card{F?: i € N} < oo.

Consequently, it follows that if the element f is algebraic over the field k((X)) then
it is periodical.

—1I
THEOREM (4.2.3). Let f = Zfil a X ra be algebraic over the field k((X)),
where, foreveryi € N, a; € k,and (;);cn is a sequence of positive integers satisfying
the following conditions.

(i) ged (l;,p) = 1 foreveryi € N.
(ii) l; < lj4) foreveryi € N.
(iii) pl; > l;+) foreveryi € N.
(iv) Given any positive integers n and s, we have l; — by # (s — r)p' for
any integers m,r, and t suchthat0 <m <nand0 <r <s <t.

Then there exists a positive integer e such that a; = 0 for every i > e.

Proof. Since pl; > I;4 foreveryi € N, the sequence {=%: i € N} is increasing.
So it follows that f € A(p). Since the element f is algebraic over the field k((X)),
it is clear that the infinite set {1, f, f?, f L f?,...}is linearly dependent over
the field £((X)). So there exists a positive integer » and elements b, by, by, ..., b, in
the field k((X)) such that b, # 0 and

®) b=bof +bifP+---+b,f".

In equation (8) we may assume that the elements by, by, . . ., b, are in the ring k[[ X]].
Leth, =Y ;20 bm X" for0 <m < n. Letordb, = s. Since b, # 0, we have s > 0,
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bys # 0 and b,, = 0 for every r < s. Hence it follows that

© b- ibmzm:a,me""’m‘ Zb Za:’”’x::—m

m=0 i=1 i=m+1
i(zb,,,, 5 i)
r=0 \m=0 i=m+1
00 I
5 (S S )
r=0 \m=

We will prove that b,;a +,X P' W = 0O forallz > s. So henceforth let ¢t > 5. Since

the sequence (/;);cy satisfies the conditions (i) and (ii), we get

ln+t +5 # m+j +r
p p’

for any positive integer j # ¢, any nonnegetive integer r and 0 < m < n and

-l
n+t +5 7& m+t +r
P! P

for any positive integer r > s and 0 < m < n. Additionally, if s > 0, due to condition
(>iv), we get

ln m
L e L
P’ p

for any m and r such that 0 < r < s and 0 < m < n. We also note that on the left
hand side of equation (9) all the exponents of X are integers. Consequently, it follows

—lnys
that b,,sa,H_,X 4 S = 0. Since b,,; # 0, we get a,, = 0. Hence the result follows.

il

COROLLARY (4.2.4). Let q be any given prime number. Let f =Y = a;X P',

where, for everyi € N,a; € k. If p > q, then the element f is algebraic over the
field k((X)) iff there exists a positive integer n such that a; = 0 for everyi > n.

Proof. Follows from Theorem (4.2.3).

Section 5. Galois groups

In this section we will calculate Galois groups of some special types of elements.
It may be noted that Theorem (5.1) and Corollaries (5.2) to (5.4) deal with Galois
groups of certain periodical generalized Puiseux elements while Theorem (5.5) and
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Corollary (5.6) give Galois groups of some generalized Puiseux elements which are
not periodical. Throughout this section, let L denote the field k((X)) and Z be
transendental over an algebraic closure of the field L.

THEOREM (5.1). Let m be any positive integer which is relatively prime to p. Let
1

n be any given positive integer. Let f = Y o X mp"  Let G be the group of all L-
automorphisms of the field L(f). If the integer m divides the integer p" — 1, then we
have the following.

(5.1.1) The field L(f) is a Galois (finite, normal, separable) extension of the field
L of degree mp™ with the group G as the Galois group.

(5.1.2) There exists subgroups H and K of the Galois group G such that the
subgroup H is isomorphic to a direct sum of n copies of cyclic group of
order p and the subgroup K is isomorphic to the cyclic group of order
m. Moreover, if m > 1, then the Galois group G is isomorphic to the
semidirect product of H and K .

-1
Proof. Let F(Z) = ZP" — Z — Xm . Clearly F(f) = 0 and all the roots of
the polynomial F(Z) are distinct. Therefore, the element f is separable algebraic
1

1
over the field k((Xm)). Since Xm is algebraic over the field L and the integer m is
relatively prime to the integer p, it follows that the field L(f) is a finite, algebraic,
separable extension of the field L.

LetS ={Z +---+b;ZF +-.-+b: r e N,b; € kforalli suchthat0 < i <
1

r—1landb € k((Xm))}. Let G(Z) be any polynomial in the set S of degree p” such
that G(f) = 0. Then by Theorem (3.9) and Remark (3.10), it is enough to prove that
n <r.Supposen > r.Let G(Z) = ZP + --- + b;ZP + --- + b, where b; € k for

1
0<i<r—1andb € k((Xm)). Since G(f) = 0, we get

o -1

© -1 SN =L
ZmenJ—r +“.+biZmenJ—A +"'+bOZ mp" =_b
j=1 Jj=1

j=1

i
which gives a contradiction. (For example, the coefficient of the term X mP"™" is equal
to 1 on one side and O on the other side of the equation.) Hence it follows that the

1
polynomial F(Z) is the minimal polynomial of the element f over the field k((X m)).
1 1
Therefore, [L(f) : k((Xm))] = p". Also obviously we have [k((Xm)) : L] = m.
Hence we get [L(f) : L] = mp”.
Let H(Z) = (Z”" — Z)™ — X~!. Then clearly H(f) = 0. Since [L(f) : L] =
mp", the polynomial H (Z) is the minimal polynomial of the element f over the field

L. Let u be the mth primitive root of unity and w the (p" — 1)th primitive root of
unity. Then it is easy to see thatthe set {u’ f: 1 <i <m}U{u'f+w/: 1 <i <
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mand 1 < j < p" — 1} is the set of all roots of the polynomial H(Z). Consequently
we get (5.1.1).

Let H be the Galois group of the field L( f ) over the field k((X m)). As noted
above, the polynomial F(Z) = Z” — Z — X'm is the minimal polynomial of the

element f over the field k((X m)). Additionally, if f’ is any root of the polynomial
F(Z) such that f' # f, then there exists « € {w': 1 < i < p" — 1} such that
f' = f + a. Hence it follows that the group H is isomorphic to a direct sum of n
copies of cyclic group of order p. Leto € H besuchthato (f) = f+w. Lett € G
be such that T(f) = uf. Let K be the subgroup of the group G generated by the
element T. Obviously ord(K) = m. It is also clear that if m > 1, then o7 # 0
and H N K = {e}, whert;, e is the identity element of the group G. Further we note

that since the field k((X m)) is a normal extension of the field L, the subgroup H is
normal in the group G. Consequently, it follows that if m > 1, then the group G is
isomorphic to the semidirect product of H and K. Thus we get (5.1.2).

-1
COROLLARY (5.2). Let n be any given positive integer. Let f = 3 o/ X .
Then the field L(f) is a Galois extension of the field L. Moreover, the Galois group
of the field L(f) over the field L is isomorphic to a direct sum of n copies of cyclic
group of order p.

Proof. Follows from (5.1) by taking m = 1.

-1
COROLLARY (5.3). Let f = Y52, X2V, Assume that p > 2. Then the field
L(f) is a Galois extension of the field L. Moreover, the Galois group of the field
L(f) over the field L is the dihedral group of order 2p.

Proof. Follows from (5.1) by takingm =2 and n = 1.

-1

COROLLARY (5.4). Letf =) 2,X 307 . Assume that 3 divides the integer p— 1.
Then the field L(f) is a Galois extension of the field L. Moreover, the Galois group
of the field L(f) over the field L is a nonabelian group of order 3 p. Additionally, if
p = 2.3" + 1 for some integer i > 2, then the Galois group is a Burnside group.

Proof. Follows from (5.1) by taking m = 3 and n = 1 and the Theorem of Nagai
[61.

THEOREM (5.5). Let m and n be positive integers. Let (r;)icn be a sequence of
positive integers such that each integer r; is prime to the integer pfor1 <i <n—1,
r, = 1,andriy, = r; + mp' foreveryi € N.
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L
Let f =Y 12, f' , Where for every i > 1, the element a; is a nonzero element
of the field k. Let s = p" — 1,d = gcd(m, s), and s* = 5. Assume that s* > 1. Let

1
G be the group of all L-automorphisms of the field k((Xs*))(f). Then we have the
following.

IL
Xr

(5.5.1) The field L(f) is a finite, algebraic, separable extension of the field L of
degree p".

1

(5.5.2) Thefieldk((X5*))(f) is the least normal extension of the field L containing
the element f. Moreover, it is a Galois extension of the field L of degree
s* p" with the group G as the Galois group.

(5.5.3) There exist subgroups H and K of the Galois group G such that the
subgroup H is isomorphic to a direct sum of n copies of cyclic group of
order p and the subgroup K is isomorphic to the cyclic group of order s*.

Moreover, the Galois group G is isomorphic to the semidirect product of
Hand K.

Proof. Let F(Z)=2ZP" —X"Z — (a, X" + Y i ; ! " txri "). Then it is easy
to see that F(f) = 0. Moreover, the polynomial F (Z) 1s irreducible and separable
over the field L. Hence (5.5.1) follows.

Let w be the (p" — 1) th pr1m1t1ve root of unity. Let m* = %. Then it is easy

to see that the set {f + w Xs‘ : 1 < i < s}U{f} is the set of all roots of the
polynomial F(Z). Let E be a root field of the polynomial Z?"~! — X™ over the field
L(f). Then by Lemma AS of Abhyankar [2] we have [E : L(f)] = s*. Therefore,
[E : L] = s*p". Let E* be aroot field of the polynomial Z?"~! — X™ over the field L
in the field E. Then by Lemma A5 of Abhyankar [2] we have [E : E*] = p”". Hence

1
E* = k((X5%)). Therefore it follows that E = E*(f). Since [E : E*] = p", the
: 1
polynomial F(Z) is the minimal polynomial of the element f over the field k((X5%)).
Consequently we get (5.5.2).
Let H be the Ga101s group of the field k((X s* ))(f) over the field k((X s* )). Let

oi(f) = f+w'X = for 1 <i < p" — 1. Then it is easy to see that the group H is
isomorphic to a direct sum of » copies of cyclic group of order p. Additionally, since
1

the field k((X 5*)) is a normal extension of the field L, the subgroup H is normal in
1

the group G. Let T € G be such that t(f) = f and (X5 ) = qul*, where u is
an (s*)"* primitive root of unity. Let K be the subgroup of the group G generated
by the element r. Clearly ord(K) = s*. It is also easy to see that 017 # vo; and
HNK = {e}, where e is the identity element of the group G. Consequently it follows

that the group G is isomorphic to the semidirect product of H and K. Thus we get
(5.5.3).
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COROLLARY (5.6). Let m and n be positive integers. Let (r;);en be a sequence
of positive integers such that each integer r; is prime to1 pforl <i<n-1,r,=1,
"
andriyn, =ri +mp' foreveryi € N. Let f =Y (2, aiFX?, where for everyi > 1,
the element a; is a nonzero element of the field k. If the integer p" — 1 divides the
integer m then the field L( f) is a Galois extension of the field L of degree p" and the
Galois group is isomorphic to a direct sum of n copies of cyclic group of order p.

Proof. 'The proof is subsumed in the proof of Theorem (5.5).
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