
ILLINOIS JOURNAL OF MATHEMATICS
Volume 42, Number I, Spring 1998

NEST ALGEBRAS ARE HYPERFINITE

KENNETH R. DAVIDSON

In [12], Paulsen, Power and Ward show that nest algebras are semidiscrete. This
is an important tool in developing a good dilation theory for representations of nest
algebras (see also [13]). These ideas have been extended to establish semidiscrete-
ness and dilation theorems for larger classes of nonself-adjoint operator algebras [6],
[4]. Paulsen and Power have asked whether nest algebras actually have the stronger
property of hyperfiniteness. In this paper, we establish this via a refinement of the
techniques used in [12] and [5].
A weakly closed operator algebra in a category C is hyperfinite if it is the in-

creasing union of finite dimensional subalgebras which are completely isometrically
isomorphic to (finite dimensional) members of C. For von Neumann algebras, deep
results of Connes, Haagerup, Choi, Effros and others have shown that hyperfiniteness
is equivalent to various other properties including semidiscreteness and amenability.
Moreover hyperfiniteness is a stronger condition in the sense that it readily implies
the others for elementary reasons.

Paulsen, Power and Ward show that for any nest algebra T(A/’) on a separable
Hilbert space, there is a sequence .A,, of finite dimensional nest algebras together
with completely isometric homomorphisms ,, of A,, into T(A/’) and completely
contractive weak-, continuous maps E,, of T(A/’) onto A,, such that qn nE, are
idempotent maps converging point-weak-, to the identity on T(A/’) and converging
in norm on T(A/’) A/C, where/C is the ideal of compact operators. In our argument,
we achieve this but in addition arrange that the algebras B,, ,(.A) are nested
unital algebras.

An even stronger form of hyperfiniteness would require the imbeddings or,, of
.A,, into A,,+ induced by the containment of ,, in/3+1 to be nice maps. Recent
interest has been focussed on imbeddings which extend to ,-endomorphisms of the
enveloping matrix algebras 9d,, (isomorphic to the k x k matrices 93tk for some k)
which are regular in the following sense. The algebras .A,, each contain a masa Dn of
9.1,, which form an increasing sequence. They determine a set of matrix units for each
matrix algebra 9..t,,; and 4, are block upper triangular with respect to this basis. The
imbedding is regular if each matrix unit of Pal,, is sent to a sum of matrix units in
The direct limit of the sequence (.A,,, or,,) is a subalgebra .,4 of the AF C*-algebra
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91 which is the limit of the ’[n’S. Such limits are characterized by the fact that they
contain a Cartan masa of 91 (roughly speaking, one which is obtained by an increasing
sequence of 7)n’S as above).

Working from the other direction, Orr and Peters 11] considered a subalgebra
Jt of an AF C*-algebra 91 which is triangular (meaning that jt A .A* is a Cartan
masa) and Dirichlet (meaning that e4 + 4" is dense in 91). Such algebras are called
strongly maximal triangular. They showed that when 91 is primitive, there is an
irreducible representation of 91 which carries 4 onto a weak-, dense subalgebra of
a triangular nest algebra. An easy example shows that the Volterra nest, which has
uniform multiplicity one, can be achieved in this way. Thus any continuous nest of
uniform multiplicity can be obtained in this way if the condition of triangularity is
replaced by the more general class of limits of nest algebras.
We will show that for any continuous nest, there is a direct limit Jt of nest sub-

algebras of full matrix algebras with regular ,-extendible imbeddings (so that the
C*-algebra 91 is matroid) and a ,-representation of 91 on 7-( such that (t) is
weak-, dense in T(A/’). A suitable modification of this argument works for any nest
with no finite rank atoms. We also show that any nest with finite rank atoms which is
not atomic cannot be obtained in this way.

Our argument and that of 12] rely in an essential way on the spectral theory for
unitary invariants of nests developed by Erdos [7] that is based on the Hellinger-Hahn
classification of abelian von Neumann algebras. Given a continuous nest iV" and a
parametrization of.Af by [0, as Nt 0 < < }, there is a spectral measure EA; on
[0, such that EAt[0, t] Nt. Since any non-atomic regular Borel measure on [0,
may be converted to Lebesgue measure by a reparametrization of the interval, we may
work only with spectral measures EA equivalent to Lebesgue measure. Moreover,
there is a Borel multiplicity function rn of[0, into 10 t_J {cx}. The sets Ak m -! (k)
have the property that the nest restricted to EAc(A,) is unitarily equivalent to the k-
fold ampliation of multiplication on L2(Ak) by the characteristic functions of [0, t].
We do not know of any way to avoid confronting these measure theoretic issues head
on.

The proof of hyperfiniteness makes a careful decomposition of the interval into
the disjoint union of Cantor sets of uniform multiplicity. The image algebras will
contain lots of rank one elements. This makes it easy to establish that every rank
one operator of the nest algebra is a limit in norm of such elements. Thus the Erdos
Density Theorem [8] can be used to show weak-, density. The construction also yields
semidiscreteness at the same time, which is not surprising since this is a modification
of the argument in 2].

In order to obtain regular ,-extendible embeddings in the case of continuous nests,
one must abandon finite rank operators because the diagonal matrix units are neces-
sarily mapped to infinite rank projections. The partial isometries that we construct
are built from matrix units of (partial) homeomorphisms between Cantor sets. This
idea was used in [5] to construct unitarily implemented outer automorphisms of con-
tinuous nest algebras. The construction is quite delicate, and the proof of density is
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more subtle. Density relies on a result of Arveson stating that a subalgebra of a
nest algebra containing a masa and having the nest as its only invariant subspaces is
weak-, dense in "T(A/’).

It is an easy fact that if,4 is a Dirichlet subalgebra ofPa and is a representation ofPa
which carries ,4 into a maximal nest algebra and contains a masa in its weak-, closure,
then (,4) is weak-, dense in the nest algebra if and only if is irreducible. Muhly
and Solel [9] prove similar results for analytic algebras associated to C*-dynamical
systems on the real line. Surprisingly, it is possible for (,4) to contain such a masa
in its weak-, closure when the representation is not irreducible. We establish this at
the end of the paper with some careful modifications of our arguments.

The necessary background on nest algebras including most of the results quoted
here are contained in our textbook [3]. See Power’s monograph [14] for details on
the class of limit algebras.

I would like to thank John Orr for several useful conversations about this paper.

I. Hyperfiniteness

To set the stage, we prove an easy result about atomic nest algebras.

THEOREM 1.1. LetA/" be an atomic nest. There is a sequence offinite dimensional
nest algebras "-f’(Jn) and regular multiplicity one ,-extendible imbeddings Oln of
"T(Jn) into T(.A/In+I) such that there is a ,-extendible isomorphism ofthe direct
limit )t onto 7"(A/’) fqlC. The nests Jln may be chosen so that there are also completely
isometric isomorphisms ’n ofT(A/In) onto an increasing sequence .Atn ofunitalfinite
dimensional subalgebras with union weak-, dense in T(./V’). Furthermore, there are
completely contractive idempotent maps (expectations) qn and q of 7-(.M) onto

n (T(.A//n)) and .A’n which converge point-weak-, on T(.A/’) to the identity
map.

Proof. This result is easy, and only needs a small device to obtain unital subalge-
bras. First suppose that A/" is infinite. Enumerate its atoms as {Am m >_ }. Choose
orthonormal bases {em,i "0 <_ < dm} for each AmT", where dm rank Am.

For each integer n, consider the subspace

7-(. span{em,i" < m < n, 0 < < min{dm, n}} {e,,+,o}.

Let A//n be the nest on 7-t obtained by compressing ./V" to this subspace; and let
T(A//n) be the corresponding nest algebra.

The injection of ’/’(jWln) into T(A/I,+) determined by the natural inclusion of
into +l will be denoted by or,, and , will denote the injection of T(.A/In) into
T(A/’) determined by the natural inclusion of 7-/ into 7-(. It is evident that these maps
are ,-extendible, multiplicity one maps. Thus there is a ,-extendible isomorphism
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lim ,, of the direct limit .A onto the closed union of A, @n(JT(./Mn)), which
is evidently T(N’) c’l K;.

To obtain unital algebras, define maps ’n n + An of T(A//n) by setting

An(A) (Aen+,o, en+,O)n(In)+/-,

where In is the identity of T(A4n). It is easy to verify that these maps are completely
isometric unital algebra isomorphisms because the compression of "]’(.A/ln) to the
one dimensional atom Cen+l,0 is multiplicative. However, these maps are no longer
,-extendible, nor do they commute with the inclusions oen. Let A’n ’n (’/’(-/n)).

* belongs to it is clear that A’n is contained in An+Moreover, since en+1,0en+ 1,0 .An+ 1,

Finally, define expectations En onto T(.Mn) by compression to n. Then q/n

Pn En and qn’ ’n E’n are completely contractive idempotent maps which converge
point-weak-, to the identity map on T(N’). Moreover, the latter maps are unital.

If N" is a finite nest, let the infinite rank atoms be Am for < m < M and the
finite rank atoms Am for M < m < N. Define the bases as before and set

n --span{em,i" < m <_ M, O < < n} U {Am: M < m <_ N}.
Define .Jn and n as before.

To obtain the unital imbeddings, let ](m,n span{em.i" 0 < < n} for < rn <
M. Let 6m,n(A) denote the homomorphism of ’T(.A/[n) onto/3(/Cm,n) obtained by
compression. Define an isometry Wm of/C) onto AmT-[ ( ]m,n Then definen,n

’n n + An where

M

An(A

_
Wm,nm,n(A)()W,n

m=l

The remaining details are left to the reader. 121

Next we establish hyperfiniteness in complete generality.

THEOREM 1.2. Every nest algebra is hyperfinite. Indeed, given T(N’), there is
an increasing sequence ,An of unital finite dimensional subalgebras which are each
completely isometrically isomorphic to nest algebras 7-(JMn) such that their closed
union contains 7"(N’) C) 1C, and thus is weak-, dense in 7"(iV’). Moreover, there are
completely contractive idempotent weak-, continuous maps qn of "-I"(N’) onto
which converge point-weak-, on T(jV’) to the identity map.

Proof. We have already seen a proof for the case of atomic nests. We will prove
it now for continuous nests. The extension to arbitrary nests will be routine.

Parameterize N" by [0, in such a way that the spectral measure EAr is equivalent
to Lebesgue measure. Choose pairwise disjoint measurable sets Ak for k > 0 such
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that the multiplicity of A/’k "= E(Ak)./V" is m(k) "= k for k > and m(0) := b0 for
k 0, and so that

Uk>0Ak

___
[0, 1] \ Q.

For each k >_ 0, choose a complete set of matrix units in the diagonal algebra
D(A/’k) for the multiplicity m(k) nest. That is, foreach k > 1, choose partial isometries

WkWpq V(A/’) for < p, q _< k which are a set ofk k matrix units and fp= pp
E./v’(Ak). And for k 0, choose a corresponding set of matrix units for p, q > so
that

SOT-Z Wpp EN(Ao).
p>l

Also choose a cyclic vector x for the multiplicity free nest WA/’. This acts on a
Hilbert space which is naturally identified with L2(Ak).
Now use the fact that Lebesgue measure is regular to find pairwise disjoint compact

sets Ak,. of Ak so that

Ak \ U.>_I

is a null set for all k > 0. There is some integer k0 so that Ak,, has positive measure.
We may suppose that A,,.. has positive measure for all n > 1. Let F0 {0, 1}. At
the n-th stage, we will construct a finite subset F. of [0, fq Q which contains F._
and all points of the form j2-" for 0 < j < 2’1.

Proceed as follows. Consider the finite collection Ak,j for j, k < n and Ak,,,.+
of disjoint compact sets. Choose pairwise disjoint open sets containing them. By
the compactness of each Ak.j, we may assume that each open set is a finite union
of disjoint intervals with rational endpoints. Moreover, we may expand this set of
endpoints to include F,I_ and j2-" for 0 < j < 2". Let this enlarged set be
denoted by F.. It partitions the unit interval into a number of smaller intervals J/"
for < < N(n) in the usual order. Moreover each J/ intersects at most one of
the sets A.j in a set of positive measure. Let x.(i) "= (k.(i), j.(i)) (k, j) and

X..i Ak.j fq J[’ when this holds for j, k < n, and leave x.(i) undefined otherwise.
Pick one i0 such that X..i,, := J" q A,,..+ has positive measure.

Let mn,i min{m(k(i)), n} when k(i) < n, mn,i,, and mn,i 0 otherwise.
For each with x.(i) (k, j) defined, let

q

and set

Then define vectors

x.,i .iip ---Up Xk

for < p, q < mn.i.

mn.i

n,i

io p=l

for < _< N(n), < p < mn,i, k(i) < n
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and

Then define subspaces

n’i EN’(Xn )xko,io

7-(n spanlx’i" <__ < N(n), < p < mn,i }.
Define a finite dimensional algebra An to be the span of the following elements:

(i) Up% for < < N(n) and < p, q < mn,i.

(ii) Xpn’ixg’ for < < j < N(n), < p < mn,i and < q <

It is easy to verify that An is contained in T(A/’).
Let .A/In be the finite nest on 7-(n with atoms An,i for < < N(n) spanned by

{x,i" < p < mn,i }. The nest algebra ’-(.A/ln) is spanned by matrix units

n,ix, j
pq Xp

for < < j < N(n), < p < mn,i and < q < mn,j. The map n of T(.Mn)
into/3(7-() given by

n,ij { lyn’ij
n (Epq -Pq for < < j < N(n)

for < j < N(n)

is readily seen to be a unital completely isometric isomorphism of T(A/[n) onto An.
This map is not ,-extendible because the off-diagonal matrix units of An are rank
one while the diagonal matrix units are infinite rank.

Next observe that 4n+ contains tn because the partition F,,+ is a refinement of
Fn. Hence each interval J is the union of certain Ji,+’s. Let

’n,i "--1i’: Jin,+ C J/ and Xn+l(i’) Xn(i)}.

Then with (k, j) x,(i),

Therefore for - i0,

Xn’i U Xn+l’i’"
E,,,i

Consequently UilO also lies in ,n+l since both algebras are unital. Also

n,i n+ l,i’
Xp .Xp

i’ En,i
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Thus ifl <i <j<N(n),then

", n,i’xn, j’Xp’iX’J Xp
i’EEn.i j’EE,,

We claim that the union of the A,’s is weak-, dense in T(A/’). By the Erdos
Density Theorem [8], it suffices to approximate each rank one element xy* in T(A/’);
and this may be done in norm. Indeed, there is a diadic rational 2-’j so that x’
EN’[0, 2-’j]x and y’ EAr[2-’j, l]y are as close in norm to x and y as desired.
Since the vectors xk are cyclic for the diagonal algebras ofthe nests A/’k, any vector may
be approximated by a linear combination of terms of the form E(J)WplXk where J
is a diadic interval. These in turn are approximated by sums of EAc(J plXk

for k >_ 0, n > and p > 1. Thus for sufficiently large n, enough of these terms will
lie in 4, to approximate both x’ and y’ to any given accuracy by vectors x" and y".
But then x"y"* belongs to 4,.

The compressions E, of T(A/’) to if, are completely contractive weak-, contin-
uous expectations that carry T(A/’) onto 7"(A/l,). It is easy to check that the maps
q, ,E, are unital idempotent maps that are completely contractive weak-,

continuous expectations of T(A/’) onto
IfA/" is an arbitrary nest, combine this argument with the easier atomic case. Include

the first n atoms up to multiplicity n at the n-th stage, and chop up the continuous
part on the intervals between these finitely many atoms. The partition set Fn used
above will include the cuts from these atoms and the rationals will be replaced by a
countable dense subset of the support of the continuous part along with the endpoints
of all the atoms. With a bit of care, the result proceeds in the same manner. !-I

2. Dense representations of limit algebras

The maps constructed in the previous theorem are not ,-extendible. However as
we saw in Theorem 1.1, this more stringent form of hyperfiniteness is possible in the
atomic case. This is not possible for arbitrary nests with both continuous and atomic
parts. We establish this in Theorem 2.3. However, by refining the previous argument,
we can achieve this stronger property for continuous nests.

THEOREM 2.1. If A/" is a continuous nest, there is a regular limit 4 offinite
dimensional nest algebras such that its enveloping C*-algebra is a matroid algebra
and a ,-extendible representation oft suchthat (.A) is weak-, dense in 7"(./).

Proof. We adopt the notation of the previous theorem. For each compact set

Ak,n, we need to fix a good homeomorphism with the usual Cantor set. First we
may assume that for each open set O, either O A Ak,, is empty or it has positive
measure. This is accomplished by taking the union of all open sets that meet Ak,, in
a set of measure zero. As the union of open sets of the line is the union of a countable
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subcollection, this is the largest open set meeting Ak,,, in a null set. Clearly we may
replace Ak,n by the its intersection with the complement of this open set.
Now A,n is order homeomorphic to the Cantor set C. Let mc denote the Cantor

measure on C, which assigns measure 2 to each of the 2" diadic subsets ofC arising
from the middle thirds construction, which we call the diadic subintervals of order n.
We wish to choose such a map which has good control on the measure. Recursively
partition A,,, into 2n consecutive (in the order on the line) clopen subsets such that

42-n (Ak,n)). Then there iseach piece has measure in the interval (-]2-"m(Ak,,), m
a unique map ?’k,, of Ak,,, onto the Cantor set that carries this partition of Ak,,, into
diadic intervals onto the corresponding diadic partition of the Cantor set. This map is
an order preserving homeomorphism. Moreover, by construction, Lebesgue measure
on A,, is equivalent to mc o ?,k,, and the Radon-Nikodym derivative is bounded in
the interval

(3 4 )4m(4.,,)’ 3m(At..)

We repeat the construction from Theorem 1.2 of the partitions F, with an additional
twist. The partition divides each Cantor set A,n into clopen intervals. Such clopen
intervals ofa Cantor set are the disjoint union ofcertain consecutive diadic subintervals
of order m for m sufficiently large. Taking the maximum m (n) of all such m’s needed
for each element of the partition, we then further refine the partition to cut each
Ak, into its 2m(n) diadic subintervals of order m(n). (Alternatively, just observe that
given any finite set of disjoint Cantor sets, they can each be split into their 2 diadic
subintervals of order m for m m(n) sufficiently large so that the convex hulls of
each subinterval is disjoint from all the others.)

Following the notation of the previous proof, F, splits [0, 1] into intervals Ji"
for < < N(n). They intersect at most one of the sets Ak,j for k, j < n. Set
x,,(i) (k,,(i), j,,(i)) (k, j) and X,..i Ak,j f’) J[’. Notice that each Xn, is a
diadic subinterval of order m(n) of Ak,j. (By disregarding those intervals with empty
intersection, we may suppose that each J intersects exactly one of the Ak,j. We do
not use the set An+l,io in this construction because we are not making the maps unital.)
Define a set of matrix units of homeomorphisms between these sets as follows. Note
that ’,,,) is a homeornorphism of X..,. onto an order re(n) diadic subinterval C.. of
the Cantor set. For each < i, j < N(n), let S be the isometric translation of C..j
onto Cn,i. Then set

hi -!
’x,,(i) 0 Sij o x,,(j)"

These formulae imply that:

(i) hi is the identity function on Xn. for < < N(n);
(ii) hi o hjnk h"ik for all i, j, k.

Thus these functions form a set of matrix units.
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Because of the bounds on the derivatives of the ?,’s and the fact that the function Sj
is measure preserving, it follows that hi is absolutely continuous, and its derivative
is bounded in the interval

m(Ak.i) 2m(Ak.i))(m(X,,.i) 2m(X,,.i))2(’..i)’ (-,.’)" 2m(X,,.j)’ tn(Xn.j)

here.)(We use (43-): >
Define a partial isometry Hi. on L:(0, 1) by

(dhi )
1/2

H’j f (x) -x )(. x,,,, f (hji(x)).

It is clear that this has initial space L2(Xn,j) and range space L2(Xn,i). We identify
L:(X,,i) with the range of Will EN’(Xn,i), where k k,,(i). Then we define a system
of partial isometries on by

n,jV n’ij.pq giiHjglq
for < i, j < N(n), < p < mn,i and < q < mn,j. The matrix unit relations on

l’rn’iJ’s form a set of matrix units.the homeomorphisms ensures that the. pq

Define 7-/n, Adn and T(Jd) as before. Now we define a ,-homomorphism q, of
B(H,) into B(H) by

kiln g;’qij pqn’ij
for <_ i, j <_ N(n), < p < m,,i and < q <_ m,,,j. This is a (non-unital)
-homomorphism that carries T(.A4,) onto a subalgebra Bn of T(N’).
Each X,,i is split by the partition Fn+l into s, 2m(n+l)-m(n) subsets X,+,i,. As

before, set

En,i {i" Ji,+ C J and tC.+l(i’) x,(i)}.

The homeomorphism hi carries subintervals of Xn, onto subintervals of Xn,i. Thus
for each j’ 6 E(n j), there is a unique i’ ’) " (Xn+l,j’) X72ij (j such that hij n+l,i’.

It follows from the definition of these functions that

i’j’ hij [x,,+../,

whence

hi Z /an/l
r!(j’)j’"

j’ Z,,.j

Now we can show that B is contained in B,+. Indeed, it follows from these
relations that for each j’ En,j and i’ rij (j’),

Vp,,ij EA:(X,+,j) gpnq+l’i’j’q
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Thus

Z Z l" r:. (j’)j’vn’ij vn’ij E.x’(Xn+,j) vpnq+pq pq
j’

The inclusions an of 13(n) into B(-/n+l) are induced by the formulae of the
previous paragraph. Namely

n+l,r’i3(j’)j’(En’ij) EpqOln .--pq

Evidently, this is a non-unital multiplicity Sn imbedding of the dn dn matrices into
the d,+l x d,+l matrices, where dn= dim n. The limit is thus a matroid C*-algebra
91. Evidently
into/3(). It carries the limit algebra ,A lim(T(jUin), an) onto a subalgebra/3 of

T(Af).
We will show that weak-, contains the diagonal algebra/)(iV’). The diagonal

has a weak-, dense spanning set WpqEN’(J Y Ak) where J are diadic intervals and
0 < p, q < m(k). These are in turn in the weak-, closed span of the operators
WkpqEA/’(J CI Ak,j) These terms will be a sum of certain vn’ii’s in Jn provided thatpq
both k and j are at most n, and the endpoints of J are in 2-n

Next we claim that Lat/3 A/’. As weak-. contains the diagonal, any invariant
subspace has the form Ejv’(X)7-[ for some measurable subset X of [0, ]. It suffices
to show that X is an initial segment modulo a null set. If it is not, then there are
0 < a < b < c < d < so that (a, b) N X’: and (c, d) O X have positive measure
Thus there are sets An,j and Anz,j2 which intersect these sets in positive measure
respectively. Consequently, with n max{n, j, n2, j2}, there are < j so that
X (] Xn, and X q Xn,j have positive measure. By the Lebesgue density theorem,
for n’ sufficiently large, there are diadic subintervals Xn,,i, of the Cantor set Xn,
which intersect X in a set of measure at least 1/4m(Xn,,i,). Likewise, for the same
(sufficiently large) n’, X intersects some Xn,,i, in measure at least 1/4m(Xn,,j,). Thus

hin,’j, maps X N Xn’,j’ onto a subset of X,,,,i, of measure at least m(Xn,,i,). Since

/ -3
4

-9
8, it follows that

m(X 0 Xn’,i’ 0 hin,’j,(X 0 Xn’,j,)) > m(Xn,,i,)/8 > O.

This implies that E.,v(X)-t-V’i’J’EN’(X) =/: O, contradicting the invariance of
E.,v’(X)7-[.

Finally we invoke a result of Arveson (or Radjavi-Rosenthal 15] for the weak
operator topology) that every weak-, closed subalgebra of a nest algebra that contains
a masa and has the same invariant subspaces is the whole nest algebra. So/3 is weak-.
dense in T(Af).

The existence of both finite rank atoms and some continuous part is an obstacle
to doing the construction of the previous theorem. We will show, in fact, that such
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nest algebras are not the weak-, closure of a representation of a regular limit of
finite dimensional nest algebras. However, when the nest is infinite in the sense that
all atoms have infinite rank, an ad hoc modification of our argument will suffice to
establish the result.

COROLLARY 2.2. Let A/" is nest with nofinite rank atoms. Then them is a regular
limit j[ offinite dimensional nest algebras such that its enveloping C*-algebra is a
matroid algebra and a ,-extendible representation of such that (jr) is weak-,

dense in T(.N’).

Proof. For each infinite atom Ai of A/’, choose a non-atomic masa isomorphic to
L(0, 1) in ](AiT"[). Chop this up into Cantor sets with union having full measure.
Then proceed as in the proof of Theorem 2.1. At the n-th stage, include the first n
Cantor sets from the first n infinite atoms and include cuts of these atoms into 2n

diadic intervals. Note that the atoms cut up the continuous part. So the introduction
of finitely many atoms introduces finitely many more cuts in the infinite part.

The construction proceeds exactly as before except that the full matrix algebra is
constructed on each atom, not just the upper triangular part. It is easy to verify that
we construct finite dimensional nest algebras with regular imbeddings as before. To
verify density, note that for each atom, the resulting algebra will be dense in the masa,
will contain the Volterra nest by our previous argument and will be self-adjoint. So
it is dense in 13(Ai7-[) for each i. Thus the image of the diagonal is weak-, dense in
the diagonal algebra D(A/’). The same argument as above shows that the invariant
subspace lattice is a nest. So the image algebra is weak-, dense in T(A/’) by Arveson’s
theorem, ffl

Orr and Peters 11 consider the problem of imbedding triangular limit algebras as
weak-, dense subalgebras of nest algebras from the other side of the fence, fixing the
limit algebra and asking which nest algebras can be obtained as the weak-, closure
of various representations. Surprisingly, they are able to obtain nests with uniform
multiplicity two from triangular algebras (which have multiplicity one). L. Zmarzly,
a student of Orr’s, has extended this to uniform multiplicity of arbitrary cardinality.
While our techniques don’t directly apply, they indicate that it may be possible to
control mixed multiplicities in their context as well.
We end this section with an argument showing that the existence of a dense repre-

sentation is limited to the two cases already handled, the atomic case and the case of
infinite multiplicity. See 11, Prop. III. 1.1 for a suggestive result along these lines
with more stringent hypotheses.

THEOREM 2.3. Suppose that there is a regular limit jt offinite dimensional nest
algebras such that its enveloping C*-algebra is a matroid algebra and a ,-extendible

representation eo of jt such that O(jt) is weak-, dense in T(A/’). Then A/" is either
atomic or has nofinite rank atoms.
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Proof Suppose to the contrary that A/" has an atom E of rank k < o and has
non-trivial continuous part. Let doe denote the compression of do to the atom E. This
is a completely contractive homomorphism onto/3(ET-t) which is isomorphic to 9Ytk.
The limit algebra .A is the limit of finite dimensional nest algebras 4n. To simplify
notation, we will consider the .An’s as a nested sequence of subalgebras of A. Since

9Ytk is finite dimensional, the restriction to 4n is surjective for n > no, say. The only
way for such an algebra to map onto a full matrix algebra is for it to factor through
the compression to an atom An of .An which has rank k.

(This is an easy fact, and is likely well known. The strictly upper triangular
operators in a finite dimensional nest algebra is a nilpotent ideal, and thus is in
the kernel of doE. So the map factors through the diagonal, a sum of full matrix
algebras. Now the structure of maps between matrix algebras (cf. [14]) shows that
doe is obtained by restriction to a summand isomorphic to

Let Ej for < i, j < k be the standard matrix units for the k x k matrix algebra
An.AnAn. Then Eij doE(E) is a set of matrix units for 13(E7-l) independent of
n>no.

The atoms An must form a decreasing sequence of projections in . Reverting
to the limit picture, the imbedding of An into An+l must send An onto An+l with
multiplicity one (together with additional imbeddings into other blocks, possibly).
The projections Pn do(An) then form a decreasing sequence of projections in
79(A/’) which converge strongly to a projection.
We claim that this limit is E. Indeed, there is a sequence Xn in .An such that do(Xn)

converges weak-, to E. We may suppose that Xn AnXnAn. The compression
doe (Xn) must converge to the identity element in norm, which implies that

lim IIXn Anll O,
n--+x

since doEIA,,4,,A,, is a .-isomorphism and dOE(An) I. Hence we may replace Xn

by An, which establishes the claim.
Now N" also has some continuous part. For definiteness, let us assume that there is

an interval F of.A/" with F -< E in the order on A/" such that F dominates a non-atomic
projection Q. Choose unit vectors x ElX and y Qy. Then R yx* is a rank
one operator in T(./V’). Choose elements gn . An such that do(Rn) converges weak-.
to R. For n sufficiently large, QRnx O. Thus there is a matrix unit Uno of 4n0 such

nothat Uno UnoE and Qdo(Uno)X 5 O.
Since Un is a matrix unit, Vno do(Uno) is a partial isometry with initial projection

do(E) < Pno. Moreover the initial projection of Un0 commutes with An for n > no.
Thus Un UnoAn are matrix units in .An for n > no and Vn do(Un) VnoPn is a
partial isometry. Consequently QVnX Q Vnox Z is a fixed vector supported on
the non-atomic part of A/" for all n > no.

The range projections Bn UnU form a decreasing sequence of minimal pro-
jections in 4. Thus Qn do(B,) form a decreasing sequence of projections in
D(A/’) such that Qnz Z for all n. Consequently Qn decreases to a projection Q’
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such that Q’z z. Hence Q’ supports a non-trivial non-atomic part. This is impos-
sible. Indeed, there are many projections P’ in 79(Af) commuting with Q’ such that
0 < P’ Q’ < Q’. Hence there must be minimal projections B’ in the diagonal of
for n sufficiently large such that (B’) has this property. However the minimality of
Bn ensures that B’Bn is either 0 or Bn. This contradiction establishes our result.

3. Non-dense representations of limit algebras

We conclude this paper with a related construction that indicates that our concern
about the derivatives of the h’j’s was more than just a technical convenience. In fact, it
is possible for the representations of limit algebras to contain the whole diagonal ofthe
nest algebra and yet fail to be dense. Under hypotheses similar to what was achieved
in Theorem 2.1, the density of (.A) in T(A/’) is equivalent to the irreducibility of
the representation . An application of direct integral theory provides a complete
description of the possible weak-, closures when the range contains the diagonal.

THEOREM 3.1. Suppose that j[ is a Dirichlet subalgebra ofa C*-algebra 9.1. Let
p be a ,-representation of 93 on 7-[ such that p(j[) is contained in a nest algebra
7"(Af), and contains the diagonal 79(Af) in it weak-, closure. Then 0p(.4) is weak-,

dense in T(Af) f3 p(9.1)". In particular, p(j[) is weak-, dense in T(J) ifand only
ifp is irreducible.

Proof. First suppose that (P is irreducible. By the result of Arveson used in
the last paragraph of the proof of Theorem 2.1, density will follow if we show that
Lat( (4)) A/’. Any invariant projection P is invariant for D(A/’), and thus lies in
D(.M’)’ .IV"’. Thus P E(X) for some measurable set X. If P does not belong
to the nest, then there is a nest projection N such that P+/-N 0 and PN+/- - 0. Now
(P (A + A*) is irreducible, and thus there are elements A and B in .4 such that

0 : P+/-Ndp(A + B*)PN+/- P+/-Ndp(A)PN+/-,

where we use the fact that (B*) lies in T(N’)* to conclude that N(rp(B*)N+/- O.
This contradicts the invariance of P. Hence (P(A) is weak-, dense in T(A/’).

The general case will follow from an application of the direct integral decomposi-
tion over the commutant 93t (93)’. This is avon Neumann subalgebra of D(Af)’,
and thus is abelian. By the spectral theorem, this algebra is isomorphic and weak-,

homeomorphic to some L(A, .). By von Neumann’s direct integral theory (see
6, Theorem 8.2 ]), (P (93)" decomposes as a direct integral over A of von Neumann

algebras 93(t). Since 9Y/: is the full commutant, these algebras are irreducible for
almost all t. By the corresponding direct integral theory for non-self-adjoint operator
algebras [2, 10], (4)

weak-*
decomposes as a direct integral of A(t), and T(JV’)tqg’

decomposes as a direct integral of algebras 7-(t). Moreover 7"(t) will be a nest alge-
bra for almost all t. The 4(t) will contain the diagonal algebra D(t) obtained from
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the direct integral decomposition of 79(A/’) and be contained in T(t). Thus by the
first paragraph, .A(t) 7"(t) for almost all t. Hence

t(.A)
weak-* ’T(J) CI ’ ’T(J) CI (9,.[)".

This suggests trying to modify the construction of the previous proof to yield a
representation which is reducible. Surprisingly, it turns out that this is possible with
a modification of our argument.

THEOREM 3.2. If A/" is a continuous nest, there is a regular limit j[ offinite
dimensional nest algebras such that its enveloping C*-algebra is a matroid algebra
and a .-extendible representation of4 such that (Jt N jr*) is weak-, dense in
I)(A/’), but (t) is not dense in T(A/’) because is reducible.

We begin with some more delicate constructions of absolutely continuous homeo-
morphisms on the interval. We use the same notation as before. In addition, let Ps for
s > be a measurable partition of [0, with the property that whenever O is open
and O N Ak,n has positive measure, then O ( Ak,n f’) Ps also has positive measure.
It is well known that [0, can be partitioned into sets p that all meet each open set
in a set of positive measure. The same can thus be done on any Cantor set Ak,n, say
Pk,n,s. Then one may define P, Uk,n Pk,n,s.

It is shown in [5, Theorem 2.4] that if P, and Q, are two partitions of [0, 1]
into measurable sets that intersect every interval in positive measure, then there is a
homeomorphism h of the interval such that h and h-l are absolutely continuous so
that h (P,) Q, modulo null sets for all s. An examination of the argument shows
the same holds for order preserving homeomorphisms of Cantor sets.

Our technique will be to build the matrix unit systems of absolutely continuous
homeomorphisms so that they will leave invariant the partition P,. This will be done
at the expense of the bounds we had on the derivatives. This is necessary, as this
control made it possible to prove irreducibility of the representation.

LEMMA 3.3. Let Xj be compact subsets of [0, 1] \ Q which intersect each open
set either in the empty set or a set ofpositive Lebesgue measure for < j < n. Let
PJ be countable partitions of Xj respectively into measurable subsets which meet
every open subset ofXj in a set ofpositive measure. Suppose that certain absolutely
continuous homeomorphisms hij of[O, have been defined so that:

(i) hii idfor < < n;
(ii) if hij is defined, then hji is defined;
(iii) if hij and hjk are defined, then hik is defined and hik hij o hjk;
(iv) hij is absolutely continuous;
(v) hij(Xj) Xi;
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(vi) hij(Xj ("1 esj) /k (Xi I’] P/) has measure zerofor all s > 1;
(vii) hij ([0, N ) [0, f) .

Then thisfamily may be extended to a completefamily (matrix unit system) {hij" <
i, j < n with the same properties.

Proof First we show how to construct one map h with properties (iv)-(vii).
Using [5, Theorem 2.4], construct the order preserving homeomorphism h from Xj
onto Xi with the desired properties including that h- is also absolutely continuous.
Extend the definition of h to the whole interval by defining it to take each interval
of [0, \ Xj onto the corresponding interval of [0, 1] \ Xi. This may be done with
piecewise linear functions that carry rational points onto rational points (for exam’ple,
by choosing a sequence of rationals in each interval converging to each endpoint,
matching up these rational points, and making h piecewise linear in between). It is
then evident that h and h- are absolutely continuous on the rest of [0, as well.

It is easy to see that the intervals may be grouped into subsets with complete
sets of matrix units defined and with no maps defined between intervals in distinct
subsets. For convenience, we may suppose that there are exactly two such groups.
Use the previous paragraph to define one homeomorphism between an interval in the
first group to one in the second satisfying (iv)-(vii). This will uniquely determine a
complete set of matrix units on the union which satisfy properties (i)-(iii). Properties
(iv)-(vii) are easily verified for the new maps constructed in this way.

ProofofTheorem 3.2. The proof follows exactlY the lines ofTheorem 2.1. How-
ever instead of using the matrix unit homeomorphisms constructed there, we use
Lemma 3.3 to arrange that each partition p is preserved by every hij. The difference
in the construction of these matrix units is in the induction step from the n-th partition
to the n + 1-st.

At the first stage, use Lemma 3.3 to construct a complete matrix unit system of
absolutely continuous homeomorphisms hj between the intervals Ji matching up
the sets X,i and the partitions P. q X,i. Now assume that at the nth stage, we also
have a complete matrix unit system of absolutely continuous homeomorphisms hi
between the intervals jn matching up the sets Xn,i and the partitions Ps (q Xn,i for
< i, j < N(n). Construct a new partition Fn+ as before, but then also include in

Fn+l all point obtained by permuting points in Fn+ by the (partial) homeomorphisms
h’j. Clearly this still yields a finite set.

Given i, j and j’ such that jjn,+ intersects some X,j, then there will be an integer
i’ r(j’) such that hj(Xn+l,j, Xn/l, i, in the subinterval Jin,+ of J/". This is
because the hi carry intervals of the partition F+ onto other such intervals, and
since Xn+l, j, has positive measure, so does X+,i, by the absolute continuity. So

n+ldefine hi,j, to be the restriction of hij to jjn,+l in this case. Otherwise, it is not yet
defined.
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Notice that if Xn,io is split by the partition Fn+ into s subsets X+,i, of positive
measure, then each (non-trivial) X,i is also split into exactly s such pieces because of
the invariance of Fn+l under the system hTj, say {Xn+ 1,i’ ]n,i Thus we see that

we have defined hTj+l on s subsets of the n + st partition with N(n) members each.

We also define hTi+ id for all remaining intervals. By Lemma 3.3, we may extend
this to a complete matrix unit system of absolutely continuous homeomorphisms that

’Smatch up the Xn_t_l, and the partitions Ps.
|:n,ijUsing this system of matrix units, define matrix units of operators ,pq exactly

as in Theorem 2.1. The proof proceeds verbatim to define the various maps. The
argument showing that the image of the diagonal is weak-, dense in the diagonal of
’T(.A/’) is also the same. However the proof that is irreducible fails. Indeed, we
have arranged that E(P,)7-[ are invariant for all s > by construction because these
sets are invariant for the homeomorphisms hTj. So is reducible.

REFERENCES

1. W.B. Arveson, Operator algebras and invariant subspaces, Ann. Math. 100 (1974), 433-532.
2. E.A. Azoff, C. K. Fong and E Gilfeather, A reduction theoryfor non-self-adjoint operator algebras,

Trans. Amer. Math. Soc. 224 (1976), 351-366.
3. K.R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman

Scientific and Technical Pub. Co., New York, 1988.
4. When locally contractive representations are completely contractive, J. Funct. Anal. 128

(1995), 186-225.
5. Normalizers offinite multiplicity nests, Proc. Edinburgh Math. Soc. 39 (1996), 337-344.
6. K.R. Davidson, V. I. Paulsen, and S. C. Power, Tree algebras, semidiscreteness, and dilation theory,

Proc. London Math. Soc. (3) 68 (1994), 178-202.
7. J.A. Erdos, Unitary invariantsfor nests, Pacific J. Math. 23 (1967), 229-256.
8. Operators offinite rank in nest algebras, J. London Math. Soc. 43 (1968), 391-397.
9. P.S. Muhly and B. Solel, Automorphism groups and invariant subspace lattices, Trans. Amer. Math.

Soc. 349 (1997), 311-330.
10. F. Gilfeather and D. Larson, Nest subalgebras of von Neumann algebras, Adv. Math. 46 (1982),

171-199.
11. J. L. Orr and J. Peters, Some representations ofTAF algebras, Pacific J. Math. 167 (1995), 129-161.
12. V.I. Paulsen, S. C. Power and J. Ward, Semidiscreteness and dilation theoryfor nest algebras, J. Funct.

Anal. $0 (1988), 76-87.
13. V. I. Paulsen and S. C. Power, Lifting theorems for nest algebras, J. Operator Theory 20 (1988),

311-327.
14. S. C. Power, Limit algebras: an introduction to subalgebras of C*-algebras, Pitman Research Notes

in Mathematics Series, vol. 278, Longman Scientific and Technical Pub. Co., New York, 1992.
15. H. Radjavi and P. Rosenthal, On invariant subspaces and reflexive algebras, Amer. J. Math. 91 (1969),

683-692.
16. M. Takesaki, Theory ofoperator algebras I, Springer-Verlag, New York, 1979.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L-
3G1, Canada
krdavidson@math.uwaterloo.ca


