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SEMIGLOBAL RESULTS FOR 3, ON WEAKLY
CONVEX HYPERSURFACES IN C"

SOPHIA K. VASSILIADOU

ABSTRACT. Let M be a smoothly bounded weakly convex hypersurfacein C" (n > 4),0 € M. Letq € N,
1 < g < n —2. We derive a homotopy formula for 3, without shrinking on certain submanifolds of M
(no finite type condition is assumed for M).

Introduction

Let 2 be a bounded weakly convex domain in C" (n > 4) with smooth boundary
M =:9Q. Letqg € N, 1 < q < n —2. For each g, we wish to describe the open
subsets w, of M (with smooth boundary) for which homotopy formulas hold for ENS
without shrinking. By this we mean there exist continuous, integral operators &,,
Fy+1, defined on @y, such that for all A € N, f € Cfy ,@p), 8 f € Cy 411y (@)s
the following equation is satisfied in w,:

f =5bgqf+]:q+15bf-

Existence of homotopy formulas of the above type yields solvability results for the
tangential C-R operator without shrinking. Such results are of special interest on their
own, since by the work of Kuranishi [4] and Webster [12] they are linked to the local
embeddability question of abstract CR structures.

The first local homotopy formula for 3, without shrinking was obtained by
Henkin [2], for smooth strongly pseudoconvex hypersurfaces in C" (n > 3). Ho-
motopy formulas for 3, that satisfy C*-estimates were obtained by Schaal [9 ] for
certain submanifolds of complex ellipsoids. Local solvability for 3, on weakly pseu-
doconvex boundaries of finite type has been studied by Shaw [10], [11]. Recently,
Michel-Shaw [7] obtained homotopy formulas for the tangential C-R operator on
certain submanifolds of smooth weakly pseudoconvex hypersurfaces in C*. As an
application, they obtained C*-regularity up to the boundary for local solutions to
smooth 9,-closed forms.

In this paper, we derive a homotopy formula for 8, without shrinking on certain
smoothly bounded subsets of M (no finite type condition is assumed for M). More
precisely we show the following:
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692 SOPHIA K. VASSILIADOU

THEOREM. Let M be the boundary of a smoothly bounded weakly convex domain
QinC'"(n=>4).LetqeN,1<qg<n—-2,keN,1 <k <n-2-—gq. Assume that
there exists a smooth domain Dy in C" described by

Dy={z€C" | rZn—k+1>---+2n) <0}

where r is smooth, real-valued, convex function of Zy—k+1s-.-52Zns Zn—k+ls -+ > 2n
such that 3Dy, M intersect real transversally. Let o = M N Dy. Then, for each

£ € N, there exist continuous integral operators K ‘f, K 5 +1» defined on @, such that

forall f € C{H" V@), 0pf € Cigorty (@) we have
f=0K.f+ K, ,0f inow.
More precisely we have

. _
1KE ey, @ < cenll Fllcamna, + 13 i)

q-1

where ¢y, IS a positive constant.

Arguing in a similar manner as in Michel-Shaw [7] we obtain the following:

COROLLARY. Let M, Dy, q, k be as in the theorem. Given f € C§ (@), 5 f =
0 in w, there exists u € Cf‘dq_,)(ﬁ) such that dpu = f in w.

The paper is organized as follows. In Section 1, we define the kernels and the oper-
ators needed for the homotopy formula. Section 2 is devoted mainly to the derivation
of the homotopy formula. The starting point will be a jump formula for f. The choice
of M, D, will allow us to construct Leray maps and hence obtain Leray-Koppelman
formulas for the Bochner-Martinelli integrals of f, f*, f~. Unfortunately the in-
tegral operators thus created become quite singular as z — dw. To overcome the
difficulty we shall exploit an idea of Lieb-Range and replace the boundary integrals
by nonboundary ones such that the integrand forms vanish to high enough order on @.
This can be achieved by an application of Stokes’ theorem for piecewise smooth do-
mains. The growth of the integrand forms will cancel the singularities of the kernels
and it will allow us to obtain the desired homotopy formula.

Acknowledgement. The author wishes to thank her advisor Mei-Chi Shaw for
many helpful discussions.

1. Preliminaries

Let 2 be a smooth, bounded weakly convex domain in C* (n > 4), described by a
defining function p: W — R, where W is an open neighborhood of 3, dp|sq # 0
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and
Q={z€e W] p) <0}

Without loss of generality we shall use as p the distance function

@) = d(z,8Q) forzeC'\Q
PRI=1_d(z,0Q) forzeS.
We define

Do ={z€C" | r(zn-kt1>-.-52n) <0}

where r is smooth, real-valued, convex function of z,_g+1, ..., Zn, Zn—k+1s - - -

such that dr|sp, # 0, dr Adp # 0 on 3Dy N IK2.
Let w =: 02 N Dy. We define

Q ={zeW|p<0,r<0}, QT ={zeW|p>0,r<0)
S ={zeW|p=0r<0l=w, Sp={zecW|p=0=r)
Si={zeW|-p=0,r<0)}, Sp={zeW|-p=0=r}.

Construction of the Leray maps. 'We define smooth C"-valued maps

P&, 2)=(P1(,2),..., pn(¢,2)) : W x C" - C",

. Op

: ng(C),

p}({» Z) =
00,2 =1(qi 2. .. qu(¢,2)): C"x W - C",
_._%
qj(;’ Z) =. aZI (Z)’

R(&,2) = (&, 2),...,m(,2) : C" x C*,

0 whenl < j<n-—k,
ri(¢,2) = 9r

(¢) whenn—k+1<j<n.
ag;

We set

(b(C’ Z) = (P(;7 Z), C - Z)v ‘I’(C, Z) = (Q({’ Z)v f _Z)v
X 2) = (R¢, 2.t —2), ®o,2)=I¢ -z
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694 SOPHIA K. VASSILIADOU

LEMMA 1.1. There exists W' C W open neighborhood of 02 such that:
(i) Forz e W' NQ, ¢ € WNC"\Q we have
2Re®(¢,2) = p(§) — p(2).
(i) Forze W NC"\Q,¢ € W NQ we have
2ReW(¢,2) = p(2) — p(£).

Proof. The reader may look_at Chaumat-Chollet (Proposition 4) [1]. It is a well-
known fact of the convexity of €2.

LEMMA 1.2. For¢, z € C" we have

2Re X (£,2) = r(¢) —r(2).

Proof. It is based on the third inequality of (2.1.12) in Theorem 2.1.22 in
Hormander [3]. We define

_. (P, 2),d¢) _. (9, 2),4d¢)
771({»2) = (R(q)(c,)Z)d )’ "2({& Z) = (— \P(g,é)) )

_. (RG.2),d¢) _ &-zdy
m(¢, 2) = Xt no(, z) = T

Remarks. 1. n; is holomorphic in z and well defined for z € W' N 5:,
LewnQt.

2. 7, is holomorphic in ¢ and well defined forz € W NQ*T, ¢ € W NQ-.

3. 73 is holomorphic in z, &1, . . ., $n—sk-

The singularities of ®, ¥ appear when (¢, z) € Q2 x 2. Those of X appear when
(¢,2) € 0Dy x 3Dy.

Construction of the kernels. Let

i=3
A =: [A.=()\.0,)»1,).2,)»3)€R4|).i20, ZA;:I].
=

For any @ # K ordered subset of {0, 1, 2, 3} we set
AK=I{X€A|)\.1'=O ]¢K}
Whenever Ag contains only one point we regard it as positively oriented. If K =

ki, .y km), m > 2, we orient A g inductively such that

m
08k =) (-1 74,

v=1
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where the symbol IZ, means that k, is omitted. For A € Ag we set

nk = Z)»jnj

jeK
and for 0 < g < n — 1 we define

D g (k)5 2, ) = Cog Nk A (@B +d)ng)™ 79 A B,nx)?

where tng = Qi) ™(=1) 5 (7Y

and dA denotes the total differential on Ag.
These double differential forms are the generalized Cauchy Fantappié forms. If
we set D, ,(ng) = 0 = D, _;1(nk), then the above forms satisfy

@; +d\) Dy g(nk) = (=1)73, Dy g-1(nk)-
If |K| = m then dim Ay = m — 1. By integrating

f D), 2, 2)
Ax

we obtain linear combinations of terms of the form
Moy A o Ay A @) Ao A @)™ A @) A -+ (@11, )
whereiy + - +ipm,=n—qg—mand ji + -+ jn, =q.
2. Derivation of the homotopy formula

Let f € C?O,q)('cﬁ). We set

@ = / F©) A Dy (0)(§,2,3) forz € @,
&,M)eS1 x4y

ff@= / F@&) A Dggy(mo)(¢,z,A) forz e QF.
(€. M)ESy x Ag

We have the following jump lemma.

LEMMA 2.1. Let f € Cly .\ (@). Then forall ¢ € Cy,_._,,(C") we have

2.1.1) 611_%/ [f'(z—ev(z))—f+(z+6v(z))]/\¢(2)=/ F@) N P(2)

where v(z) is the outward unit normal to 3S2 at the point 7 € w.
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Proof. See Theorem 3.8 in Kytmanov [5].

LEMMA 2.2. (i) Forz € Q~, we have

(2.2.1) @ = 52/ F (&) A Dpg-1(no1)(¢, z, A)
(¢, M)€eS1x Ao

+f gf(g) A Dn,q(’?Ol)(c, Z, M)
&,M)eSixAo

“/ f(@) A Dpg(mo)(&, z, M).

¢, M)ES1x Aot

(ii) For z € Q%, we have

(2.2.2) ff@) = 5z[ F@) A Dpg1(m2) (¢, 2, A)
(¢, M)eSix Mgy

+ f (&) A Dugo2) (&, 2, A)
(&, M)ESI x Az

- f FC) A Dag (o) € 2, 1.

(M) €ES12Xx A2

Proof. (i) Forz € Q™ weapply Stokes’ Theoremtod;,, (f (¢)ADy.q(1n01)(¢, 2, 1))
on S; X Ag;. We shall have

@ =3, / FQ) A Dager (o) @ 2, 1) + / Q) A Dag(mo) (€ 2, 1)

(€,M)€eS1x Ao ¢,MESi xAn
*/ F &) A Dng(no1) (&, z, A) +/ F@&) A Dp g€, 2z, 2).
(£, M)eS12x Ag; &,M)esSixAy

Taking into account that #; is holomorphic in z, g > 1 we can easily show that for
7€ Q7,¢ € §; we have

/ Dn,q(ﬂl)(f» 2, )") =O.

Ay

Hence we can obtain (i). Similarly by applying Stokes’ theorem for z € Q7 to
de 2 (f(§) A Dpg(n02(8, 2, A)) on Sy x A, and taking into account that 75 is holo-
morphicin { andn — g — 1 = 2 > 1 we can obtain (ii).



HOMOTOPY FORMULAS FOR 51,. 697

We wish to further analyze

FQ)YADypg(mo)(¢,z,A) forzeQ™,
(¢, M)€S12x Ag)

f@)ADpgo2)(¢,z, 1) forzeQt.
(&, M)€eS12x Ap2

Following Henkin’s idea we shall put into the picture the Cauchy-Fantappié form 7;.

LEMMA 2.3. (i) Forz € Q~, we have

(2.3.1) —f F@&) A Dpg(no1)(&,2z,A) = —5zf F (&) A Dng-1(mo13) (¢, z, A)
(¢ M)€S12x Agy (§,A)€S12x Ao13

- / 3f (&) A Dpg(mo13)(¢, 2, 1)
(€, M)ES12xAor3

_f f(;) A Dn,q(7703)(§" 2, A')

¢, MES1xAp
(ii) Forz € Q*, we have

(2.3.2) —'/ f(C) A Dn,q("OZ)({y Z,A) = _5zf f(;) A Dn,q-—l(n023)(§y Z,A)
(¢,M)eS2xAx (§,A)€S12x Mgz

- / (&) A Dpg(m023) (&, 2, 1)
(§,M)ES12x Ag3

—/ S A Dygmo3)(&,z, )

¢,M)ES12xAg3

Proof. (i) Forz € Q~, weapply Stokes’ theoremtod,»(f ()ADy q(n013) (&, 2, 1))
on Si2 X Agiz. We then have

- f FO) A Dug(o0)&2,3) = —3, f F(E) A Doget (o) &, 2, 1)
&, M)eS12xAn (&,M)€S12x Aotz

- f 5f(c) A Dn,q(77013)(§, <, A')
€, MeS12x o3
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-/ @) A Dng(no3)(¢, 2, A)

(§,A)eS12x Ag3

+/ F(©&) A Dpg(m3)(¢, z, M).
¢.M)eSnxA

Since 1, n3 are holomorphic in z, g > 1, we have

A Dn,q(7713)(§’ z,A) =0

for ¢ € 812, z € 7. Therefore we can obtain (i).
(ii) Forz € QF, we apply Stokes’ theorem to d , (f (¢£) A Dy q(n023)(£, 2, A)) on
S12 X Ag3. We then have

—f ﬂQADMmMGJJ)=—E/ F(E) A Doget (1023) (&> 2, 1)
€, M)eSxAp (€, M)€ES12x A3

- / 3f(£) A D g(no23) (¢, 2, A)
(§,A)eS12x A2z

—/ f(;) A Dn,q(’?O?»)(f, 2, )") +
¢, M)eS1xAn

+f F@A Dy g(n23)(&, 2, A).
(M)€eSizx Az

However, f Az Dy, 4(n23) is a finite sum of terms of the form

m A3 A @) A @rn3)® A @m2)° A @,m3)?

wherea+b=n—-2—-q,c+d=q=>1.
7 is holomorphic in ¢; thus if a > 1 the above term will vanish.
13 is holomorphic in z; thus if 4 > 1 the above term will also vanish.
The only terms that do not vanish immediately are of the form

M A A @ena) 29 A @m).

But 73 depends on k variables and 1 < k < n — 2 — gq. Therefore this term will also
vanish. Thus f Ans D, 4(n23) = 0 and we can obtain (ii).
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Substituting (2.3.1) into (2.2.1) (resp. (2.3.2) into (2.2.2)), we obtain:

Forz e Q~,

(2.3.3) @ =79, / F (&) A Dng-1(no1)(§, z, A)
(¢, M)eSix Ao

- / f(;) A Dn‘q—1(77013)(§, 2, )")
(§,A)€S12x Ao13

+ l / 3f(4) A Dpg(mo, 2, 1)

(&,M)eSi x Ao

- / 5f(€) A Dn,q (mo13)(¢, 2, A)
€, M)€eS1x A3

—/ f(;) A Dn,q(7703)(§, 2y )“)

(¢ A)€S12x Ags

For z € QF,

(2.3.4) ff@) =39, [ f f@)ADyg1(n02)(&, 2, A)

@,MEeESi xAp

- f @) A Dyg_1(moz)¢,z, 1)
(§,A)€S12x Ao2s

+1 [ 3 APz
(&, AM)eES) xApy

- f 3£ (&) A Dy g(m023) (¢, 2, A)
(¢, A)€S12x A2z

—/ F @) A Dng(no3)(, 2, 2).

(¢, M)eS12x Ags

699



700 SOPHIA K. VASSILIADOU

We wish to take boundary values in the above expressions as z — @. Unfortunately,
the above formulas become very singular in this case. To overcome the obstacle,
we shall exploit an idea of Lieb-Range [6] and replace the integrals over S, Si2 by
integrals over submanifolds of C* \ § for z € ", or submanifolds of  for z € Q*
such that the integrand form vanishes to high enough order on . This will be achieved
by repeated application of Stokes’ theorem.

Extension of the forms. We introduce certain auxilliary regions. We first choose
€o > 0 sufficiently small such that

={ze W ||p()| < €,r(2) < €}
is a bounded piecewise smooth domain. We consider the domains

={zeG|0<p=<e,r<p), Ri={zeG|0<—p<epr=—p,
Ru={z€G|0<p=r<e), Ro={zeG|0<—-p=r<e)

We have R, U ﬁl ={z€ G |r < |p|}. We define

V=GNG\ (R URy.
Then
VNG ={zeG||p|=r}=RpURyp.

For any ordered subset I C {1, 2} we orient R; in such a way such that the orientation
is skew symmetric in the components of / and

*) R =— Ri;j+S] -5
j¢l

whereS(,) ={zeWNaG|pi=¢eforiel}, py=:p,p=

We do not take into consideration in (*) the part of 3 R; that comes from d W’ or
0G (since the forms we shall be considering will vanish in these pieces). Similar
expressions will hold for 3R1 R 3R12

We shall extend f to a slightly larger set G = {|p] < €, < €}, using the
extension Lemmas 1 and 2 in Michel-Shaw [7]. Lemma 2 in that paper states the

following: Let f € C(0 q)(w) 3 f € Co q_H(E) Fors € Nsuchthat0 < s < “—"—2

there exist extension forms E; f € C(O'qz)s (G) and forms g; € C(O':_:) (G),hs; €

Clo 311G, bs € Cly 2 7(G) such that

(i) supp E;f N W’ =@, supp Es f N {|p| = €0} = B, supp Es f N {r = €0} = ¥
(i) Eslz = f, Est1f — Esf = p**'bs in G,
(iii) 9E;f — E s0pf = p°gs + hy, in G where by =0on G N {r < 0}.
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Moreover we have

I Es fllcu-2(6) + llgsllc-2-16y + s llce-s-16y < conll fllce@) + 196 fllcc@))-

We have constructed a form d E; f — E;d, f which by property (iii) vanishes to high
order on dw. Our goal now is to derive formulas for f~, f* in which the integral
operators involved are created by integrating this form against certain kernels over
submanifolds of Q* or Q.

Forz e Q~,

(2.3.5) fr=39, /f/\ Dy 4-1(no1) — /f/\ Dy 4-1(n013)

Si1xAo1 Si2xAoi3

+ l /5f A Dy g(mo1) — [5f A Dn,q(ﬂow)l
S1xAg S12xAo13

- /f A Dn,q(n03)~

S12xAg3

For z € Q7,

(2.3.6) ff =39, I [f A Dy g_1(n02) — /f A Dy g—1(n023)

S1xAgz S12x Agz3
+ l f 3f A Dpg(no2) — f 3f A Dig(no3)
S xAg Si2xAozs

_/f A Dn,q(r/OB)

S12xAc3

Recall that f, 3, f € C*!+2""D(@). Lets = £+ 2n — 1 and E, f, E(3,f) be the
corresponding extensions of f, 9, f in G (constructed as above). For z € 7, we
apply Stokes’ theorem to

dy A (Es f A Dpg—1(M01) (¢, 2, 1)), dg A(Es3p f A Dy g(mo1)(§, 2, 1)) on Ry x Aoy,

i\ (Eg f ADp g—1(o13) (&, 2, 1)), dy 7 (Es3p f ADng(no13) (£, 2, 1)) on Rizx Agi,

de \(Esf A Dy g(n3)(¢,2,4)) onRpz x Ags.
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Then we can replace

ff/\Dn,q—l(nox) - f f A Dy g_1(n013)

SixAg Sizx Ao
by the sum
2.3.7 -
¢ ) 0, /Esf/\Dn,q-z(nm) - f Esf A Dy q-2(n013)
RixAq RizxAon3
= [Ef A Drgestu) — [ FES@) A Drgrtrun)
RixAg Ryzx Aoiz
+ fEszDn,q—l(nl3)"/Esf/\Dn,q—l(TIOB)
RiaxAyps Ri2x o3
+ /Esf A Dn,q—l(nl) _fEsf A Dn,q—l('IO)-
Rix A Ry x Ao

Similarly we replace

/5bf A Dy q(mo1) — /5bf A Dy q(n013)
SixAg; Si2x Aoz
by
2.3.8 = — -
( ) 9, fEsabf/\ Dn,q(']Ol) - fEsabf/\ Dn,q(n013)
RixAg RiaxAoi3

- /5Es§bf/\ Dn,q(']Ol) - /§Es5bf/\ Dn,q(n013)
RixAq; RizxAoi3

+ f E;3pf A Dag(niz) — f EJ85f A Dy (103)

Ripx A3 Rizx Ag3
+ / E3,f A Dug(m) — / E33f A Dug(no)
Rle] Rix Ao
and finally we can replace

_ff A Dn,q(n03)

Si2xAg3
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by

(239) 5z‘/\ Esf A Dn,q—l(n03) +/ 5Esf N Dn,q (7703)

RizxAg3 RizxAg3

+ [ Eof A Dug(10) — / Eyf A Dag(n3)

Rizx Ay Riax A3

Since 71, n3 are holomorphic in z and 3 depends only on a fixed number of variables,
a lot of these integrals vanish. More precisely we have the following:

LEMMA 2.4. Forz € Q™ we have

() | hADuam)=0,forqg>1,M =Ry, Rp, 51,
MXA[

52/Esf A Dy o(n1) +/Es5bf A Dy (m) =0,

Rlel R])(A]

() | hADygm)=0,forqg >1,M= Ry, Sp,
MXA3

5z/Esf A Dp,o(n3) +/E35bf A Dy,1(n3) =0,

Ryyx Az Riax A3

(ili) | hADug(ns) =0,forqg>1,M = Ry, Spa,
MxAp;3

5z/ Esf A Dyo(ms3) +[ Es0,f(¢) A Dui(n13) =0,

Riax Ay Rizx A3
where h is some smooth form defined on M of appropriate degree.

Proof. Follows directly from the fact that n;, n3; are holomorphic in z.
Using Lemma 2.4 and replacing (2.3.7), (2.3.8), (2.3.9) to (2.3.5), for z € Q™ we
have

(2.4.1) fm =79, /st A Dy g-1(n01) —f Ns f A Dy g-1(n013)

Ry xAg; RizxAon3

- f Ey f A Dngo1(n0)

Ry xAp
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+ /Ns—a-bf A Dy 4(n01) — / N3y f A Dy g(n013)

RixAo RizxAor3

"‘/Es.gbf A Dn,q(’]O)

R|>(Ao

- f Nof A Dg(noz) — / Eyf A Duy(n0)

Ri2xAg3 Rizx Ao

where N, f = E;d,f — 0E, f.

Arguing in a similar manner and taking into account that 7, is holomorphic in ¢,
n3 is holomorphic in z, &1, ..., &k, 1| < k < n —2 — g, we can obtain a similar
expression for f+.

For z € Q*, we have

242) fr=731- f Nof A Dagr (no2) + [ Nof A Dget(n023)

RixAq Rizx Ao

+/Esf A Dn,q—-l(nO)

ﬁleo

+ —/ngbf A Dy g(no2) + / N3y f A Dy g (n023)

RixAg Rix A

+/E35bf A Dn,q (no)
Rleo

+/Nxf/\Dn,q(’703)+/Esf/\Dn,q(770)~

Rizx A3 Rizx Ao

For z € ~, we apply Stokes’ theorem to

d{,A(st A Dn,q(n03)) onV x Aggs,
din(Esf A Dyg(no)) onV x Ag.
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Then for z € Q~, we have

- f Ny f A Dag(noz) = f Nof A Dag (n03) — f Nof A Dng(n0)

Ri2x o3 RizxAgs VxAg
+ 5z/']\]sf A Dn,q—l(7703) +st§bf A Dn,q(7703)

VxAp VxAgs

and

- f E,f A Dug(no) = f E,f A Dpq(no) 3, f E, f A Dpge1(n0)

Riyx Aoy RIZXAO VXAO
—f.gEsf A Dn,q (770)

VxAp

By substituting the above expressions in (2.4.1), for z € Q~ we obtain

243) f~() = 3, / Nof A Dago(ior) — f Nof A Dnge1(013)

Ry x A Rizx Aoz

+/st A Dy g-1(n03) — f Esf A Dn.q—l(no)
VxAgs (RiUV)x Ay

+ st-a_bfA Dn,q("Ol) - / ngbf/\ Dn,q(77013)
RixAg; RiaxAon3

+fN§bf A Dn.q(n03) - / Esgbf A Dn,q(nO)
VxAg (RiUV)x Ao

+ / Ny A Dag (o) + / Eyf A Dg(n0).

RizxAgs Rizx Ao
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Similarly, for z € Q% we have

@44) f+=731- / Nof A Digor(no2) + / N A Dnger(023)

ié]XAoz Ri2x Aoz

+/Esf A Dn,q(’)O)

k]XAo

+ —/ngbf A Dy q(no2) + f N3 f A Dy g(n023)

RixAg Rexdos

+/Esf A Dn,q(rIO)

iélXAo

+/stA Dn,q('703)+/EszDn,q(n0)‘

Rizx Aoy Ripx Ao

We are only a step away from obtaining the desired homotopy formula. The growth
of N; f will cancel the singularities of the kernels and thus the integral operators that
appear in (2.4.3) and (2.4.4) will become continuous on @. This will be established
by the following lemma.

LEMMA 2.5. Let f € Ci22" V@), 0, f € Coouy @), € € N. Let D! bea

differential operator in z of order |I| = £. Then we have the following:

(i) Forze GNQ~,

D! / Nof A Dngei(non)| + | D¢ / Nef A Dygr (nors)
Ry xAq Ri2x Aoz

< Co(ll fllaeszn-v + (|35 f | caceszn-).
(i) Forz € GNQT,

Dﬁ/st A Dy g-1(o2)| + | D¢ /st A Dy g-1(n023)

Ry xAgy Rizx Aoz

< Celll fllcsesmn=s + [[3 f l csceran-v.
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(iii) Forz e GN{r <0},

D! f Nof A Dpgot1(03)| < Celll fllcsesnms + 5 £l cacsnn).
VXA03

@iv)

/ Ey f A Dngor(no) € CXE1-Da(G), 0 <a < 1.
GXA()

Proof. We shall give a detailed proof for (i). (ii), (iii) are proved similarly. (iv)
is a well-known fact for the Bochner-Martinelli kernel. We shall need a lemma about
the growth of N, f(¢) for ¢ € R;.

LEMMA 2.6. Let f, d,f be as in Lemma (2.5). Let s = £ +2n — 1 as before. For
teR;N{r>0}(@esp. ¢ € RiN{r <0})) withI = {1} or I = {12} we have

INs £ )] < Cenr @272 4+ p(0) ") (U fllcseranv + 113 f  cscesan-n)

(xesp. |Ns £ (£)] < Cenp @) 2" (|| fllcsesznn + 135 f llcseran-n)).

Proof. Using property (iii) of the extension lemma for f, 3, f € C3¢+21—D wjith
s =1+ 2n — 1 we can write N f as

N;f = Nezanor f = p2  goran—y + hesanot

where gesan-1, Besan-1 € Cigigi ) (G) and heyoa—1 = 00on G N {r < 0},

For ¢ € G, let ;; € 3Dy such that |{ — 7| = dist(¢, 3Dp). Then |¢ — m,] is
comparable to |r(¢)]. For{ € G N {r > 0} we Taylor expand k¢, around 7, and
we obtain the estimate

hes2n-1(0)] < cenr @22 (|1 f llcserznn + 1195 f l|c3eran-n).
Thus for £ € Ry N {r > 0} or ¢ € Ry; we have
INe £ < Con(r @72+ p@) 2D (I £ llcseran-n + 1195 f ll caeran-n).

For{ € Ry N {r <0}, Neyon—1 f (&) = p(£)?"~ ge42n-1(¢). Hence we obtain the
second inequality in the lemma.

We are now in a position to start proving (i). With s = £ 4+ 2n — 1 as before, let

A= stf A Dpge1 (nor) = f

R
Rix A

Ns f /\/ Dn,q—l(ﬂOl)-
1 Qg
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Following [8] we can rewrite A as

&l
A= Z / st N———.
Jo+ji=n—q—1" R <Dg+10¢1+]1

We apply the operator D} on A. Then

Z &l 1

¢ . .
D= Z Nof A Dy —5h A D g
0+6=L jo+ji=n—g—1YR1 (bO

D! A can be written as a finite sum of operators of the form
om
A Nof A Fon
where
2a0 —m < 2(q + jo) — 1 + &y,
ar <1+ j1+4,
Jo+ji=n—q-1,
L+ 4 =L,
a =1,

ag > 0.

Taking into account that for { € R;z € Q™ we have

1& =zl = p&) =7 (),
12, )l =zc (Re®(, )|+ ImP(, ) = (o) + lp(@)]) = cr ()

where c is some positive constant, for z € 2~ we can obtain

en INsf1 1§ —2|"dV
— | <
~/1;| Nsf A q)goqyn ~ »/Rx [¢ — z|mt2atio=1+b | p(r)|1TAtEe

< f (r£+2n—2 + pl+2n—l)dv +/ p£+2n—1dv
~ Jrinrs0) pativtn=lt Ringr<o) pIHiotn=lHe

D! Al <

£+2n—-2 £+2n-1 £+2n—1
5/‘ (r +p )dV+/' p£2 Cfvf,cfp
RiN{r>0} pttn-2 Rinr<) PEFHOD

In the above inequality we used the factthat £ +n — 14 jo < £€+4+2(n —1). Cjisa
positive constant that depends on £, n, || f||caer2n-n, 185 f l| c3es2n-n, vol (R;) and by
A < B we shall denote A < CB where C is a positive constant that depends on the
quantities mentioned above.
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Similarly, let

B =If Ng f A Dyg_1(n013) = st/\/ Dy g-1(Mo13)-
Rz Aoiz

Rizx Ao1z

Since 1, is holomorphic in z, n3 is holomorphic in ¢y, .., {,—; We have

k-1 1
£
B = Z Z '/1;12 (Dq+Jo¢)1+JIX1+h

2=0  joth=n—-2—q—j

Df B is a finite sum of operators of the form
gm
R N A W
where
2a0 —-m =2(g + jo) — 1+ 4y,
art+a <2+ ji+j2+4,
Jo+h=n—-2-q—j,
0<jpp=<k-1,
a, ap>1.

Taking into consideration that for { € Rj3, z € Q7 we have

1 =zl = p) =r(),

D, 2)| = c(lp@) + 1p@)) = clp@)] = cp(d),

1X(¢, Dl = c(Re X (¢, 2)| + Im X (g, 2)1) = c(Ir(§)| + Ir @) = cr(}),
0=<p@)=r() <.

We have
|D£ Bl - N f N m (rl+2n—2 + pE+2n—l)|; - Zlm ay
= K 00 T Vo > —
2 Rix q)go(pal Xa |~ Riz |t — z|2@+jo)+m 1+£1pa1+a2
< (r£+2n—2 + rl+2n—l) ay < rl+2n—2 dy
~ r2@+jo)—1+L+j1+ 2 Ru ra+t+jotn—1"
But

qg+Jjo<n-2

4+2n-2

r day

IDfBl,Sf —mo SO
Ri2

Hence we have

pt+2n-3
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where C, > Oisaconstant that depends onn, £, vol(Ry2), || f | caceran-n, [|3p f || c3cean-n.
Lemma 2.5 tells us that the operators appearing on the right hand side of (2.4.3) and
(2.4.4) are continuous up to @. Therefore for z € @ we have

f=t(fT = =0K,f+ K. 0f

where 7 is the projection operator from the space of (0, ¢) forms defined on @ with
coefficients in C* (@) to the space B g 4 (@) which consists of all smooth (0, ) forms
in C" restricted to @ C M which are pointwise orthogonal to the ideal generated by
9p and where

K;f =/st A Dy g-1(n01) +/st A Dn,q—l(n02)

Ry xAg I‘élXAOZ
+stf A Dn,q—l(7703) - /st A Dy g—1(mo13)
VxAos RizxAon3

- f Nof A Dpget(1023) — [ Es f A Dag—1(n0)
Rizx Ao GxAg

where s = £ + 2n — 1. Using Lemma 2.6 we obtain

IK; flice S cenCll fllcsesamn + 1135 f llcseran-1)).

And this concludes the proof of the main theorem.
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