MARKOV PROCESSES ON AN ENTRANCE BOUNDARY*

BY
FraNnk KNIGHT

This paper presents, essentially, an alternative approach to the second
part of [7] in terms of “boundary theory.” In [7, Section 2] the motivating
idea was to regularize a temporally homogeneous Markov process X (¢), having
as state space a set X, by using martingale theorems, independently of a
topology on X or on the state space Y of the resulting process Y (¢). It
is shown here that there is an alternative state space Y, for Y (¢), and a
compact metric topology on Y,, such that Y (¢) (after a slight adjustment
of the definition in 7] on certain sets of probability 0) has right continuous
path functions. The necessary metric p is defined in a manner closely re-
sembling that used by R. S. Martin [8] in defining a general boundary for
the positive harmonic functions on Euclidean domains. In this way it is
an extension of the boundaries discussed especially by Doob [2], Hunt [6],
and Watanabe [10]. In terms of the metric p, the space Y, is the completion
of X, and the new process, denoted by Y,(¢), is defined from X(¢) as the
value of the process X (¢) on the “entrance boundary” corresponding to ¢,
for each ¢. Equivalently, Y ,(¢) is simply given almost surely for all ¢ by
Y,(t) = lim. ¢ rrationar X (7), the limit being taken in the metric p.

In the second section we show the connection between this regularization
of X(t) and the general methods of Ray [9] for regularization of transition
functions and processes corresponding to a given resolvent Ry , A > 0, operating
on continuous functions. It may be pointed out that, aside from reasons of
completeness, this connection is significant because, whenever Y,(¢) is an
instance of Ray’s method, the theorems of [9] provide a transition function
for Y,(t) together with a number of its properties which are not established
otherwise.

Section 1

It is assumed in [7, Section 2] that a Markov process X (¢) relative to
completed o-fields F(¢) on a probability space (@, F, P) is given, together
with a homogeneous transition function p(i, ¢, E), z ¢ X, E ¢ &, for X(1),
and such that (a) ® is generated by countably many sets, (b) wide-sense
conditional distributions over & exist, (¢) p(t, «, E) is measurable in (¢, x)
over & X ® where R is the field of real Borel sets, and (d) p(-, @1, -) =
p(-, 22, -) implies that 21 = x,. These hypotheses are assumed again here.
Under these hypotheses there is constructed in [7] a corresponding process
Y(t) which has for its range (at each t) families of joint distribu-
tions F(t', E; t, w), t' > 0, E ¢ ®, the “conditional futures”, such that for
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h >0,
F(t + t, B t,w) = f p(ts, z, EYF(, du; t, w).
X

These families are related to X (t) as follows: for each stopping time 7 for
X (t) one has

(1.1) lim;, r,r rationa p(t — 7, X(7), E) = F(t — T, E; T, w) a.s.

(i.e. with probability 1) on {{ — T > 0}. In fact, (1.1) is an immediate
consequence of (2.9) in [7] (we have replaced the diadic rationals 4 used in
[7]1 by the set of all rationals, to which the construction of [7] applies without
change).

This relation may be extended to the product o-fields over ¢ > T. Let
Fz(T), for each stopping time T, be the least o-subfield of the underlying
field Fr (the subscript T indicates restriction to {7 < «}) containing all
sets of theform 8 = N¥_; {X(t:) e B n{T < t;} fort; < -+ < trand E; ¢ ®.
Repeating some further notation from [7], let H*(T) be the o-field of all
S € Fr such that S n {T < ¢} ¢ Fr(c) for all ¢; let T, = a(m, n) = m2™"
for a(m — 1,n) £ T < a(m, n); let G5(T) be the least o-field containing
{(X7(Ty) e By and {Tx — T e R} fork = n, R ¢ ®, E ¢ ®; and let G**(T) =
N%_y GE(T). For each stopping time T, let F(S; T, w) be the s-additive
extension to Fz(T) of the measure defined for the above sets S in terms of an
indicator function x(r<¢; by

(12) F(8; T, w) = x(r<iy(w) Ll fEk_l p(te — by, To1, Ei)

Pt — b2, Tz, ATp—1) * - F(by, day; T, w).
The following theorem was used, in fact, at three points in [7] (namely,

for (2.14), to extend (2.19 a, b) just before Lemma 2.2, and after (2.33))
without being explicitly stated (it is a direct extension of (2.9)).

TaeoreMm 1.1. Let X(t) be a Markov process for which the above-mentioned
hypotheses hold. Let T be a stopping time for X(t). Then for S e Fz(T),

F(S; T,w) = P(S|H™(T))
= P(8|G**(T)) a.s.
Proof. The proof is analogous to that of (2.9) of [7], to which the theorem
reduces for S of the form {T < #} n {X(#) e Ei}. Suppose, more generally,

that S is of the form in (1.2), and note that for all n sufficiently large so
that T, < #,, w being fixed, we have

F(8; T, w) = L‘[z /; p(te — o1, Ta—1, Ex)
(1.3) 1 k-1
p(tm1 — bo—a y Tz , dr—1)

p(tl - Tn:andxl)F(Tn - T, dxo, T, ’lU).
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Let {EQ} be a countable collection of sets such that
{(F(T, — T,Ei; T,w),1 < 4}

is sufficient for all w and large n to define uniformly approximating sums
for (1.3) to within any ¢ > 0. Since t; — T, is countably-many-valued, it is
clear from the Lebesgue definition of the integral in (1.3) that such a family
exists, and by (1.1) we have a.s. for all E; and n

(14)  limpsw p(Tw — Tw, X(Tw), Ei) = F(T, — T, Ei; T, w).

By substituting p(T, — Tw, X(Tw), dxo) for F(T, — T, dwo; T, w) in
(1.3), for m > n, and letting m become large, it is clear from (1.4) that
a.s.on {T < &}

F(S; T, w) =lim[ f f p(te — b1, Ti—1, Br)
m->0 vX VYE; Ep_y

(15) ct p(tl - Tn y Lo dxl)p(Tn - Tm ) X(Tm), dfl?o)

—tim [ o [ pl— ter, e, B
m—>0 VY E; Ep_—1

coe p(ty = Ty X(Tw), dcy).
But this is a version of P(S|H*(T)), measurable over G**(T), and hence
also a version of P(S|G*"(T)). The theorem for arbitrary S ¢ Fz(T) now
follows since the monotone convergence theorem applied for monotone se-
quences of sets implies that the class of sets S for which the theorem holds

is a monotone class.
The metric on X mentioned in the introduction will now be defined. Let

{E} be a countable field of sets generating the o-field ®, let A > 0 be fixed,
and let g(7) be a strictly positive function such that Y 5 g(i) < «.

DeriNITION 1.1 The metric p(z, y) on X is given by

. [ " MG, @, B di

oz, y) = 2. 9(8) | 2

=t Z g(2) / e_”p(t, z, B;) dt
0

(16) = -
f e p(t, y, Ei) dt

0

2 9(%) fo e Mp(t, y, E:) dt

=1

The completion of X in this metric will be denoted by Y, .

2 By analogy with the definition of R. S. Martin, it would seem more natural to em-

ploy a metric
d<x: y) = /
x

where the absolute value indicates a total variation in dz. However, as a simple ex-
ample shows, this metric does not always yield the convergence necessary to our defini-
tion of Y,(¢).

/ eM(p(t, z, dz) — p(t, y, d2)) dt
)
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In order to justify this definition it must be shown, of course, that p(z, y)
is a metric. Before doing this, however, we state that the metric so defined
is not independent, even in the sense of equivalence of metrics, of the choice
of the {£}}, and it is not known to be independent of \. However, as will
appear below, any two of these metrics are equivalent insofar as the redefined
processes Y ,(t) are concerned, in the sense that two corresponding redefined
processes become identical with probability 1 at each stopping time 7T after
a natural identification.

To show that p(x, y) is a metric, all that needs to be verified is that if
p(z, y) = 0 then & = y. It then follows directly that Y, is a compact,
separable, metric space (of diameter less than 1). If p(x, y) = 0, then
we have easily that

f e—“p(t, z, B;) di = f e'”p(t, y, B;) dt
0 0

for each 7, and by closure under monotone limits it follows that for each
bounded ®-measurable function f(z),

fom o fxf(z)p(t’ @, dz) dt = f: e‘“fxf(z)p(t, y, dz) dt.

By introducing the resolvent

Ref@) = [ o [ 5wl 2, ) a w>0,
0 X
it follows from the well-known equation
(1.7) R, = B\(I — (s — MRy)

that the resolvent does not separate « and y. This implies that, contrary to
hypothesis, p(- , %, ) = p(:,y, -). Infact, we shall prove more generally
that if F;(¢, E), 7 = 1 or 2,t > 0, are two families of distributions on ®
such that

Fi(h+ 6, B) = [ Fit, do)ptts, o, B),
then they are identical provided that
f TR B dt = [ MR, B de
0 0

for all 2 and p > 1. If two such families are identical for one ¢, then they
are identical for all larger . Hence if they differ, then they differ for all ¢
sufficiently small. It follows from this that they must differ at some E;
for all £ in a set of positive Lebesgue measure. This would contradict the
fact that they are determined except on a set of measure 0 by their Laplace
transforms with 4 > 1 (see (1.14) below), assumed to be identical. Hence
we find that Fi(-, -) = Fy(-, -), and the proof that p(x, y) is a metric
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is complete. It is to be noted that the proof does not use essentially the
fact that p(¢, ¢z, X) = 1. One finds that Definition 1.1 also applies to ‘“‘sub-
processes” [4] with 0 =< p(¢, #, X) = 1 provided that x; = a2, when-
ever p(-, a1, +) = ¢p(-, x2, -) for some ¢ > 0. The same generalization
holds, in fact, for the results of the rest of this section, as well as for those of
[7], as may be seen by adjoining a further state “«” to X, completing the
paths by assignment of the value « for all ¢ following the “lifetime,” and
extending the transition function by setting

p<t:{°°}7{°°}) =1 and p(ty x,{oo}) =1- p<t7 x, X)

It is only in the consideration of such subprocesses that the denominators in
Definition 1.1 can have any significance.
The redefined process Y ,(¢) is given as follows:

Derinition 1.2, Let Y,(t) = lim;, 7 rationat X(7) provided that this
limit exists in Y, for all . Otherwise, set Y,(¢) = g for some fixed z ¢ X.

By a familiar application of martingale theorems we shall show that the
first case of Definition 1.2 has probability 1, and that Y ,(¢) is continuous
from the right. It is easily seen that

e f (f ¢ p(s, y, Es) dS) p(t, z, dy) = f e 'p(t, z, Es) dt.
X 0 0

Hence if X () is a subprocess of X () with transition function e 'p(¢, @, E),
then

f ¢ p(s, X (r),E:) ds
0

is easily extended to become a supermartingale in 7 (for example, by setting
X(t) = 0 after the “lifetime”), and hence has limits from the right along
the rationals at all ¢, outside of a set of probability 0. Such a subprocess
X(t) can be defined, as is well known, by subjecting X (¢) to a “death rate”
with density Ae™* in ¢, which is independent of X (¢), and it follows easily that

[ et X(0), B at
0

has limits in the same sense. The field {E;} being countable, these limits
exist simultaneously for all E; with probability 1. Since D g(¢) < «, we
see that the existence of these limits implies that of the limits in Definition
1.2, and our statement follows.

The connection between Y,(¢) and the process Y (¢) of [7], whose range
consists of the families F(t;, E; t, w), is established by an identification of
part of this range with part of ¥,. To select the appropriate subset, we
introduce an auxiliary topology similar to that of p(z, y) but formally

3 It also has limits from the left, by the same martingale theorem of Doob [1, p. 363].
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stronger.! It depends on the existence of a countable set of nonnegative
functions bounded by 1 which contains the indicator functions xz,(x), and
whose uniform closure is closed under the resolvents R,, u > 1. Such a
set is easily constructed. Let {u: be a countable dense set in (1, ), and
define recursively Sy = {xz,}, Ss1a & countable set of nonnegative functions
bounded by 1, closed under R, , 1 £ ¢ £ n + 1, and containing S,. Then
limy,eo Sp = {fk(z)} is closed under {R,}, and is countable. The uniform
closure of {fx(2)} is then closed under R, , u > 0, as follows from the uniform
continuity in x and f of R, f in the uniform norm. The connection between
the process Y,(¢) and the families F (% , E; t, w) is now a consequence of the
following theorem :

TuporeM 1.2.° For each stopping time T for X(t), simultaneously for
=Nand all p > 1,

f” e*"‘f p(t, X(r), d2)fs(z) dt
o x

lim 3 g(d) 22—
ot IS S [T [ ps, X (o), dofie) e
=1 Jo

(1.8) )
f e f F(t, dz, T, w)f:(2) dt
— =0 a.s

3 g0 f = [ PG, a2 7, w0)iC) d

Whenever this convergence holds, then the analogous convergence in terms of
o(x, y) also holds. Let S be the set of all families F(t,, E; t, w) obtainable
in this manner. Then the convergence (1.8) induces a one-to-one correspondence
between S and a subset S, of Y, .

Proof. We prove the last statements first. Since the convergence in
(1.8) is at least as strong as in p, it is only necessary to show that if
F(t,, E;t,w') and F(t,, E; t”, w”) are two distinct families in S, then they
are separated by p, or in other words, that

w fe'“F(t,E;;t',w') dt
2 90) | 57—
= 2 () fo FNE(L By, W) di
/ eMF(, By t",w") dt
- > 0.
Z;g(z)l e MF(t, By t7,w") di

4 For the idea of this construction, I am indebted to Professor Daniel Ray.

5 A metric of the form in (1.8) with u = X could replace po(x,y) throughout the paper,
and the resulting space and process would be independent of \. We have retained
Definition 1.1 because of its simplicity.
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In the contrary case, it follows by monotone extensions that

[ e[ Fasd, i@ a= [T | pas e, v @
0 X 0 *

for all bounded measurable functions f(z). On the other hand, it was shown
above that for some u > 1 and some ¢, one must have

(1.9) f CHE( B, w') dt f MR B 1, w") dt.
0 0

Ifwesetf = xu — (0 — NRyuxs,, (1.7) implies that B, xz, = Rxf. Now
let 2;and z] be sequences in X converging to F(- ,-;t ,w’)and F(- , - ;#”w")
respectively, in the sense of (1.8). Then

f CHE(L B w) dt = lim [ e p(t, 2, Es) dt
0

j>0 JO

@

= lim e_”f p(t, x5, d2)f(2) dt
0 X

j->o

- fwe—”f F(t,dez; ¢, w')f(2) dt
(1.10) ) X

=/ eﬁM/ F(t,dz; t7, w”)f(z) dt
o X

— 13 ® —\t l/
= Eljgfo e fxp(t,xj,dz)f(z) dt

@

=lim | ¢* p(taj,E)dt

Jj>e JO

- f R B 1w dt.
0
Since this contradicts (1.9), the result is established.

We return to the proof of (1.8); the existence of the limit a.s. for fixed u fol-
lows exactly as in the discussion following Definition 1.2. It remains to
identify the limit. Using the T, of (1.3), and taking r < + rational with
w fixed, we have for each bounded, measurable f(z)

[ o [ pux,ar@a= [ e | pax0 a0 a
(1.11)

+ e""(rl—’)/- (f e_’”/ p(t, z, dz)f(2) dt) p(r — 7, X (1), dz).
X 0 X
The last integral may be defined in the sense of Lebesgue as the limit of a

sequence of integrals of uniformly approximating simple functions, and such a
sequence depends only on a countable collection of sets {Ei}. For each ¢,
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and hence for all, we have by (1.1) for all rational 7' > T,

lilnflT.‘r rational p(T’ - T, X(T), E:) = F(T - T, E; 5 T, ’l,U) a.s.
By defining the limit of the last integral in (1.11) in terms of these limits it
follows that a.s. on {T < 7'} for all rational 7’

fow o Ht Lp(t,X(T),dz)f(z) di

lim sup
7 ]| T,7 rational

(1.12) —6_"("_')[) e""’fo(t+Ar' — T,dz; T, w)f(z) dt

= lim sup ‘['—T e L p(t, X(7), dz)f(2) dt

7 | Tyr rational
< (7 — T) max f(2).
Accordingly, we find that

lim fow e_"tfxp(t,X(r),dz)f(z) dt

7] T, 7 rational

(1.13)

1'1Ty13'1£]€.ttional e_“("‘”f e_“‘f F(t+ 7 — T,de; T, w)f(2) dt
0 X

=/ e"“f F(t,dz; T,w)f(2) dt a.s.
o x

From this it is seen that the limit (1.8) is 0 a.s. for each u, since the conver-
gence is equivalent to simultaneous convergence of the numerators. The
same is therefore true for u = A and all p in a countable dense subset of (1, « ).
However, a differentiation of (1.8) with respect to u shows that its derivative
is bounded independently of 7, w, and p (since the f;(z) are bounded by 1).
Therefore convergence to 0 on a dense subset of (1, «) implies convergence
to 0 everywhere, and the proof of Theorem 1.2 is complete.

The next step in proving the equivalence of Y ,(¢) and the corresponding
process Y (t) of [7] is to show that the o-field B(Y) in [7] “corresponds’ to the
topological o-field B(Y,) of Y,. We recall that 3(Y) may be taken as the
least o-field of probability measures P on the product space [ [0 ®; of ®
for which the sets {P : P(¢t, E) e R},t > 0, E ¢ ®, R € ®, are measurable (in
[7], ¢t was restricted to a countable dense set, but the present definition, as
noted there following Theorem 2, is equally satisfactory).

TaEOREM 1.3. To each B e ®(Y) there corresponds a B, ¢ &(Y,), and, con-
versely, to each B, e ®(Y ,) there is a B ¢ ®(Y), such that for each stopping time
T for Y (1),

P:({Y(T) e BY A {Y,(T) ¢B,}) =0

8 Here A is the symmetric difference: E A F = (E — F) v (F — E).
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The correspondences depend only on X, ®, and the transition function p(t, z, E).

Proof. By Theorem 1.2 it suffices to prove this theorem under the assump-
tion that Y(T') ¢ S and Y,(T) ¢ S,. We denote the elements of S by
F(t, E), so that

F+u,B) = [ pt, 2 DFG, da) for t; > 0.
X

To prove the existence of a set B corresponding in the required manner to a
given set B, it suffices to show that

f cMF(L E) di,
0

as a function on S, is measurable over the o-field [8(Y) n S] consisting of the
sets £ n Sfor E e ®3(Y). For then the metric p is a measurable function on S,
with respect to the image o-field of [B(Y) n S] in S, under the correspondence
of Theorem 1.2, and B may be taken to be any set in 8(Y) such that the
pre-image of B, n S,is Bn S. Since p(¢, «, E) is by hypothesis measurable
in (¢, z) over ® X ®, it follows from Fubini’s theorem that

f ENTDp (4 o B) dt
0

is measurable over ® for each 8 > 0. Let {£} be a countable collection of
disjoint sets such that for x; ¢ £; and all F(¢, E) in S

“ /5 eMF(4 E) dt — Y F(8/2, Er) f e My (4 2, B) dt. < 8/2.
/2 7=1 0

By the usual approximation of an integral using simple functions this is
clearly possible. We then have

} f e MF(t, E) dt — Y, F(8/2, E:) f e Ny (t 2, E) dt | < 6.
0 1=1 0

Since the sum is measurable over [B(Y) n S], the first integral is seen to be
measurable upon letting & become small.

Conversely, to prove the existence of a set B, corresponding to a given set
B ¢ ®(Y), it is enough to show that B n S has as image in S, a set of the form
B,n S,. We may suppose that B n S has the form {F : F(¢, E;) ¢ R} since
such sets generate [B(Y) n S]. The problem is to define this set in terms of

f ME( B di, 1<4< w,

0

which it is not hard to see are measurable over the field [®&(Y,) n S] consisting
of sets B, n S for B, e ®(Y,). By monotonic extensions it follows that

[o e L F(t,dz) f(2) dt
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is similarly measurable for f bounded and measurable. When f is taken to be
the function xz;, — (1 — M)Ruxz,; , » > 1, the above expression becomes

f e Pt B dt,

0

at least when F(-, -) = p(-,, -),2 ¢ X. Forany F({, E) in S, moreover,
there is a sequence z, = X(7,) for which the convergence (1.8) holds, and
passing to the limit extends the earlier relation to all of S. Therefore

[ e F B a
0
is measurable over [®(Y,) n S], and hence as before
[ [ p6aope at
0 X
is measurable for bounded, ®-measurable functions f. It is therefore suffi-

cient to show that the set {F : F(t, E1) ¢ R} can be defined by measurable
operations on the Laplace transforms

[ o f F(t,d)f(2) di, p> 1.
0 X
For this purpose we use the inversion formula
. & (’CT_I ke dk /w —ut’ - /]
}}jﬂ( 1) E 4 b e F(t,E) dt -
. (kT—l)k+l [ =1yt ) N , , ,
(1.14) - llmT—[ O (Y R B di
k>0 . 0

= F(r,E') ae. in(r > 0) [Widder, 11, p. 288]"
Since convergence in (1.14) is bounded for 7 in (§,¢),0 < § < t < «, we

have for each simple function G(r, y) over ® X ® the identity

t
[ [ 66— rp)FG,ap ar
o X
(1'15) t ) —1\k+1
= lim fa fx fo ﬁ'f"'lc‘—) CEN P, )G — 7, y) df dr.

k>0

Approximating p(¢ — =, y, Ei) uniformly by simple functions, we see that
(1.15) holds with it in place of G(t — 7, y). By using the fact that

1 t
Fo8) = 2 [ [ 90— 79, BIFPGay) ar,

7 Note that a k! is missing in Definition 6, p. 288 of [11].
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it follows that

) = (k _1)+ oG
(1.16) P, B = “Silfﬂf ff ()R, dy)

p(t — 7,9, By dt dr.

For fixed k the first term of (1.14) is clearly measurable over ® X [®(Y,) n S]
as a function of (7, F). It follows upon approximating p(¢{ — =, y, E1) once
more by simple functions that (1.16) is measurable over [B(Y,) n S], as was
to be shown. This completes the proof of Theorem 1.3.

The proof also establishes a fact which may be of some independent inter-
est, and which we therefore state as a corollary.

CoroLLARY. Let X be a space, let ® be a o-field of subsets of X, and let
p(t, x, E) be a transition functton on (X, ®), measurable in (t, x). Then for
each N > 0 the o-subfield of ® generated by the sets {x : p(t, x, E) ¢ R}, t > 0,
E e ®, R ¢ ®, is the same as that generated by the sets

{x:f e‘“p(t,x,E)dteR}, Ee® Rea.
0

In fact, the proof applies directly to show the equivalence of the former field
with that generated by the resolvent B,, » > 1. By the resolvent equation
(1.7) this field is generated by a single Ry , and the corollary follows.®

In view of Theorems 1.2 and 1.3, the close connection of Y,(t) with the
process Y (t) in [7] is evident. Theorem 1.2 means that for each stopping
time T the two processes are equal a.s. in the sense of identification on the set
S, while Theorem 1.3 proves a similar connection between the respective
state spaces and o-fields. The conclusions of [7] may therefore be applied to
Y ,(t), and the result stated as a theorem:

TaeoreM 1.4. Y, (%) is a strong Markov process with right continuous path
functions, relative to the fields H(t) (Section 1), the melric state space Y, , and
the conditional probabilities (2.19 a, b) of [7] transferred to (Y,, ®(Y,)) by
means of Theorem 1.3. Except for t in a countable set, P{X(t) = Y, (t)} =1

Section 2

To place the processes Y,(t) on an equal footing analytically with the
processes X (t) it is necessary to find a transition function on Y, corresponding
to p(t, ¢, £) on X. In this connection it is frequently possible to use the re-
sults of Ray [9], which we mention very briefly from this viewpoint. In [9] a
method of regularizing a process is introduced which proceeds in two stages.
A resolvent family Ry, X > 0, acting on the bounded measurable functions

8 T wish to thank the referee for several very useful comments, in particular, for this
application of the resolvent equation, and for a considerable shortening of the proof of
Theorem 2.1 below.
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on (X, ®) is given. For our purposes it may be defined by

Ry f(z) = Lw(“j;p(t, z, dz)f(z) dt.

A part of the domain is then singled out, the space X is completed in the uni-
form structure generated by this part, and the resolvent acting on these func-
tions is extended to this completion to derive a resolvent acting on the space
of all continuous functions on the completion. For this new resolvent there
is defined a unique transition function such that the corresponding semi-
group of operators on the continuous functions is continuous from the right.
Then, for each Markov process (random function) on the completion having
this transition function, there is defined (in the same way as in Definition 1.2)
a unique strong Markov process, and this process has the same transition
function as does its antecedent.

The critical point in applying this method in our situation is the require-
ment that the range of the resolvent acting on bounded measurable functions
be contained in the uniformly continuous functions in the new topology. It
is this requirement which leads to the condition of the next theorem.

TaeoreM 2.1. A mnecessary and sufficient condition that each process Y (i)
of Definition 1.2 with A = 1 be one of the processes of [9, Theorem III] with a
common transition function is that for each sequence By D Ey D -+ (i, E;
empty, E; ¢ ®, one has

©

(2.1)° lim | ¢ 'p(t 2 E;)dt =0, uniformly in z e X.

1200 JO

Proof. We first prove the necessity. Let By D E, D --- be a sequence for
which (2.1) is contradicted. Then there are an ¢ > 0 and a sequence z; ¢ X
such that

f e pltyai, E)dt > ¢ for all 7.
0

If the processes Y,(t) were instances of [9, Theorem III], then the functions
f e ‘pt,z, E) dt, Ee®,
0

being in the range of R;, would have continuous extensions on Y,. Since
Y, is compact, there is a subsequence z; of the sequence x; such that
limpw2r = ¥y, ¥y € ¥,, exists. In this case, one would have that

0

lim [ ¢ ' p(t, 2, E) dt

k-0 JO

9 Although ““usually’’ satisfied, this condition fails, for example, for the transition
function p(¢, {z}, {z}) = 1,¢ > 0, x real, as is seen by setting E; = (0, 27%).
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exists for each £ ¢ ®. It follows then from the theorem of Vitali-Hahn-Saks
[3] that this limit defines a probability measure on ®&. But since for each E;
the limit is at least ¢, this contradicts the fact that N; E; is empty.

Turning to the sufficiency of (2.1), we must show first, in accordance with
[9, p. 48], that there exists a collection 91, of positive functions f measurable
over (X, ®) which (a) separates points in X, (b) satisfies the rela-
tion ARy f < ffor all X > 0, (¢) is dense in the uniform norm among the
range of R; acting on the positive bounded measurable functions, and (d)
determines a uniform structure on X whose completion is Y, (i.e., is homeo-
morphic to Y, with X held fixed). We shall show that the functions
Z‘Z;l a; Ri(xz;) form such a collection 91; , where the a; range over the
nonnegative rationals, in each function at most finitely many a; are nonzero,
the E; are the sets appearing in Definition 1.1 of p(z, y), and xz,(z) is 1 or 0
according as x e F;or 2 ¢ ;. Since requirements (a) and (b) are immediate,
only (c¢) and (d) need be proved. By approximating bounded measurable
functions by simple functions, and using the linearity and boundedness of
R, , it follows that in order to prove (c¢) it is enough to show that R, xz , for
E ¢ ®, may be uniformly approximated by functions in 917, . Let € be the
class of indicator functions xz for which this holds. Then € contains xz,
for each 7, and we need only prove it closed under monotone limits. Let
F,C F; C .- be asequence with xr, € ¢, 1 £ k < «; then by (2.1) there
is for each ¢ > 0 an ¢ such that

f ¢ p(tya, Uiy Fr, — Fy) dt < % for all 2.
0
Since xr; € C, there is an f e M, for which

f ¢ p(tx, Fi) dt — f(z) | < % for all .

0
It follows that

‘ f e_t p(t)xy Uloco=1 Flc) dt —f(x) < &
0

Hence if F = Ui Fi, then xr ¢ @ Next, take F1 D F2 D -+, xr, € C.

Then by considering F; — N, F) for ¢ large, we find, analogously to the
previous case, that xr ¢ € for F = N;_; F;. Hence (c) is established. Re-
quirement, (d) follows from the observation that each of the functions of 91,
is uniformly continuous for p(x, y), together with the fact that every open
sphere of Y, contains an open set of the topology generated by the uniform
structure. To prove the latter, one need only use finite intersections of sets
of the form {y : Ry xz;(y) — Rixz,(2) < &4, as follows from the definition
of p(x,y) with A = 1. The requirements (a)—(d) are thus met, and it follows
that R\ may be extended by continuity to the continuous functions on Y,
to produce the situation of [9, Theorem III]. TLet p,(¢, y, E),
y ¢ Y,, E ¢ ®(Y,), be the resulting transition function. Then by
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191, p,(t, y, E) is the unique transition function with this (extended) resolvent
and for which

fy F(@)p,(t, y, de)

is continuous from the right in ¢, ¢ > 0.

The proof of Theorem 2.1 will be completed by showing that p,(¢, v, E)
is a transition function for each process Y,(f). In other words, it will be
shown that for each ¢, ¢t > 0 and E ¢ ®(Y,),

(2.2) oty Yo(£), B) = P({Y,({' +1) e B} | Y,(f)) as.

Since Y,(¢) is continuous from the right, it is sufficient to prove for f continu-
ous, t' > 0, and 4 in H*(t'), the following identity of Laplace transforms:

f,,fow ‘f“fy po(t, Y,(1), d2)f(2) dt dP
(2.3) ’

- L fow (Y, + 1)) dt dP.

If Aisin F(¢') and P{Y,(t') = X(¢')} = 1, then this identity is a consequence
of the analogous identity

[ [ [ o x), e aar = [ o [ qx +0)ap a,

in view of the fact that in the last term X (¢ 4 t) may be replaced by Y ,(t' + t)
because they are a.s. equal except at countably many ¢, and in the first term
the resolvent for Y ,(¢) is the extension of that for X (¢). Without the assump-
tion that P{Y,(¢) = X(¢)} = 1, and for 4 in H*(¢'), we can find a decreas-
ing sequence ¢, with limit ¢ such that P{Y,(t,) = X (&)} = 1 for all n, and
since 4 € 5(t,) for each n, (2.3) holds with #, in place of ¢’. By letting n — <o,
and using the right continuity in ¢ of Y,(¢) and in y of the resolvent

fow ¢ fyp F(@)po(t, y, de) dt,

it follows that (2.3) holds without restriction, and the proof of Theorem 2.1
is finished.
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