EXTENSIONS AND COROLLARIES OF RECENT WORK ON HILBERT'S TENTH PROBLEM ${ }^{1}$

BY

Martin Davis

This paper consists of three separate notes related only in that each of the three either extends or employs the results of [2], with which acquaintance is assumed.

1. A sharpening of Kleene's normal form theorem

By a form of Kleene's normal form theorem (cf. [1] or [3]) we may understand the following assertion:

Theorem. There is a function $U(y)$ and a predicate $T(z, x, y)$ both belonging to the class Q such that a function $f(x)$ is partially computable if and only if for some number e

$$
f(x)=U\left(\min _{y} T(e, x, y)\right)
$$

In its original form, this result was stated with Q the class of primitive recursive functions and predicates. It is well known (cf. [3] and [6]) that smaller classes Q suffice. We wish to point out here that (assuming variables to range over the positive integers) we may take for Q the following extremely modest class:
(1) A function f belongs to Q if and only if f can be obtained by repeated application of the operation of composition to the functions: $2^{x}, x \cdot y, N(x)=0$, $U_{i}^{n}\left(x_{1}, \cdots, x_{n}\right)=x_{i}, K(x), L(x)$, where $K(x), L(x)$ are recursive pairing functions.
(2) A predicate $R\left(x_{1}, \cdots, x_{n}\right)$ belongs to Q if

$$
R\left(x_{1}, \cdots, x_{n}\right) \leftrightarrow f\left(x_{1}, \cdots, x_{n}\right)=g\left(x_{1}, \cdots, x_{n}\right)
$$

where $f, g \in Q$.
In fact, we may even take $U(y)=K(y)$.
To see this we begin by noting that by Corollary 5 of [2], (or rather the immediate extension thereof to predicates), we have

$$
\begin{array}{r}
\bigvee_{y} T_{2}(z, x, u, y) \leftrightarrow \bigvee_{x_{1}, \cdots, x_{n}} P\left(z, x, u, x_{1}, \cdots, x_{n}, 2^{x_{1}}, \cdots, 2^{x_{n}}\right)=0 \\
\leftrightarrow \bigvee_{x_{1}, \cdots, x_{n}}\left\{\sum_{j=1}^{m} f_{j}\left(z, x, u, x_{1}, \cdots, x_{n}, 2^{x_{1}}, \cdots, 2^{x_{n}}\right)\right. \\
\left.=\sum_{j=1}^{m} g_{j}\left(z, x, u, x_{1}, \cdots, x_{n}, 2^{x_{1}}, \cdots, 2^{x_{n}}\right)\right\}
\end{array}
$$

Received November 22, 1961.
${ }^{1}$ This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command.
where $f_{j}, g_{j} \in Q, j=1,2, \cdots, m$. Now, using the fact that

$$
\begin{aligned}
\sum A_{j}=\sum B_{j} & \leftrightarrow 2^{\Sigma A_{j}}=2^{\Sigma B_{j}} \\
& \leftrightarrow \Pi 2^{A_{j}}=\Pi 2^{B_{j}},
\end{aligned}
$$

we see that

$$
\bigvee_{y} T_{2}(z, x, u, y) \leftrightarrow \bigvee_{x_{1}, \cdots, x_{n}} R\left(z, x, u, y, x_{1}, \cdots, x_{n}\right)
$$

where $R \in Q$. Now, let

$$
\begin{aligned}
& q_{1}(t)=K^{n-1}(t) \\
& q_{j}(t)=L\left(K^{n-j}(t)\right), \quad j=2,3, \cdots, n
\end{aligned}
$$

where the exponent on K indicates iterated application, so that $q_{j}(t) \in Q$, $j=1,2, \cdots, n$. Thus

$$
\begin{aligned}
\bigvee_{y} T_{2}(z, x, u, y) & \leftrightarrow \bigvee_{t} R\left(z, x, u, y, q_{1}(t), \cdots, q_{n}(t)\right) \\
& \leftrightarrow \bigvee_{t} S(z, x, u, y, t)
\end{aligned}
$$

where $S \epsilon Q$.
Let $f(x)$ be any partially computable function. Then the predicate $u=f(x)$ is semicomputable (recursively enumerable). Hence, for some e,

$$
\begin{aligned}
u=f(x) & \leftrightarrow \bigvee_{y} T_{2}(e, x, u, y) \\
& \leftrightarrow \bigvee_{t} S(e, x, u, t)
\end{aligned}
$$

Finally,

$$
f(x)=K\left(\min _{y} S(e, x, K(y), L(y))\right)
$$

So, we have derived Kleene's normal form theorem with

$$
T(z, x, y) \leftrightarrow S(z, x, K(y), L(y)) \quad \text { and } \quad U(y)=K(y)
$$

2. Negative solution to a problem of Quine

In [4], Quine proposed the following problem:
Let us consider schemata constructed from the following ingredients: numerals, variables ranging over the nonnegative integers, the symbols of sum, product and power, $=$, and the truth-function signs.

Such a schema is called valid if it becomes a true sentence whenever all of the variables occurring in it are replaced by numerals. The proposed problem is to give an algorithm for determining whether or not a given schema of this kind is valid.

We note here that the recursive unsolvability of this problem follows directly from the results of [2]. For, to each exponential Diophantine equation, $E=F$, there corresponds, mechanically, a "translation": $\Gamma=\Delta$ which is a schema of the kind being considered. Moreover, $E=F$ has a solution if and only if the schema $\sim(\Gamma=\Delta)$ is not valid. Hence, an algorithm for solving Quine's problem could be used to solve the decision problem for ex-
ponential Diophantine equations. But, by [2], there is no algorithm for solving this latter problem. Hence, Quine's problem is likewise unsolvable.

3. Diophantine representation of recursively enumerable sets in terms of a single predicate of exponential growth

A predicate $\rho(u, v)$ will be called a Julia Robinson predicate if
(1) $\rho(u, v) \rightarrow v \leqq u^{u}$,
(2) for each $k>0$, there are u, v such that

$$
\rho(u, v) \wedge v>u^{k} .
$$

We shall prove the following
Theorem. Let S be a recursively enumerable set. Then there is a polynomial P such that

$$
S=\left\{x \mid \bigvee_{x_{1}, \cdots, x_{n}, u, v}\left[P\left(x, x_{1}, \cdots, x_{n}, u, v\right)=0 \wedge \rho(u, v)\right]\right\}
$$

for every Julia Robinson predicate $\rho(u, v)$.
Since, e.g., the predicate $v=2^{u} \wedge u>1$ is a Julia Robinson predicate, we have

Corollary 1. Let S be a recursively enumerable set. Then, for some polynomial P,

$$
S=\left\{x \mid \bigvee_{x_{1}, \cdots, x_{n}, u} P\left(x, x_{1}, \cdots, x_{n}, u, 2^{u}\right)=0\right\}
$$

This generalizes Corollary 5 of [2]. Moreover, the proof of Corollary 6 of [2], if applied to the present Corollary 1 instead of to Corollary 5 of [2], yields

Corollary 2. For every recursively enumerable set S there is a function $P\left(x_{1}, \cdots, x_{n}, u, 2^{u}\right)$, where P is a polynomial, whose range (for positive integer values of the variables) consists of the members of S together with the nonpositive integers.

If in particular we choose for S, the set of positive primes, we obtain a curious "prime-representing" function!

It remains to prove the theorem stated above. In doing so we generalize the methods, relating to Pell's equation, of [5]. ${ }^{2}$ We recall the notation $x=a_{n}, y=a_{n}^{\prime}$ for the successive solutions of the Pell equation

$$
x^{2}-\left(a^{2}-1\right) y^{2}=1
$$

Lemma 1. There is a Diophantine predicate $\psi(a, u)$ such that
(1) $\psi(a, u) \rightarrow u \geqq a^{a}$,
(2) $a>1 \rightarrow \bigvee_{u} \psi(a, u)$.

Proof. This is a weakening of Lemma 8 of [5].

[^0]Lemma 2. There is a Diophantine predicate $D(c, y, z)$ such that
(1) $a>c \wedge D(c, y, z) \rightarrow a>y^{z}$,
(2) $\bigwedge_{y, z} \bigvee_{c} D(c, y, z)$.

Proof. Let

$$
D(c, y, z) \leftrightarrow \bigvee_{b}[b>y \wedge b>z \wedge \psi(b, c)]
$$

Then

$$
a>c \wedge D(c, y, z) \quad \rightarrow \bigvee_{b}\left[a>c \geqq b^{b}>y^{z}\right]
$$

Lemma 3. If $y>1$ and $a>y^{z}$, then $y^{z}=\left[u / a_{z}\right]$ where ${ }^{3} u$ is chosen as a solution of

$$
u^{2}-\left(a^{2} y^{2}-1\right) v^{2}=1 \quad \text { for which } \quad a_{z} \leqq u \leqq a \cdot a_{z}
$$

Proof. By Lemma 9 of [5], $y^{z}=\left[(a y)_{z} / a_{z}\right]$, and by Lemma 10 of [5], the number u is precisely $(a y)_{z}$.

Lemma 4.

$$
\begin{aligned}
\bigwedge_{i \leqq m}\left(x_{i}=\right. & \left.y_{i}^{z_{i}}\right) \\
& \leftrightarrow \bigvee_{r_{1}, \cdots, r_{m}}\left[\bigwedge_{i \leqq m} E\left(r_{i}, x_{i}, y_{i}, z_{i}, a\right) \bigwedge \bigwedge_{i \leqq m}\left(r_{i}=a_{z_{i}}\right)\right]
\end{aligned}
$$

where E is a Diophantine predicate, and where $a>c_{1}, c_{2}, \cdots, c_{m}, z_{1}, \cdots, z_{m}$ with the c_{1}, \cdots, c_{m} satisfying $D\left(c_{i}, y_{i}, z_{i}\right)$.

Proof. We need only take

$$
\begin{aligned}
E\left(r_{i}, x_{i}, y_{i}, z_{i}, a\right) \leftrightarrow \quad \bigvee_{u, v} & {\left[\left(u^{2}-\left(a^{2} y_{i}^{2}-1\right) v^{2}=1\right) \wedge r_{i} \leqq u \leqq a \cdot r_{i}\right.} \\
& \left.\wedge r_{i} x_{i} \leqq u<r_{i}\left(x_{i}+1\right)\right] \vee\left[x_{i}=y_{i}=1\right]
\end{aligned}
$$

Lemma 5. If $1<r<a_{a}$ and $a>z$, then

$$
r=a_{z} \leftrightarrow \bigvee_{s}\left[r^{2}-\left(a^{2}-1\right)(z+s(a-1))^{2}=1\right]
$$

Proof. This follows from Lemma 7 of [5].
Lemma 6.

$$
\begin{aligned}
& \bigwedge_{i \leqq m}\left(x_{i}=y_{\imath}^{z_{i}}\right) \\
& \quad \leftrightarrow \bigvee_{a, d}\left[F\left(x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{m}, z_{1}, \cdots, z_{m}, a, d\right) \wedge \rho(a, d)\right]
\end{aligned}
$$ where F is a Diophantine predicate and ρ may be any Julia Robinson predicate.

Proof. We claim that, if we use the notation of Lemma 4,

$$
\begin{aligned}
& \bigwedge_{i \leqq m}\left(x_{i}=u_{i}^{z_{i}}\right) \wedge \leftrightarrow \bigvee_{r_{1}, \cdots, r_{m}} \bigvee_{a}\left\{\bigwedge _ { i \leqq m } \left[E\left(r_{i}, x_{i}, y_{i}, z_{i}, a\right)\right.\right. \\
&\left.\wedge\left(a>z_{i}\right) \bigwedge_{s_{i}}\left[r_{i}^{2}-\left(a^{2}-1\right)\left(z_{i}+s_{i}(a-1)\right)^{2}=1\right]\right] \\
& \wedge \bigvee_{c_{1}, \cdots, c_{m}}\left[\bigwedge_{i \leqq m}\left(D\left(c_{i}, y_{i}, z_{i}\right) \wedge a>c_{i}\right)\right] \\
&\left.\wedge \bigwedge_{d}\left[r_{1}, \cdots, r_{m} \leqq d \wedge \rho(a, d)\right]\right\}
\end{aligned}
$$

${ }^{2}[\cdots]$ here means, as usual, "the greatest integer $\leqq \cdots$..

For, if the right-hand side holds, then $r_{1}, \cdots, r_{m} \leqq d \leqq a<a_{a}$, so that by Lemma $5, r_{i}=a_{z_{i}}$, and finally, by Lemma $6, x_{i}=y_{i}^{z_{i}}$. Conversely, if the left-hand side holds, choose c_{i} so that $D\left(c_{i}, y_{i}, z_{i}\right)$ is satisfied, then let $z=\max _{i \leqq m} z_{i}$, and choose a, d so that $a>c_{i}, a>z, \rho(a, d)$, and $d>a_{z}$. Then

$$
r_{i}=a_{z_{i}} \leqq a_{z}<d
$$

and the result follows by Lemmas 4 and 5 .
Lemma 7. Let S be a recursively enumerable set. Then there is a polynomial P such that

$$
\begin{aligned}
S= & \left\{x \mid \bigvee_{x_{1}, \cdots, x_{m}} \bigvee_{y_{1}, \cdots, y_{m}} \bigvee_{z_{1}, \cdots, z_{m}}\right. \\
& {\left[P\left(x, x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{m}, z_{1}, \cdots, z_{m}\right)=0\right] \wedge \bigwedge_{\left.i \leqq_{m}\left(x_{i}=y_{i}^{z_{i}}\right)\right\}} }
\end{aligned}
$$

Proof. This lemma is essentially a restatement of the main result of [2], namely that every recursively enumerable set is exponential Diophantine.

The theorem now follows at once from Lemmas 6 and 7.

References

1. Martin Davis, Computability and unsolvability, New York, McGraw-Hill, 1958.
2. Martin Davis, Hilary Putnam, and Julia Robinson, The decision problem for exponential Diophantine equations, Ann. of Math. (2), vol. 74 (1961), pp. 425436.
3. S. C. Kleene, Introduction to metamathematics, New York, Van Nostrand, 1952.
4. W. V. Quine, On decidability and completeness, Synthèse, vol. 7 (1949), pp. 441-446.
5. Julia Robinson, Existential definability in arithmetic, Trans. Amer. Math. Soc., vol. 72 (1952), pp. 437-449.
6. Raymond M. Smullyan, Theory of formal systems, Annals of Mathematics Studies, no. 47, Princeton University Press, 1961.

Yeshiva University
New York, New York

[^0]: ${ }^{2}$ However, we are following [2] rather than [5] in taking variables to have the positive integers (rather than the nonnegative integers) as their range.

