g-CIRCULANT MATRICES OVER A FIELD OF PRIME CHARACTERISTIC¹

BY

J. L. BRENNER

1. Introduction

This article is concerned with circulant matrices (and certain generalizations of them) over a field of prime characteristic.

In previous papers, the roots, vectors, and determinants of circulant matrices and *g*-circulant matrices have been found [1], [2]. A circulant matrix $A = (a_{ij})$ is one in which each row (except the first) is obtained from the preceding row by a cyclic shift:

$$a_{i+1,j} = a_{i,j-g}$$
.

When g is 1, A is a classical (1-) circulant. When g is prime to the order n of the matrix, the theory is a generalization of the classical one. When g, n have common factors, complications can occur.

Let $P = P_n$ be the permutation matrix corresponding to the cyclic permutation $(123\cdots n)$:

$$P = P_n = \begin{bmatrix} 0 & I_{n-1} \\ 1 & 0 \end{bmatrix},$$

where I_{n-1} is the identity matrix of dimension n-1. A classical (1-) circulant is a matrix A of the form $a_{11} I_n + a_{12} P + \cdots + a_{1n} P^{n-1}$. The following lemma is an easy consequence of this definition.

LEMMA 1. A is a 1-circulant if and only if the relation $AP_n = P_n A$ holds.

First proof. For any matrix, $P_n A$ is the matrix obtained by raising the rows of A, and AP_n is the matrix obtained by circulating the columns of A. A necessary and sufficient condition that A be a 1-circulant is that these be equal.

Second proof. If A is a polynomial in P_n , clearly $AP_n = P_n A$. Conversely, if $AP_n = P_n A$, then A is a polynomial in P_n , since the eigenvalues w_i of P_n satisfy det $[w_i^j]_1^n \neq 0$.

LEMMA 2. A necessary and sufficient condition that A be a g-circulant is is that the relation $P_n A = A P_n^g$ hold.

The proof of Lemma 2 is the same as the first proof of Lemma 1. A *g*-circulant is not necessarily a polynomial in P_n .

If A_1 is an invertible g-circulant, and A is an arbitrary g-circulant, the

Received November 4, 1961.

¹ Sponsored by the Mathematics Research Center, U. S. Army, Madison, Wisconsin.

matrix AA_1^{-1} is a 1-circulant. When (g, n) > 1, this statement is vacuous, since there is no invertible g-circulant in this case.

If the underlying field has prime characteristic p and the dimension n is divisible by p, the theory is different from the classical one. The first proof of Lemma 1 remains valid, but the second proof requires modification; it is necessary to exhibit the vectors of the matrix P_n itself.

In this article, the structure of P_n is found, and the eigenvalues, vectors, and determinant of A are obtained as a corollary. This recaptures results of Silva [4]. The (more complicated) structure of a *g*-circulant matrix Aover a field of prime characteristic can also be found from the structure of P_n . The intricacies of the calculation do not seem worth expounding in all detail; representative results and corollaries are given (Theorems 2, 3).

The methods of this article apply also to composite matrices (Kronecker products); this has been pointed out by B. Friedman [3].

2. Circulant matrices over a field of prime characteristic. 1-circulants

When the underlying field K has prime characteristic p, new phenomena arise if the characteristic divides the order of the matrices.

Suppose $n = p^t m$, (m, p) = 1, $q = p^t$. Let the field K be extended (if necessary) so that 1 has m distinct m^{th} roots $r, r^2, \dots, r^m = 1$. The solution of an $n \times n$ matrix $A = (a_{ij})$ for which

$$P_n A = A P_n$$

is obtained as follows.

Let N be the $n \times n$ matrix $[N_1, N_2, \dots, N_m]$, where N_h is the $n \times q$ matrix

$$N_h = egin{bmatrix} 1 & & & \ r^h & 1 & & \ r^{2h} & 2r^h & 1 & \ r^{3h} & 3r^{2h} & 3r^h & 1 \ & \ddots & \ r^{(n-1)h} & \cdots & & \ \end{bmatrix}$$
 ,

the coefficients of the powers of r being the binomial coefficients, and write $D_h = r^h I_q + H_q$, where

$$H_q = \begin{bmatrix} 0 & I_{q-1} \\ 0 & 0 \end{bmatrix}.$$

LEMMA 3. Suppose $n = p^t m = qm$, (m, p) = 1. Then for $1 \leq k < q$, the binomial coefficient C_k^n is divisible by p.

Proof. From elementary number theory, C_k^n is divisible by p exactly

J. L. BRENNER

$$\begin{bmatrix} \frac{n}{p} \end{bmatrix} + \begin{bmatrix} \frac{n}{p^2} \end{bmatrix} + \dots + \begin{bmatrix} \frac{n}{p^t} \end{bmatrix} + \begin{bmatrix} \frac{n}{p^{t+1}} \end{bmatrix} + \dots - \begin{bmatrix} \frac{n-k}{p} \end{bmatrix} - \begin{bmatrix} \frac{n-k}{p^2} \end{bmatrix}$$
$$- \dots - \begin{bmatrix} \frac{k}{p} \end{bmatrix} - \begin{bmatrix} \frac{k}{p^2} \end{bmatrix} - \dots - \begin{bmatrix} \frac{k}{p^{t-1}} \end{bmatrix}$$

times. Since $\left[\frac{n-k}{p^t}\right] < \left[\frac{n}{p^t}\right]$, the lemma follows.

COROLLARY. The matrix equation $PN_h = N_h D_h$ holds.

(This is checked by direct computation, with Lemma 3 providing support for the equality of the last rows of the matrix products PN_h , $N_h D_h$.)

Thus the matrix N transforms P into the classical canonical form

$$N^{-1}PN = D = D_1 \oplus \cdots \oplus D_m$$
.

Therefore $N^{-1}AN$ must have the form

$$N^{-1}AN = A^{(1)} \oplus \cdots \oplus A^{(m)},$$

where

$$A^{(h)} = w_1(h, A) I_q + w_2(h, A) H_q + w_3(h, A) H_q^2 + \cdots,$$

and

(1)
$$w_k(h, A) = \sum_{j=0}^{n-k} a_{1,k+j} r^{jh} C_j^{k+j}, \qquad 1 \leq k \leq q.$$

These facts are summarized in the following theorem.

THEOREM 1. Let $A = (a_{ij})$ be an $n \times n$ circulant matrix, $P_n A = AP_n$, over a field K of prime characteristic $p, n = p^t m, (m, p) = 1, p^t = q$. Let r be a primitive m^{th} root of 1 in a suitable extension field of K.

1. The roots of A are $w_1(h, A)$ as given by (1) $(h = 1, 2, \dots, m)$. Each has algebraic multiplicity $q = p^t$.

2. The geometric multiplicity corresponding to the root $w_1(h, A)$ is l, where $l = l(h) \leq q$ is defined by the requirements

$$w_2(h, A) = \cdots = 0, \quad w_{l+1}(h, A) \neq 0.$$

In particular, l = 1 if $w_2(h, A) \neq 0$, and l = q if

$$w_2(h, A) = \cdots = w_q(h, A) = 0.$$

The vectors which correspond to these roots are obtainable by inspection of the canonical form for A. The results of [4] are clearly corollary to Part 1 of Theorem 1, since

$$\det A = \prod_h \det F_h = \left[\prod_h w_1(h, A)\right]^q$$

The following examples are of interest. The matrix

176

				0]
0	1	-1	1	-1
-1	0	1	-1	1
				-1
-1	1	-1	0	1

has determinant 0, and over a ground field of characteristic 5 has the elementary divisors λ^3 , λ^2 .

If all the zeros in this matrix are replaced by units, the new matrix has the elementary divisor $(\lambda - 1)^5$ over the same ground field.

3. Circulant matrices over a field of prime characteristic. g-circulants

Let $A = (a_{ij})$ be an $n \times n$ matrix over the field K of characteristic p, $n = p^t m$, (m, n) = 1, $q = p^t$. Suppose A is a g-circulant, i.e.,

$$P_n A = A P_n^g, \qquad (g, m) = 1.$$

By using the equivalence relation " \sim " among the residue classes mod m:

$$h_1 \sim h_2 \iff \exists x, g^x h_1 \equiv h_2 \pmod{m},$$

we separate these residue classes mod m into k equivalence classes C_i , with f_1, f_2, \dots, f_k elements

$$C_i \equiv \{gh_i, g^2h_i, \cdots, g^{f_i}h_i \mod m\}, \quad i = 1, 2, \cdots, k.$$

If D_h is the matrix $r^h I_q + H_q$, there is a matrix N which transforms P_n into the canonical form

(2)
$$\tilde{P} = N^{-1}P_n N = D^{(1)} \oplus \cdots \oplus D^{(k)},$$

where

(3)
$$D^{(i)} = D_{gh_i} \oplus D_{g^2h_i} \oplus \cdots \oplus D_J$$
, where $J = g^{f_i}h_i$.

Let \tilde{A} be the matrix $N^{-1}AN$. Then the relation

$$\tilde{P}\tilde{A} = \tilde{A}\tilde{P}^{g}$$

holds. We now use the following lemma.

LEMMA 4. If G, K are square matrices, the matrix equation

$$GX = XK$$

has only the trivial solution X = 0 unless G, K have a common eigenvalue.

This lemma is usually derived as a corollary to a longer theorem. A simple direct inductive proof can be given, the induction being on the dimension of G. Without loss of generality, assume G, K to be in Jordan form (otherwise consider $SGS^{-1}(SXT) = (SXT)T^{-1}KT$). If no eigenvalue

of K is equal to the last eigenvalue of G, the last row of X is zero in the first, second, \cdots , every column. This reduces the dimension of the assertion by one unit, and the induction is complete.

From Lemma 3 it follows that \tilde{A} has the form $\tilde{A} = A^{(1)} \oplus \cdots \oplus A^{(k)}$, conformal with (2), and the form of $A^{(i)}$ will be obtained from the determining condition

$$D^{(i)}A^{(i)} = A^{(i)} [D^{(i)}]^{g},$$

where $D^{(i)}$ is given by (3). A second application of Lemma 4 shows that $A^{(i)}$ must have the form

$$A^{(i)} = \begin{bmatrix} 0 & 0 & \cdots & A_1^{(i)} \\ A_2^{(i)} & 0 & \cdots & 0 \\ 0 & A_3^{(i)} & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & A_{f_i}^{(i)} \end{bmatrix},$$

conformal with $D^{(i)}$, each square submatrix $A_j^{(i)}$ being of dimension q. Moreover, these submatrices must satisfy the equations (indices *i* omitted)

$$D_{gh} A_{1} = A_{1} [D_{gfh}]^{g},$$
$$D_{g^{2}h} A_{2} = A_{2} [D_{gh}]^{g},$$
$$\vdots$$
$$D_{gfh} A_{f} = A_{f} [D_{gf^{-1}h}]^{g}.$$

The most general solution of these equations can be found by use of the binomial formula

$$[D_{h}]^{g} = r^{gh}I_{q} + gr^{h(g-1)}H_{q} + \frac{1}{2}g(g-1)r^{h(g-2)}H_{q}^{2} + \cdots$$

(Note that H_q^{α} has a line of 1's in the α^{th} superdiagonal and 0's elsewhere.)

We shall not carry out the details, except to note the interesting fact that each $A_s^{(i)}$ is upper triangular, and the (u, u) element of $A_s^{(i)}$ is $g^{u-1}r^{e(s)}$ times as great $[e(s) = (u - 1)g^{s-1}h(g - 1)]$ as the (1, 1) element $a_{11}^{(is)}$ of $A_s^{(i)}$ $(u = 2, \dots, f)$.

THEOREM 2. If (g, p) = 1, the matrix $A^{(i)}$ is either invertible or nilpotent. Proof. It is obvious that $[A^{(i)}]^{f_i}$ is (upper triangular, and) either invertible or nilpotent. Theorem 2 follows.

This theorem has interesting corollaries. We mention only

COROLLARY 1. If p = 5, a 3-circulant of dimension $4 \cdot 5^t$ is either invertible or nilpotent.

For 3 is a primitive root mod 4. More generally, we have

178

COROLLARY 2. If g is a primitive root mod $p_1^{\alpha} \pmod{2p_1^{\alpha}}$, a g-circulant of dimension $p_1^{\alpha}p_2^{\beta}$ [dimension $2p_1^{\alpha}p_2^{\beta}$] is either invertible or nilpotent, provided $(g, p_1, p_2) = 1$ [$(g, 2p_1, p_2) = 1$] ($p_1 \neq p_2$ odd primes).

THEOREM 3. The eigenvalues of $A^{(i)}$ are precisely the numbers

$$\rho g^{u-1} a^{(i)}$$
 $(u = 1, \dots, q, g^0 = 1),$

where $a^{(i)}$ is an f_i^{th} root of $\prod_{s=1}^{f_i} a_{11}^{(is)}$, and ρ runs through the f_i^{th} roots of 1.

COROLLARY. If (g, p) = 1, and if all $f_i < p$ (in particular, if m < p), the elementary divisors of A are all simple if A is invertible.

In the contrary case, this need not be true.

The eigenvectors of A can be given explicitly. Since the results are not startling, the work is straightforward, and the details are tedious, they are omitted.

References

- 1. C. M. ABLOW AND J. L. BRENNER, Circulant and composite circulant matrices, Trans. Amer. Math. Soc., to appear.
- 2. J. L. BRENNER, Mahler matrices and the equation $QA = AQ^m$, Duke Math. J., vol. 29 (1962), pp. 13-28.
- 3. B. FRIEDMAN, Eigenvalues of composite matrices, Proc. Cambridge Philos. Soc., vol. 57 (1961), pp. 37-49.
- 4. JOSEPH A. SILVA, A theorem on cyclic matrices, Duke Math. J., vol. 18 (1951), pp. 821-825.

UNIVERSITY OF WISCONSIN MADISON, WISCONSIN STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA