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Introduction. Summary
Let X1 be a simply connected polyhedron (i.e., a simply connected finite

CW-complex). According to Eckmann-Hilton [6]wsee also Brown-Cope-
land [3]--it is homotopy-equivalent to a polyhedron X built up by subcom-
plexes X, X2 X3 ... XN X, where Xr is constructed out of
Xr_l in a very perspicuous way by means of the rTM integer homology group
of X and an element in a homotopy group of Xr_.. Following [6] we call
X {X} a normal polyhedron, and the collection {Xr} of the X a homology
decomposition of X.

It is the purpose of this note to exemplify our opinion that the concept of
the homology decomposition can be used profitably to study homotopy sets
II (X, Y) of the maps of a space X into a space Y.

All considerations rely on Proposition 2.2 which describes the circumstances
under which a map f X --* Y of the normal polyhedra X {X}, Y Yr}
induces a map f X -- Y compatible with f. Proposition 2.2 follows from
Proposition 2.1, which generalizes the Blakers-Massey theorem on relative
homotopy groups [2, p. 198].

Section 3 contains the first example of an application of the homology de-
composition. Proposition 3.3 is a powerful lemma of Thom [10, p. 59],
for which we give a new proof. The idea of our proof is to climb up a homol-
ogy decomposition, using at each step known facts about homotopy groups of
spheres.
From Section 4 on, we restrict our attention to "selfmaps"f X -- X of a

.simply connected polyhedron X. The composition of maps defines in the
homotopy set II (X, X) a multiplication turning II (X, X) into a monoid.
Denote by T (X) the homotopy set of all selfmaps of X which induce the
trivial endomorphism of @ Hk (X; H (X)). It is a multiplicatively closed
subset of II (X, X). Theorem 4.2 states that T (X) is nilpotent. The order
(X) of nilpotency of T (X) is a homotopy invariant of X which, by appeal-

ing to a theorem of Novikov [8], can be shown to assume any given value for
an appropriate X (Proposition 4.5).
An endomorphism of @k H (X; H (X)) induced by a map f X -- Xsatisfies necessarily a certain relation, and such a will be called admissible

(Definition 4.6, Lemma 4.7). The question for which spaces X every ad-
missible endomorphism of @ H (X; H (X)) can be realized by a selfmap of
X is dealt with in Theorem 4.9: For 2-connected X this is the case if and
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only if X is homotopy-equivalent to a wedge of Moore-spaces (polyhedra
with exactly one nonvanishing integer homology group) and

Ext (Hr, Hr+i) 0
for all r.

In Section 5 we consider selfmaps of a suspension 2;X. Its natural comul-
tiplication defines in H (2;X, 2X) a group operation in addition to the mul-
tiplication by composition of maps, and H (2;X, 2;X) is a near-ring (i.e., a.
set with two binary operations coupled by only one law of distributivity;
see e.g. [1]). By using the distributor series of a near-ring (Definition 5.1,.
compare [7]) Theorem 5.3 measures to what extent II (2;X, 2X) fails to be
a ring. It furthermore suggests the introduction of an integer-valued homo-
topy invariant d (X) of X which is equal to one in case II (2;X, 2;X) is a ring
(Definition 5.2).
In the sense of the Eckmann-Hilton duality [4] everything carries over

under considerable simplifications to spaces with a finite number of homotopy
groups.

It is a pleasure to thank P. Olum for his scrutinizing questions and sug-
gestions on the subject of this note. Our thanks are also due to J. C. Moore--
it was a remark of his on the "dual" situation which enabled us to give Theo-
rem 4.2 its present form--, to P. J. Hilton for the example at the end of Sec-
tion 5, and to the referee for the proof of the present version of Proposition
2.1, replacing a much weaker proposition of an earlier draft.

1. Notations. Definitions

(a) All spaces considered are polyhedra and have a basepoint 0 which is
respected by maps f, g,... and their homotopies f g, .... The trivial
map X --. 0 e Y is also denoted by 0. A map f X - Y and its homotopy
class in the homotopy set II (X, Y) will usually not be distinguished. 2;

stands for the suspension operators for spaces, maps, and homotopy sets.
The space obtained by attaching the cone CA over A to X by means of the
map (or class) f is denoted by CA I X.

(b) For Moore-spaces (polyhedra with exactly one nontrivial integer
homology group in dimension r > 1) consult e.g. [9]. We denote them by
K’ (G, r) or simply K’ L’ Their groups G, H, as well as all coefficient.
groups considered will be supposed to be finitely generated. The "homotopy
groups of X with coefficients G" are defined as H (K’ (G, r), X) and are re-
lated to the ordinary homotopy groups r(X) by an exact sequence [5],
"the coefficient formula for homotopy groups". For II (X, K (G, r)), the
cohomotopy groups with coefficients G, and their coefficient formula, see [9].

(c) The inclusion

i X -- X CK’ (G, r) , Xr
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is called an elementary cofibration (with attaching class or map a and pro-
jection X -- X/Xr K’ (G, r 1)) if

(1) Xr is simply connected;
(2) dim Xr --<_ r 1 and H+I(X) 0;
(3) i, Hk(X) ----- Hk(X) for/c =< r.

It follows from (3) that

4,. H+I (X) Hr+ (K’ (G, r + 1) G.

A normal polyhedron X {Xr} is one obtained by a sequence

X -- X - -- X X

of elementary cofibrations. The groups of the cofibers X/X_ are the
integer homology groups of X; if H (X) 0 for some s, we insert a term
X X_ so that we have X/X_ K’ (Hr(X), r) for all r. Denote by
i X -- X the imbedding; i* H (X; G) -- H (X G), G arbitrary, is iso-
morphic for / <_- r and epimorphic for k _-> r + 1. The rTM fundamental
class h e. H (X; Hr(X)) of the normal polyhedron X {Xr} is defined s

h .,-1. *r

where hi is the fundamental class of H (K’ (H(X), r);H(X)), and the
projection Xr-- K(Hr(X), r); for arbitrary G the induced

4)* H (K’ (S (X), r); G) -- H (X G)

is monomorphic. Distinguish X and the r-skeleton X.
2. Compression problems in cofibrations

For X SN the following proposition reduces to Theorem II of [2].

PROPOSITION 2.1. Let X be an N-dimensional polyhedron, and j" A Y
a cofibration with projection b Y ----> Y/A such that

Y is (N r)-connected,

Y/A is r-connected,
N-r<_r.

Then the sequence of homotopy sets

II(X, A) j*) II(X, Y) b,; II(Z, Y/A)

is exact" If b, f 0, then f is compressible into A.

Proof. Replace by a fibration p’E-- Z,, where is the mapping

A proof is also possible by methods developed by I. Namioka in Maps of pairs in
,homotopy theory, Proc. London Math. Soc. (3), vol. 12 (1962), pp. 725-738.



cylinder of , and E the space of all paths in Z which start in

Y= YXOZ.
The fibre F of p consists of the paths in E ending at the basepoint of Z.
Let r" Y/A ---> Z be the imbedding, and a" Y-- E the map defined by
ay- y X I e E; induces a map p’A- F. Consider he homotopy
sequences of the pairs (Y, A) und (E, F)"

(Y) ( Y, A _(A -1(Y) -x( Y, A

1, 1(,), I, , 1(,),
(E) (E,F)_(F) _(E) _(E,F)

In view of (E, F) (Z) and the Blakers-Massey theorem,
is isomorphic for lc N and epimorphic for N + 1. By the five-lemma.
p, is epimorphic on (A) and isomorphic in the lower dimensions. Hence
the map p is N-connected"

(A) p* r(F) (p) _(A) p* v_(F) .
Replace p by the inclusion of A into the mapping cylinder Z to infer that.
under these circumstances any map f" X F can be factored up to homo-
topy through p if dim X N"

This means that p. is epimorphic on II (X, A)-

H(X, A) j* II(X, Y) --* II(X, Y/A)

H(X,F) H(X,E) H(X,Z).

The lower line of this diagram is exact; a, and r, are one-to-one correspond-
ences, and p, is epimorphic. Therefore the upper line is also exact.
We now apply Proposition 2.1 to maps of normal polyhedra.

PROPOSITION 2.2. Let f’X----> Y be a map of the normal polyhedra
X {Xr}, Y Yr}, and let hr+l e Hr+l(Y; Hr+I(Y)) be the (r + 1) 8t

fundamental class of Y {Yr} (see Section 1 (c)). There exists a map
fr Xr -- Yr compatible with f, fir jr fr
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x..f,y

if and only if

*rJn’*’*’+ =Oe H’+ (Xr Hr+ (Y)) Ext (H (X), Hr+ (Y)).

Proof. (a) Suppose there is map f with fi. jf. Write

K’Lr+, (Hr+l (Y) r q- 1)

and pass to cohomology with H+I (Y) as coefficients:

f,Hr+l(x) .Hr+i( Y)

., Hr+l*r Hr+ Yr+l) (L,+I).

r,

Hr+lxr)( f .Hr+(yr)

By definition h+ ..-_..+1, h[+3+n where denotes the fundamental class
of Hr+l (L+). Together with "*"*’*-* *’**Ja+ fa,+ we hve

if*K+ if’:g:h[+ fj+, h[+ 0

because of rjr,r+ O.
(b) By the cellular approximation theorem there exists a map

g X + Y+, with fi jr+, g

X f *Y

jr+l

i Yr+l
r )L:+

X./

By hypothesis ..j n 0. Therefore, with hi+1 as in (a), we have

,h+, ......--.-.+g.k. *.J 3.+lw.nl 0.

Because any map/ Xr --+ L’r+, is homotopic to zero if and only if lc*h[+ 0,
we conclude . g 0. By Proposition 2.1 it follows from gr 0 that gr
is compressible into Y, i.e., that there exists a map fr" Xr---+ Y,. with
g,. j,.,,.+,f, and the proof of Proposition 2.2 is complete.
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COROLLARY 2.3. Let f X---> Y be a map of the normal polyhedra
X Xr}, Y Yr}. Suppose that f induces the trivial homomorphism on
(R)k H (Y; H(Y)). Then there exist maps f’Xr ---+ Y and f:"
such that

for all elementary cofibrations i,_, of X and j_, of Y"

f-Xr_l. Y_.. ,h+Proof. Since , 0 for 11 r, there re, by Proposition 2.2, maps
f," X + Y for all r. By carrying out the compressions from the cofibra-
tion t the "top" on downwards, the map f_ will be compatible with f.
In view of f ir--, jr-,f- 0 nd the homotopy extension property
of i_l., there exists map f: with f: r f.

3. A lemma of Thom

The following Proposition 3.3 is a lemma of Thom [10, p. 59] for which
we give a proof by induction on homology decompositions. Since the lemma
deals with the homology homomorphisms induced by maps, we first consider
Lemmata 3.1 and 3.2 which follow directly from the coefficient formulae for
cohomology and homotopy groups (for the latter see [5]). Note that any
induced homomorphism is always an element in an abelian group Hom ).

LEMMA 3.1. Let f X--+ Y be a map. Suppose f. H(ZX) of finite
order for tc r 1, r. Then f* H (Y; G) is also of finite order for all coef-
ficients G.

LEMMA 3.2. Consider a map f of Moore-spaces, f K’ (G, r) -+ K’ (H, r).
Then we have

(a) f* H (K’ (H, r); H) =-- 0 if and only if f. H (K’ (G, r) =- O.
(b) If f. H,(K’(G, r)) =-O, then there exists an integer m such that

mf O.
PROPOSITION 3.3 (Thom). Let X, Y be polyhedra, X of dimension
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<= 2n 2 and Y at least (n 1)-connected. Suppose f, H, (X) of finite
order. Then f itself is of finite order in the group

1I (X, Y) --- II (Y,X, ZY) - ....
Proof. (a) It is no restriction to assume Y simply connected and

X E2X’. Let {Xr/ be the suspension of a homology decomposition of ZX’,
and {Yr} any decomposition of Y. All Xr are suspensions, and all

" Xr -- K’ (Hr (X), r)

are suspended maps. If for f, g’X-+ Y there exist maps

f.,gr" Xr--+ Y,.,

then this is also the case for f + g, and we can take (f + g)r f + g.
(b) Let j Yr-i --+ Y with projection Yr -- L’, be part of {Y}, and

K’8 one of the cofibers of {X}. Then we have

(1) The sequence H(K, Y-I) 3_ H(K’8, Y) *; H(K, L’r) is exact.
(2) The group H (K’8, Yr) is finite for s > r.

(1) follows from the Blakers-Massey theorem in [2, p. 198]; (2) is an easy
consequence of (1), the fact that r(Sm) is finite for r =< 2m 2, and the
coefficient formulae for homotopy and cohomotopy groups.

(c) Let f’,]H, (X) be of finite order. By Lemma 3.1 there exists an in-
teger q such that (qf’)* f* 0 on Hk (Y;Hk (Y)) for all . By Corollary
2.3 there are maps f Xr -+ Yr compatible with each other for all r.
To anchor the induction let X be a Moore-space, X K’ (G, s). There

are two possibilities (1), (2) for the corresponding Y"
(1) Y K’(H, s). We know that f* IH8(K’(H, s);H) 0. Apply

Lemma 3.2 (a) and (b) to conclude that mf O.
(2) Y, has several homology groups (write b ,, j j8_1,,)"

Y

K’(G, s)(f Y,
\

g\\,
fsl

L:

In view of (f,)*[H’(L’*;H*(Y)) 0 and Lemma 3.2(a) and (b) there is
an integer m such that m(bfs) m(b,f,) b, mf, 0. By remark (1)
of (b) we infer mf, j, g, g 1I (K’ (G, s), Y,_), and this element g is of
finite order by remark (2) of (b). Thus mf8 j, g and, consequently,
mf are also of finite order.
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(d) For the induction step we have to prove" Suppose fr’Xr Yr
* Hr+lof finite order, and, of course, f+ll (Yr+l, H+ (Y)) 0. Then f+

is also of finite order (write , i.+ i, etc.)"

We can assume f 0. Therefore f+ g (see diagram) because of the
homotopy extension property of i and the relation fr+ i jf O. Since

* is monomorphic on the (r + 1)-dimensional cohomology, we conclude
(bg)*lHr+l(L’r+l Hr+(Y)) -O, and by Lemma 3.2 also

m(g) m(.g) b.(mg) O.

Again by (b) we have mg j. h with h e II (K’+I, Y) of finite order. Since
is a suspended map, * is homomorphic. Therefore mf+ * (mg)

$.

3. h, which means that mf+ is of finite order as the homomorphic image of
h, and the proof of Proposition 3.3 is complete.

4. Selfmaps of polyhedra. The invariant t(X)
The composition of maps defines in II (X, X) the structure of a monoid with

identity and zero element. Consider the cohomology functor * which
maps the monoid II (X, X) homomorphically into the multiplicative struc-
ture of the ring of endomorphisms of @kHk(X; Hk), Hk H(X). The
set *-1(0) of all "cohomologically trivial" selfmaps is multiplicatively
closed in II (X, X) and will be denoted by T (X), T (X) c II (X, X). In
the first part of this section we study T (X) and define an integer-valued
homotopy invariant t(X) of X; in the second part (Definition 4.6 et seq.)
we discuss the case when * is epimorphic.
The following proposition prepares for Theorem 4.2.

PROPOSITION 4.1. Consider a Moore-space K’ (G, r). If G has no 2-tor-
sion, then T (K (G, n) 0. Otherwise T (K’ (G, r) is nilpotent of order <__ 2.

Proof. (a) Write K’= K’(G, r), G Hr(K’). By Lemma 3.2(a)
we know that f e T (K’) if and only if f, IG =- O. Consider the coefficient
formula for homotopy groups in (b) below. Since r+(K’)--G (R) Z,
obviously Ext (G, G (R) Z) 0 if G has no 2-torsion. Therefore, if G has
no 2-torsion, any f" K -- K’ with f, IG 0 is homotopic to zero.

(b) Let G be arbitrary and f, IG g,[G =- O. The coefficient for-
mula is natural with respect to covariant maps"
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0 Ext(G, rr+l(K’)) a II(K’, K’) Hom(G, G) --, 0

0 -+ Ext (G, r+l(K’) a H(K’, K’) Hom(G, G) -+ 0,

where fi are induced by f0 k(K’)-- k(K’). By hypothesis tg 0.
Therefore g agl and f. g f. agl af g In (c) below, we show that
f 0, and the proof of Proposition 4.1 will be complete.

(c) To compute r+l(K’), inspect, according to Peterson [9], the first
derived homotopy exact couple of Massey (see Fig. 1 in [9]) which is natural
with respect to maps f:

r+(K’) --.F H(K’;Z,.) G (R) Z

rr+(K’), --. F ,H(K’;Z,)"oG (R)

In view of f. G 0 we have f** G (R) Z2 =- O.
f Ext (G, +(K’)) 0 as was to be proved.

Therefore f0 0, and

THEOREM 4.2. Let X be a simply connected polyhedron with q nontrivial
homology groups, ql of which have 2-torsion. Then any product of q + q self-

H (X H (X)) vanishes.maps which induce the trivial endomorphism of @
In other words, T (X) is nilpotent of order <= q ql.

Proof. Apply Proposition 4.1 if X K’ (G, r). Suppose for induction
that for any Y with s homology groups T (Y) is nilpotent of order t. Con-
sider a homology decomposition {Xr} of an X with s - 1 homology groups,
and let p be such that Xv has s homology groups.
elements of T (X), and recall Corollary 2.3"

f’ g’K’r K:

Let f, g, h ht be

Kr,,

By hypothesis II= h induces on Xp the trivial map.

X g X I-Ih )X

>Xp, )X X.
Therefore II h. he.



130 c.R. CURSEL

If Hr(X) has 2-torsion, then g’f’, 0 by Proposition 4.1, and

(II o;
in the opposite case g’N f’. 0, and already (II hj)g o. Thus T (X)
is nilpotent of order -< 2 or -< -b 1 according to the presence or ab-
sence of 2-torsion in Hr (X).

COROLLARY 4.3. Let X be a simply connected polyhedron with q nontrivial
homology groups, ql of which have 2-torsion. Denote by To(X) II (X, X)
the set of all selfmaps of X which induce the trivial endomorphism of H. (X).
Then To(X) is nilpotent of order <= 2q -b 2ql.

Proof. Write out three times the coefficient formula for cohomology
groups to verify that [To (X) ]2 T (X). Therefore [To (X) ]2(q+ql) 0.

Examples of applications of Theorem 4.2. Let X be a simply connected
polyhedron.

(1) The endomorphism of rr(X) induced by a selfmap f such that
f. H. (X) 0 is nilpotent for all r.

(2) An idempotent element f e II (X, X), f2 f, cannot satisfy the con-
dition f. H. (X) =-- 0 unless it is equal to zero.

(3) If f e II (X, X) suspends trivially, 2;f 0, then f is nilpotent (con-
sider the induced homomorphisms of II (X, X) and II (2:X, 2X)).
Theorem 4.2 suggests Definition 4.4 which in its most general form reads as

follows"

DEFINITION 4.4. Let X be a topological space, and H a homology theory.
Define t(H; X) to be the order of nilpotency of the multiplicatively closed
subset T (H; X) of II (X, X) consisting of all maps which induce the trivial

H(X H(X)).endomorphism of @

Considering the integer homology one defines analogously t0(H; X). For
polyhedra (H; X), to (H; X) depend only on the homotopy type of X. In
this case we write (H; X) (X), to (H; X) to (X) and, as we have already
done, T (H; X) T (X), To (H; X) To (X). To determine the range of
values of (X) considered as a function of X, we invoke the following theorem
of Novikov.

THEOREM OF NOVIKOV [8]. For any given integer r > 0 there exist integers
k > k2 > > k and maps f of spheres, f S S+, such that the com-
position

is not homotopic to zero.

PROPOSITION 4.5. 1. For any given integer r 0 there exists a simply
connected polyhedron X with r nontrivial homology groups and (X) r.
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2. For any given integer r > 0 there exists a simply connected polyhedron X
with r nontrivial homology groups and t(X) 1.

Proof. 1. Consider X S1 v v Sr and f:X--X defined by
f S8 f, S8 -- Sitshi, the/c and f being the integers and maps of Novi-
kov’s theorem. Obviously f e To(X). Let i: S1 - X and p X--. Skr

be the injection of the first and the projection onto the last factor of the
wedge X. Since pff’’" fi pfr-li fr-lfr-2 f is not homotopic to
zero, fr-1 is not trivial either. This means to(X) >-_ r. Because all homol-
ogy groups of X are infinite cyclic, we have to(X) t(X). By Theorem
4.1, (X) _-< r. Therefore (X) r.

2. Let M(r) be the complex projective space of r complex dimensions.
Since dim M() 2r and vi(M()) 0 for i < 2 and 3 < i < 2r, a map
f M() -- M() is homotopic to zero if and only if its induced homomorphism
on H.(M(r)) is trivial. This means that f, 0 implies f 0. Hence
to(M(r)) 1. But again to(M(,)) t(M(r)) because all homology groups of
M(r) are infinite cyclic.
We now turn to the question which endomorphisms of @k H (X; H),

HA HA(X), can be realized by a selfmap f:X X.
Consider f* induced by f X -- X:

0 -- Ext(H_l, Hr) a Hr(X; H). Hom(H, Hr) -- 0

0 -- Ext(H_t, H) a Hr(X; H) Hom(H, Hr) --> 0,

where f is induced by f, H,. The natural ring structure of Hom (H, H)
defines a ring structure in H (X; Hr)/a Ext (Hr-1, Hr), and f* induces an
endomorphism f of the additive group, (or, as we shall say, an additive
endomorphism) of the ring H (X; Hr)/a Ext (Hr_, H). Since f is essen-
tially f2 induced by f.]H, we have f(ab) aft(b) in the ring

H (X; H)/a Ext (Hr_, Hr).

We summarize these considerations in Definition 4.6 and Lemma 4.7.

DEFINITION 4.6. The endomorphism ) @ of (R)H(X; H) is culled
admissible if induces for all /c an additive endomorphism of the ring
HA (X; Hk)/a Ext(H_l, H) such that (ab) a (b).
LEMMA 4.7. The endomorphism f* of @ H(X; H) induced by f X --> X

is admissible in the sense of Definition 4.6.

To study the problem under which circumstances every admissible endo-
morphism of @H (X; HA) can be realized by a selfmap, we first have to
consider Proposition 4.8.

PROPOSITION 4.8. Let X be a simply connected polyhedron. Consider the
following admissible endomorphism @ of @ H (X; H)
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(r) Id for k <- r,

0 for
Suppose that (r) can be realized by a map f’X-- X, ()= f*. Then
Ext(Hr, Hr+I) O. If furthermore X is 2-connected, then in any homology
decomposition Xn} of X the rth attaching map Ol K’ (H+I r) -- X vanishes.

Proof. (a) Consider a homology decomposition {Xd of X. By Proposi-
tion 2.2 and the homotopy extension property of i ir,r+, there exist
maps fr, f+,, f’ compatible with each other (write Cr+,, K,+I
K’(H+ r + 1))"

K,.+I K.+l

X+ .L+ X+

X fr)xr.
It follows from the coefficient formula for cohomology groups and the fact
that an epimorphic endomorphism of a finitely generated group is isomorphic
that f. is an automorphism of Hk for k =< r. Therefore fr is a homotopy
equivalence. Consider on the other hand cohomology with H+I as coeffi-
cients"

f* 0 Hr+I(x)

Hr+’(Xr).
Since i* is epimorphic and f* 0, we have fr* 0. But f was seen to be
an equivalence. Therefore Ur+(Xr)--Ext(Hr, Hr+) O.

(b) For the map f’’ K’.+, -+ K’r+i induced by fr+ and f (see diagram
of (a)) we have f’* Hr+ (K+, Hr+) O. Therefore f’f’ 0 by Proposi-
tion 4.1. This implies f+, fr+, f’f’ O. If X is 2-connected, it follows
from Proposition 2.1 that f+if+l is compressible into X, fi’+,fr+i ig"

X+, f+l f+l, X,+l

K’(Hr+ r) Olr fr f>X X.
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In view of ifrfr fr+lf+l i igi, we have i,g, i, i,(ff), for the
homology groups; i, is isomorphic because i is an elementary cofibration,
and (f fr), is isomorphic because fr is a homotopy equivalence of Xr. There-
fore gi’X----> X is also an equivalence. On the other hand, gia 0
because g maps X+I CK’ (H+, r) , X into X. Therefore ar 0,
and the proof of Proposition 4.8 is complete.

THEOREM zt.9. 1. Let X be homotopy-equivalent to a wedge of Moore-
spaces. Suppose Ext(H, H+) 0 for all r, H H(X). Then every
admissible endomorphism (see Lemma 4.7) of k Hk(X; H) can. be realized by
a selfmap f X -- X.

2. Let X be an m-connected polyhedron, m >= 1, with the property that every
admissible endomorphism of @ H (X; H) can be realized by a selfmap
f X ---, X. Then Ext (H, Hr+) 0 for all r. Furthermore,

(a) If m >__ 2, then X is homotopy-equivalent to a wedge of Moore-spaces.
(b) If m 1, then all attaching maps of any homology decomposition of X

suspend trivially (i.e., X is homotopy-equivalent to a wedge of Moore-spaces).

Proof. 1. In view of Ext (Hr, Hr+) 0 for all r, it suffices to prove the
following statement (the application of which to all Moore-spaces of the
wedge X will prove part 1 of Theorem 4.9) Every admissible automorphism

of H (K’ (G, r) G) can be realized by a selfmap f K’ (G, r) - K’ (G, r).
Let :Hr(K’(G, r); G)-- H(K’(G, r); G) be admissible. Define

I,’ :Hom (G, G) --+ Hom (G, G) by ’ q-l:

0 --+ Hr(K’(G, r); G) Hom(G, G) - 0

0 ---> Hr(K’(G, r); G) Hom(G, G) --+ 0.

Since is admissible, so is ’:’ (ab) a’ (b); in particular, ’ (a)
a’(Id) for all aeHom(G, G). Realize q’(Id) :G--G by a map

f K’ (G, r) -- K’ (G, r)

with the id of the coefficient formul for homotopy groups. Obviously

f* , nd prt 1 of Theorem 4.9 is proved.
2(a). By hypothesis the dmissible endomorphisms (r) of Proposition

4.8 cn be realized by mps for ll r. It follows from the sme Proposition
4.8 that Ext(Hr, H+I) 0, nd that ll ttching mps of ny homology
decomposition of X vnish provided X is 2-connected.

2(b). Identify (R)Hk(X; H(X) (R) H(ZX; H(X)) H*, and
denote by Hom* (H*, H*) the subgroup of admissible endomorphisms of H*.



134 c.R. CURJEL

The meaning of 5C*, 3 in the following commutative diagram is obvious:

H(X, X) I(X, ZX)

Hom*(H*, H* ).

If 3C* is epimorphic, so is 34’. Apply 2 (a) to 2:X to conclude that 2:X is
homotopy-equivalent to a wedge of Moore-spaces, and the proof of Theorem
4.9 is complete.

5. Selfmaps of suspensions. The invariant d(X)

The natural comultiplication of 2;X defines in 11 (2;X, 2:X) a group operation
which will be written as addition though the group II (2X, 2X) + may be
nonabelian. The addition is connected with the monoid-multiplication by
only one law of distributivity in general: f (a q- b) fa q- lb. It is customary
to call a set P with two binary operations q- and (called addition and
multiplication) a near-ring if (1) (P, q-) is a group, (2) (P, .) is a monoid,
and (3) multiplication is left distributive with respect to addition (for near-
rings see e.g. [1]). Since the composition of maps is associative,
is an associative near-ring with an identity. Call g e 11 (2X, 2;X) distributive
if (a -ff b)g ag q- bg for all a, b; e.g. any suspended map g 2g’ is dis-
tributive. If 2 :II (X, X) 11 (2:X, 2:X) is epimorphic for some reason,
then II (2:X, 2:X) is a ring.
To measure the deviation of II (2;X, 2X) from being a ring we use the fol-

lowing definition of the distributor series D (P) of a near-ring P. It is
slightly different from that given in [7].

DEFINITION 5.1. Let P be a near-ring.
(1) Define D(P) P.
(2) Call [a, b, f] a q- b)f bf af with a, b, f e P a 1-distributor of P,

and denote the subgroup of P+ generated by all 1-distributors by D (P).
(3) D (P), n >_- 2, is defined as the subgroup of P+ generated by all

elements of the form [a, b, f] with f e P and a, b e D-1 (P). The generators
of D (P) are called n-distributors of P.

It is obvious that D+ (P) 0 for ]c > 0 if D (P) 0. Thus it makes
sense to writed(P) nifD-I(P) # 0, D(P) 0suchthatd(P) 1
if P is a ring. If D (P) # 0 for all/c, we write d (P) . This obviously
suggests the following definition.

DEFINITION 5.2. Let X be topological
d (II (2:X, 2:X)) the order of distributivity of X.

space. Call d(X)
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The integer d (X) is an invariant of the homotopy type of X but not of ZX
in general. If e.g. X is an (n- 1)-connected polyhedron of dimension
__< 2n- 1, thend(X) 1.

THEOREM 5.3.
homology groups.
vanish).

Let X be a simply connected polyhedron with n nontrivial
Then d(X) <- n (i.e., all n-distributors of H(2X, 2X)

Proof. (a) Write 2;X Y. Consider a homology decomposition {Yr}
of Y obtained by suspending one of X. By induction we shall prove in (b),
(c) below the following statement which obviously includes Theorem 5.3:
Let Yr have s nontrivial homology groups, and let a(8-1), b(8-1) be two (s 1)-
distributors of II (Y, Y). Then for any f Y - Y we have

[a(-1), b(-1), f] =-- (a(8-) -t- b(-l))f- b(’-l)f- a(8-1) 0.

(b) Let s 1, i.e., Y is a Moore-space K’; a, b e II (Y, Y).

y_:a,b )y

In all possible cases considered 2 II (-IK’, X) --+ II (K’, Y), Y 2X,
is epimorphic. Therefore f" K Y is a suspended map. Consequently
[a, b, f] O.

(c) We assume the theorem for s q. If a(q), b(q) are q-distributors of
H (Y, Y) and f Yr -- Y is any map, we have to prove that [a(q), b(q), f] 0
if Yr has q + 1 homology groups"

a(q) b(q)y

By definition a() [a, a, f’], where a are (q 1)-distributors of II (Y, Y)
and f’’ Y -- Y is any map.

Let Yt, r, have q nontrivil homology groups. Since i" Yt -’-> Y is
a suspended map, we hve

a(q)i [a a. f’]i [a a. f’i]

By induction hypothesis, [al, a, f’i] O., with c a(), b()"
Therefore we can find maps
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Y/Yt

a(q) b(q)
YY

Yr Yt
Now use the fact that and Cf are suspended maps"

(a(q) -F b(q))f (de -F ))f ( + ))f ( + )
f + f a(q)f + bq)f,

which means [a(q) b(q) f] 0
Example. The following example of a space X with three nontrivial

homology groups and d (X) 3 is due to P. J. Hilton.
Take

x Vt= 
Consider the identity maps i S S, the Hopf map y + S, the

S Sgenerator a of m(&). Then [i, i, ] 0, [i, i, ]
0, [,,a] 0. Therefore d (X) 3. Butd(X) 3byasimple

direct argument. Hence d(X) 3.
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