A NOTE ON ABSTRACT (M)-SPACES

BY

ANTHONY L. PERESSINI

The following result is a consequence of the theorem that is proved in this note: Every Banach lattice with a strong order unit can be renormed so that the resulting space is an abstract (M)-space with a unit element. As will be seen from the proof, this rather unexpected result is a simple consequence of several known theorems to be found in various places in [2], [3], and [4].

A locally convex lattice $E(\mathfrak{T})$ is a vector lattice E over the real field equipped with a Hausdorff locally convex topology \mathfrak{T} which has a generating family $\{p_{\alpha}\}_{\alpha \in A}$ of semi-norms satisfying

(1) If $|x| \leq |y|$, then $p_{\alpha}(x) \leq p_{\alpha}(y)$ for all $\alpha \in A$.

A real vector lattice which is a Banach space whose norm satisfies (1) is called a *Banach lattice*. An *abstract* (M)-space is a Banach lattice whose norm also satisfies¹

(2) If
$$x \ge \theta$$
, $y \ge \theta$, then $|| \sup (x, y) || = \max \{ || x ||, || y || \}$.

A subset H of the positive cone $K = \{x \in E : x \ge \theta\}$ in a vector lattice E is an exhausting subset of K if for each $x \in K$ there are an $h \in H$ and a positive number λ such that $x \le \lambda h$. An element $e \in K$ is called a strong order unit if $\{e\}$ is an exhausting subset of K. An element $u \in K$ of a Banach lattice E is called a unit element if ||u|| = 1 and $||x|| \le 1$ implies that $x \le u$. More information as well as further references concerning all of the notions defined above, with the exception of that of (M)-space, can be found in [2] and [3]; an account of the basic theory of (M)-spaces is given, for example, in [1].

The properties of the order topology \mathfrak{T}_0 , introduced independently by Namioka² [2] and Schaefer [3], will play a central role in the considerations that follow. \mathfrak{T}_0 can be defined as the finest locally convex topology on the vector lattice E for which each order interval

$$[-x, x] = \{z \in E \colon -x \leq z \leq x\} \qquad (x \in K)$$

is a topologically bounded set. Thus a neighborhood basis of the zero element θ is provided by the class of all convex circled sets that absorb each order interval in E. If $E(\mathfrak{T})$ is a locally convex lattice, and if $\{p_{\alpha}\}_{\alpha\in A}$ is a generating system of semi-norms for \mathfrak{T} satisfying (1), then each p_{α} is

Received October 13, 1961.

¹ θ denotes the additive identity in E.

² Namioka calls \mathfrak{T}_0 the "order bound topology \mathfrak{T}_b ".

clearly bounded on each order bounded set; hence \mathfrak{T}_0 is finer than \mathfrak{T} on E. The following result, showing that \mathfrak{T}_0 actually coincides with the given topology on a large class of locally convex lattices, appears in the unpublished notes [4] but does not seem to be a part of the available literature.

LEMMA. If $E(\mathfrak{T})$ is a complete metrizable locally convex lattice, then $\mathfrak{T} = \mathfrak{T}_0$.

Proof. We have already noted that \mathfrak{T}_0 is finer than \mathfrak{T} . On the other hand, [2, 5.5 Corollary] shows that if $E(\mathfrak{T})$ is a complete metrizable locally convex lattice, then every positive linear form on $E(\mathfrak{T})$ is continuous. Consequently the topological dual E' of $E(\mathfrak{T})$ is contained in $E^+ = K^* - K^*$ (where K^* denotes the cone of positive linear forms on E). The opposite inclusion follows from [3, (1.3)]; hence $E' = E^+$. Since $E(\mathfrak{T}_0)$ also has E^+ as its topological dual, \mathfrak{T} and \mathfrak{T}_0 must both coincide with the Mackey topology $\tau(E, E^+)$, E being bornological for \mathfrak{T}_0 and metrizable for \mathfrak{T} (see [2, 4.10]).

We shall now prove our main result:

THEOREM. If $E(\mathfrak{T})$ is a metrizable complete locally convex lattice, then $E(\mathfrak{T})$ is the inductive limit of a family of linear subspaces that are abstract (M)-spaces with unit elements. If, in addition, E contains a strong order unit, then \mathfrak{T} can be generated by a norm for which $E(\mathfrak{T})$ is an (M)-space with unit element.

Proof. By the lemma preceding the theorem, the given topology on E coincides with the order topology \mathfrak{T}_0 . Suppose that H is an exhausting subset of K, and form the subspace E_h = Linear Hull [-h, h] for each $h \in H$. E_h is a lattice ideal in E which is archimedean since the cone in E is closed. Thus the Minkowski functional p_h of [-h, h] is a norm on E_h which generates the order topology \mathfrak{T}_0 on E_h (see [3, 4.1]). Moreover p_h satisfies (2) for each $h \in H$. For if $x, y \in K \cap E_h = K_h$, then it is clear that

$$\max\{p_h(x), p_h(y)\} \leq p_h(\sup(x, y)).$$

On the other hand, $x \leq p_h(x)h$, $y \leq p_h(y)h$ since K_h is closed, so that

$$\sup(x, y) \leq \max\{p_h(x), p_h(y)\}h.$$

Therefore

$$p_h(\sup(x, y)) \leq \max\{p_h(x), p_h(y)\}$$

which completes the verification of (2) for p_h . It is clear that h is a unit element in E_h . The first assertion of the theorem now follows from the fact that \mathfrak{T}_0 (and hence \mathfrak{T}) has been shown to be the inductive limit topology with respect to the family of subspaces $\{E_h(\mathfrak{T}_0)\}_{h\in H}$ (see [3, 4.4]). If Econtains a strong order unit e, then $E_e = E$, so that E equipped with the norm p_e is an (M)-space with unit element e.

References

- 1. M. M. DAY, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, n.F. Heft 21, Berlin, Springer, 1958.
- 2. I. NAMIOKA, Partially ordered linear topological spaces, Mem. Amer. Math. Soc., no. 24, 1957.
- 3. H. H. SCHAEFER, Halbgeordnete lokalkonvexe Vektorräume, Math. Ann., vol. 135 (1958), pp. 115-141.
- 4. ——, Locally convex spaces, mimeographed notes, Washington State University, 1960.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS