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Introduction
Let I’ be the 2 X 2 modular group. In a recent article [7] the notion of

the type of a subgroup A of r was introduced. If the exponents of

(1011) (11
modulo A are r and s respectively, then A is said to be of type (r, s). It is
trivial to verify that if A is of finite index in I’, then rs O. In fact if G is
any group and H a subgroup of finite index i, then there is an integer e > 0
such that g e H for all g e G, since the i + 1 elements 1, g, g of G can-
not all be distinct modulo H.
Thus if A is of finite index in F, then A Fm, the fully invariant subgroup

of Y generated by the mth powers of the elements of F, for some positive
integer m. An obvious question to ask is whether
if it contains such a subgroup. In this connection see [3], where certain
necessary and sufficient conditions are given for this to occur. It is clearly
sufficient to consider only A Fm. It turns out that the answer to this
question is in the negative, but the proof requires the recent results of Novikov
[9] on the Burnside problem.
The purpose of this paper is to elucidate the structure of the groups F,

and incidentally to characterize Fp, the commutator subgroup of I’, by the
relationship I" I’ n 1". This has a pleasing similarity to the formula
r r"r. In addition certain related questions will be considered.
The problem is similar to the Burnside problem, the difference being that

the modular group I’ is not a free group, but is instead the free product of a
cyclic group of order 2 and a cyclic group of order 3.

The groups I’
The modular group is generated by the matrices 4, !7, where

(10_1)(I) 0 1

with defining relationships -I, where I is the identity matrix.
If is ny element of nd is identified with -, the group so obtained
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(2)

(3)

It is also true that

(which is modulo its center {I, I}) is the modular group r, which may
be regarded as the group generated by the symbols x, y with defining relation-
ships x= y 1, and we find it convenient to take this interpretation.
We shall write {Xl, x., for the group generated by xl, x., .-.. Thus

F {x,y}, x y 1.

The fully invariant subgroups r of r are then defined by

r {Xl X2

where x, x, are the elements of F. It is clear that

(r)- r.
(4) Fmr F(’ ),
where (m, n) is the greatest common divisor of m and n. To prove (4) we
notice first that the product is well defined since the groups r are normal
subgroups of r. We have r(’ ) r, r(m’ ) r (by (2)), so that
F(’ ) FF. Also let z be any element of F. Determine integers m, n
so that m m + n n (m, n). Then z’ +"’eD z en, zi er r
z(, ) r rr (m, )er ". This implies that rr" r(’"), and so r
completing the proof of (4).

In particular

() rr r.
Wc first work out the structure of r and r.
EOaE 1. The group r is the free product of two cyclic groups of order

3, and
(r. r) 2, r r + xr, r {y, xyx}.

The elements of r may be charterized by the requirement that the sum of the
exponents of x be divisible by 2.

EOaE 2. The group r is the free product of three cyclic groups of order
2, and

(r.r) 3, r r + yr + yr, r {x, yxy,yxy}.

The elements of r may be characrized by the requirement that the sum of the
exponents of y be divisible by 3.

Proof of Theorem 1. Set H {y, xyx}. Then, as is easily verified, H is a
normal subgroup of F contained in F, and the elements of H satisfy the re-
quirements of Theorem 1; that is, the sum of the exponents of x is even.
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Let z be any element of I’. Then we can write

(6) cnx cn.z yClxyC2x...y y

where the c’s are integers which may be 0. Thus

z-= yCl(xyx)2y3 (xyx)"yn+l for n even,

z y(xyx)Cy3 yn(xyx)C’+x for n odd.

Hence z e H or zx H. Since x is not in H, this implies that ]Y H - Hx
H A- xH. Now F r H and (r’H) 2, which implies that (r" r2) 1
or 2. But F F (x is not in l2) and so (1’F2) 2. ThusF H. It
is also clear that H is the free product of two cyclic groups of order 3 since
the defining relations for H are y (xyx) 1. The proof of Theorem 1
is complete.

Proof of Theorem 2. Set K {x, yxy, y2xy}. Then K is a normal sub-
group of 1 contained in 1, and the elements of K satisfy the requirements of
Theorem 2; that is, the sum of the exponents of y is a multiple of 3. Let
w be any word of the form yxyx y’x. We have yCx yxy .y-,
so that

Wn yCxy2Cwn-1,
Clx^ 2Clwhere w_ y2-x y’x. But y y x, yxy or y2xy. This implies

by induction on n that w-- ]cyc, where 1 e K and co is an integer. Hence
for z as given by (6) we have that z Wn y+= ky where c is an integer.
Since neither y nor y2 belongs to K, this implies that

KK W yK-4-y
Now F la K and (F’K) 3, which implies that (F" 1a) 1 or 3.

Butl rs 1a(yisnotinr),andso (F’r) 3. Thusr K.
To prove that K is the free product of three cyclic groups of order 2, we

need only show that no generator belongs to the group generated by the
other two, so that K has defining relations x (yxy2) (y 1.
This is easy to verify since the generators are all of period 2. Thus setting
yxy z, the elements of Ix, z} are of the form (xz)
and that none of these can equal y xy may be seen from the matrix repre-
sentation of x and y given in (1). This completes the proof of Theorem 2.
For the case when m is not divisible by 6, Theorems 1 and 2 determine

F completely. In fact we have

THEOREM 3. The groups ]? satisfy

r =r, (.% 6) =,
(7) 1 P, (m, 3) 1,

Fa Fa, (m, 2) 1.

Proof. When (m, 6) 1, F contains both x and y since x x", y y+’,
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so that I’m F. Suppose that (m, 3) 1 Then y y+/-2m xyx -.m
xyx)

SO that r r. Since inaddition r rTM (by (2)),wehavethatr= rTM.
Finally suppose that (m, 2) 1. Then x xTM, yxy yxy), y%y
(yy), so that F F. Since in addition r r (by (2)), we have
that F F. The proof of the theorem is complete.
We also require the structure of F’. This is well known, and we have

LEMMA 1. The commutator subgroup F’ of F is a free group of rank 2, and

(8) (r.r’) 6, r _0 (x)r’, r’ {xx, xz}.
In fact J. Nielsen has shown [8] that the commutator subgroup of the

free product of a finite number of cyclic groups of finite order is a free group
of finite rank.
We set

(9) a xyxy, b xyy.
Then a and b have the matrix representations

11), (111 ).
We note that the quotient groups F/F, F/F are cyclic and therefore

abelian, sothat F F’, F F’. Hence F F F’. Byoneofthe
isomorphism theorems (F and r being normal subgroups of F),

By (5) this becomes

Hence

But

F/r r2/r r.
(r: r r) (r. r) 3.

(r. r r) (r. r) (r. r r) 2.3 6.

Since F Fn F 1’ and (F’F’) (F’Fn I’) 6, it follows that
r’ F n I’3. Thus we have proved

THEOREM 4. The commutator subgroup F’ of r satisfies

(11) r’ FrF.
Because of Theorem 3 we have left only the groups Fm to consider. Since

r :::) F and F F, (11) implies that

(12) r’ :) F.
Then because F’ is a free group and r FTM, we have by Schreier’s theorem
[10]

THEOREM 5. The groups FTM are free groups.
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We can say something more about the groups I’6m. In the first place,
F6m (F’)6m since F :::) F’. Hence if (F’" (I")6,) < , then the same
holds for (r" r6). In particular M. Hall’s solution of the Burnside problem
for 6 (see [2] for an account of this) implies that (r" (r’)6) < , so that
(1 16) < . Secondly, we have from (3) and (12) that

(r’) (r r%
Then the results of Novikov on the Burnside problem [9] imply that
(F"(F’)m) form-> 72, so that(F’r6) oo form>__ 72. There are
left therefore the 70 cases

(13) I’6, 2 -<_ m -<_ 71

in which the index (F" 16m) is unknown.
We are going to determine the structure of 16. We have

LEMMA 2. Let G be a group generated by two elements a, . Let N be a nor-
mal subgroup of G containing

(14) [a, ] a-l-1.

Then N contains Gt, the commutator subgroup of G.

Proof. G is abelian modulo N, which implies that N G’.

COROLLARY 1. r 1’, the second commutator subgroup of F.

For F’ I, 1’ is generated by the two elements a, b given in (9), I’ is a
normal subgroup of F’, and

[a, b] (xyxyx) e F6.

COROLLARY 2. The quotient group r’/r is abelian.

We remark that F" is of infinite index in 1 and is countably infinitely
generated, being the commutator subgroup of a free group of finite rank [5].
Hence F F".

Let p, q be positive integers. We define a class of normal subgroups
r’(p, q) of r’ as follows. The element

w db’ d’b*

of F’ belongs to 1’ (p, q) if and only if

’1 r 0 (mod p),

It is clear that

(15) r’(p, q) r",
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(16) (r’. r’ (n, q) pq, r’ $:0 20 ab’r (p, q),

and that r’ (p, q) is a free group of rank 1 W pq. The latter fact follows from
Schreier’s formula

R 1 +i(r- 1)

for the rank R of a subgroup of index i in a free group of rank r (see [10]),
since r’ is of rank 2 and (r" ]?’ (p, q) pq. Formula (15) follows from the
fact that the word w belongs to 1" if and only if

r, o.
We are going to prove

THEOREM 6. The group r is just F’ (6, 6). Hence r is of index 216 in r
and is the free group on 37 generators. We have

(17) (r" Is) 36, r’= arbor6, 0 _<- r, s _-< 5.

Proof. Let w arlb1... a’b’e r’(6, 6). Then because I’ is abelian
modulo 1’" we may write

W arl+’"+rnb+’"+Wl
where wl e F". Since r" c 1s (Corollary 1) and

F6" F F6"it follows that w e Hence (6, 6) c
Now let u be an arbitrary element of F. By Lemma 1 there is an integer

r, 0 -< r -< 5 such that u (xy)u’, where u’ e r’. Then

u {(xy)u’}
(xy)ru (xy)-r}{ (xy) 2rut (xy) -2r} (xy) 6rut (xy) -6r} (xy) st.

A simple calculation shows that

(18) (xy) ab-la-lb e F" c r’(6, 6).

Now if w is any element of 1, define S(w) (xy)w(xy) -. Thus

(19) u Sr(u’) S2(u’) sSr(u’) (xy) s.
We note that Sk(u’) e r’ for every integer k, and that Sk(gh) S(g) S(h)

for arbitrary elements g, h of F. This implies that integers a, f exist such
that

(20) u {S(a)Sr(a) SS(a)}"{Sr(b)S(b) SS(b)}u,
where u r" r’ (6, 6).
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(21)

S(a) ab-1, S(b) a,

S a ab-la-, S b ab-,
S3(a) ab-a-ba-, S3(b) ab-a-,
S4(a) ab-a-ba- S4(b) ab-a-lba-,
S (a) ab-a-baba-, S (b) ab-a-ba-,
S6(a) ab-a-lbab-aba- S6(b) ab-a-baba-.

If we examine the exponent sums of a and of b in table (21) and take formula
(20) into account, we find that if r 0, then u e I’’t c r’(6, 6); while if
r 0, then u6e F’(6, 6). Hence u e r’(6, 6) always, implying that
Fc I"(6, 6). Together with the previous inclusion this implies that
r= r’(6, 6) and completes the proof of the theorem.
A noteworthy result implied by the previous discussion is that the de-

composition of I’ modulo Ft’ is given by

i,6 r=0 )-’8=0 aOrbOar,,.

Going to the matrix representation of I’, we define I’(n), the principal con-
gruence subgroup of F of level n, as the totality of 2 X 2 rational integral
matrices A of determinant 1 satisfying A +/-I (mod n); and (n) as the
totality of 2 2 rational integral matrices A of determinant 1 satisfying
A I (modn).

It is easy to prove

THEOREM 7. F’ r(6) r6.

The proof of the latter inclusion consists of showing that

A=-+/-I (mod6) for matrices A =(: db)P.
This is best done from the relationship A tA I, a + d, by con-
sidering modulo 2 and modulo 3 separately. Furthermore, it is not diffi-
cult to show that I’ (2) is generated by elements of I’ and I’ (3) by elements
of F, so that F r(2), r r(3). Since r(2) r(3) r(6), it
follows from (11) that F’ I’ (6).
Theorem 7 is in agreement with some recent work of van Lint on the com-

mutator subgroup ’ of (see [6]). In particular van Lint shows that

’ (12). The observation that 1’ :::) F(6) was communicated to the
author independently by J. R. Smart.
The remaining subgroups (13), if not of infinite index, are of high index

in F.
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For example we have that

r (r) r-, r (r’) r;
and on the basis of Theorem 6 we have that

(F6: (F6)) 237, (F: (F)8) 3878,
since 1 is the free group on 37 generators (see [2]). Hence

(1 r1) >= 68. 287, (I Fis) 63. 3s473.
In conclusion we mention that each of the groups F and F is of genus 0

(see [1]).
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