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1. Introduction

The purpose of this paper is to show how potential and probability theory
can be used jointly to set up a conformally invariant cluster value theory of
analytic functions. The analytic functions studied are the intrinsically
natural ones, those whose domains and ranges are Riemann surfaces, and the
methods used would not become any simpler if the functions were meromor-
phic functions defined on plane domains with smooth boundaries.
The present paper does not pretend to completeness, of course. What it

contains is the substructure of a theory, and the proofs of a few key theorems.
It is noteworthy that the Fatou boundary limit theorem for numerically-
valued functions regular on a disc, and its generalization to functions of
bounded type, are valid in our general context. This makes it possible to
give a simple interpretation, in terms of boundary functions, to Heins’s class
B1 of analytic functions, a generalization of Seidel’s class U and Storvick’s
class L. As an application to a classical situation, a disc covering theorem
with a hypothesis of a different type from Bloch’s is proved.
The probabilistic basis of the work is the theory of Brownian motion on a

Riemann surface. This provides a suitable path system on any Riemann
surface, replacing, for example, the set of radii to the perimeter of a disc.
The key potential-theoretic tool is the Martin boundary RM of a hyperbolic
Riemann surface R, together with the Martin topology and the Cartan-Brelot-
N’im fine topology on R o RM.
The reader will observe that sometimes the new theorems are not strictly

generalizations of their classical versions, because the classical versions do not
have an invariant form, so that the general theorems do not reduce to exactly
the classical ones under the classical hypotheses. For example, the Fatou
theorem that a function bounded and regular on a disc has an angular limit
at almost every (Lebesgue measure) perimeter point becomes the theorem
that an analytic function from a hyperbolic Riemann surface R1 into a hyper-
bolic Riemann surface R2 has a boundary limit (on R2 u RM on approach in
terms of the fine topology to almost every (harmonic measure) point of R.
This general theorem is a perfect generalization of the classical theorem even
though angular approach to a point of the perimeter of a disc is not the same
as approach to the point in the fine topology. In fact if a bounded regular
function on a disc has a fine limit at a perimeter point, it has this limit as a
limit along certain continuous (conditional Brownian) paths, and hence has
this limit also on angular approach, by a classical argument. Thus the gen-
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eral theorem when applied to the classical case yields a result which is at least
as strong as the classical one. In other applications to classical situations, how-
ever, the situation is less clear. The appropriate invariant concept corre-
sponding to a cluster value of a function on a disc, along a nontangential se-
quence to a perimeter point seems to be a fine cluster value of a function on a
hyperbolic Riemann surface R at a minimal point of RM (see Section 4). The
relation between the two concepts if R is a disc has not yet been worked out.

Thus, as might be expected, a conformally invariant theory, an intrinsic
theory, is more than a generalization. It is to some extent a recasting of the
theory from a different point of view. We remark that the inappropriateness
of sectorial approach to disc boundary points in potential theory and allied
subjects can be seen from the well-known fact that the classical boundary
limit theorems for positive harmonic and superharmonic functions on a disc
differ (angular approach is admissible for the first class, only radial or similar
approach is admissible for the second), whereas approach in the fine topology
serves in both cases.
The methods used will be probabilistic, corresponding to the fact that in the

present state of mathematics certain potential-theoretic results are easier to
prove probabilistically than by purely potential-theoretic methods. A non-
probabilistic statement of each theorem will be given, however.
To clarify the historical background, references will be made to original

papers, but most of the cluster value theorems referred to can be found, with
proofs, in the books of Noshiro [2] and Tsuii [2].

2. Functions and paths on Riemann surfaces
A Riemann surface is, roughly, a connected Hausdorff space in which each

point is in an open set, called a parametrized neighborhood below, which is
the one-to-one conformal image of a plane disc. The nomenclature of the
book of Ahlfors-Sario [1] will be used. "The Riemann surface R has a posi-
tive boundary, is hyperbolic, has a Green function, has a nonconstant pos-
itive superharmonic function" are equivalent assertions. In the contrary
case, R "has a null boundary, is parabolic". An open connected set R0 on a
Riemann surface R is itself a Riemann surface, under the obvious conven-
tions. If R is hyperbolic, so is R0. If R is parabolic, R0 is parabolic if and
only if R R0 has capacity zero.

If f is a continuous function from one Riemann surface R1 into a second,
R2, and is regular in terms of the local parameters, we shall call f an analytic
function from R1 to R2, or an R-valued analytic function on R,. It is trivial
that R must then be parabolic if R is.

If a path on a noncompact Riemann surface leaves every compact set, we
shall say it "goes to oo ". If a Riemann surface R is hyperbolic, a more inter-
esting compactification than that implied by the above is obtained by the
adiunction of the Martin boundary RM, whose properties are fundamental in
the work of this paper.
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Brownian motion paths on abstract Euclidean spaces have already been
discussed by Kakutani [1] and by the author [3]. These discussions yielded
rather awkward and unnatural definitions of Brownian motion on a Riemann
surface (considered as a covering surface of the plane). We shall need a more
appropriate definition, a conformally invariant one, which we now give.

Let R be a Riemann surface, and let p be a function of the triple (t, , A),
where is a strictly positive number, e R, and A is a Borel subset of R. If p
satisfies the following conditions (a)-(e), p will be called a Brownian motion
transition function on R.

(a) p(t, i," is a measure of Borel subsets of R, with p(t, i, R) <= 1.
(b) p(t,., A) is a Baire function, for each pair (t, A).
(c) If0 < s,t,

p(s z7 t,,A) fR p(t,v,A)p(s,,dv).

(d) If e R, there is a strong Markov process with state space R, initial
point , transition function p, and continuous sample functions.

(e) Let be a point of R. There is then a parametrized neighborhood A
of with the following properties. (el) Almost every path of the process
described in (d) meets R A. (e2) Let R0 be an open subset of A whose
closure is a compact subset of A. Let u be a function defined and superhar-
monic on a neighborhood of this closure. Let z(t), 0 =< < } be a sto-
chastic process as in (d), with initial point in R0, and let T be the time that
a path from first meets the boundary of R0. Define zl(t) z[min (t, T)],
and let ff (t) be the least Borel field of sets with respect to which zl (s) is meas-
urable, for every s =< t. Then the stochastic process {zl(t), if(t), 0 -<_ <
is a supermartingale (omitting 0 if u() ). Any stochastic process
as described in (d) will be called a Brownian motion process from . If
p(t, , R) 1, when 0 , almost all Brownian paths from are well-
defined on the parameter interval [0, ), and are said to have infinite lifetimes.
Otherwise they may have finite lifetimes, and in fact p(t, , R) is the proba-
bility of a life _-> t. If T is a path lifetime, and if a path has some asymptotic
property as the parameter increases to T, we shall say that the path "end"
has the property. We shall see below that every Riemann surface has many
quite different Brownian motion transition functions. Even the fact of having
infinite path lifetimes is not an invariant of the surface.
Our hypotheses have given us the basis for work already done elsewhere

(Kakutani [1], Doob [3]) in a less flexible way, and we only outline the basic
results on the interrelations between Brownian motion processes and potential
theory as they will be needed in what follows.

If a subset of a Riemann surface R has capacity zero, almost no Brownian
path from a point of the surface meets the set (aside perhaps from the initial
path point). If R is parabolic, almost every Brownian path from a point has
everywhere dense ends, and in fact the path meets any preassigned set of
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strictly positive capacity at points arbitrarily near the path lifetime. On the
other hand, if R is hyperbolic, almost every Brownian path from a point of R
converges to .

If R1 is an open connected subset of the Riemann surface R, and if p is a
Brownian motion transition function on R, let pl (t, , A) be the probability
that a Brownian motion path on R from in R lies in A c R1 at time t, with-
out having first reached the boundary of R. Then p is a Brownian motion
process transition function whose paths are paths of the Brownian motion
process on R considered only until the time they first reach R R. We
shall call p and the Brownian motion process on R1 just described the ab-
breviated versions of p and the process on R, adapted to R.

If two Riemann surfaces are conformally equivalent, the map establishing
the equivalence takes a Brownian motion transition function [process] on one
surface into one on the other. In particular, any one-to-one conformal map
of a Riemann surface onto itself takes a Brownian motion transition function
and process into a second such pair.

If u is a superharmonic function on a Riemann surface R, u is finite-valued
and continuous, as a function of the parameter, on almost every Brownian
path from a point of R (except that of course u is infinite-valued at the
parameter value 0 if u() ). Moreover hypothesis (e2) remains true if
R0 is, more generally, any open subset of R, containing , whose closure is a
compact subset of R. (This assertion can be considerably generalized--
see Doob [3].)

In general, all results in the preceding reference on Brownian motion on a
Green space, dimension 2, remain valid except those tied to the heat equation.
In fact in that reference the canonical local transformation was a rigid motion,
whereas here it is a directly conformal map. Thus, for example, it remains
true that the distribution of the first point in which a Brownian path from
in an open connected subset R0 of the given Riemann surface meets the bound-
ary of R0 is harmonic measure on this boundary, relative to R0, with reference
point . More generally, suppose that R is a hyperbolic Riemann surface,
and adjoin its Martin boundary RM. Then almost every Brownian motion
path on R from a point of R converges o some minimal point of RM. Let
(, A) be the probability that a path from converges to a point of A c R.
Then (,. ) is harmonic measure (in the sense now to be made clear). If u
is positive and superharmonic on R, there is a function on the Martin bound-
ary such that, for almost all Brownian motion paths from a point of R, u has
the limit (v) if the path converges to v, and

(2.2) u() >-- f,t 4)(v)u(,dv).

The nonprobabilistic interpretation of this boundary limit theorem is the fol-
lowing. The class of subsets of the Martin boundary of harmonic measure 0
is independent of the reference point, and a member class will be described
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as having harmonic measure 0. Moreover the class of functions on the Mar-
tin boundary which are summable using harmonic measure is independent of
the reference point, and will be described as the class of functions summable
with respect to harmonic measure. In these terms, the above function u has
the fine limit () at on the Martin boundary (that is, the limit () on
approach to in the Cartan-Brelot-Na’im topology) except possibly for an v set
of harmonic measure 0, is summable with respect to harmonic measure, and
(2.2) holds. Finally, from the point of view of the Dirichlet problem: the
Perron-Wiener-Brelot method applied to find a harmonic function on R with
assigned arbitrary boundary function on the Martin boundary, yields a
"solution" u if and only if is summable with respect to harmonic measure.
The solution is defined by (2.2) with equality, and u has the function as a
fine limit at almost every Martin boundary point (harmonic measure).

It is important to observe that, although there are always many quite dif-
ferent Brownian motion transition functions on a Riemann surface, all the
above assertions are valid for any choice of the transition function. Roughly
speaking, the different transition functions correspond to different speeds of
traversing the same paths.
Example 1. Let R be the Riemann sphere. In this case, Yosida [1] has

obtained an explicit formula for a transition probability function, invariant
under sphere rotations, p(t, , A p(t, , ,),A for every rotation ,, and this
transition function is easily seen to satisfy our conditions for a Brownian
motion transition function. Under stereographic projection we thus have a
Brownian motion transition function for the extended plane, invariant under
certain linear transformations.
Example 2. If R is any open subset of the extended plane, the transition

function of Example 1, abbreviated to match R, is a Brownian motion transi-
tion function for R. If R is an open subset of the finite plane, a second exam-
ple is the ordinary plane Brownian motion transition function abbreviated to
match R. Note that, if R is a disc, every linear transformation of the disc
onto itself takes a Brownian motion transition function into a new (in general
different) one.

In the following work and later we shall consider derivable functions on a
Riemann surface. It is important that derivability, and the nonvanishing of
both partial derivatives of a function has an invariant meaning in terms of
local parameters.
We shall now show that there are many Brownian motion transition func-

tions on an arbitrary Riemann surface R. Let u be a function on R with con-
tinuous second partial derivatives in terms of local parameters, whose first
partial derivatives do not both vanish at any point, and such that there is a
covering of R by parameter neighborhoods, mapped conformally on unit discs,
in terms of which parametrizations the first partial derivatives are uniformly
bounded. If (, 7) is a local parameter, define 2 u - u2,. Then define
a diffusion process on R with local displacement coefficient 0 and dispersion
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coefficient 2. This pair of coefficients transforms as it should under parame-
ter transformations, and It [2] has shown that there is a corresponding
Markov transition function. The corresponding processes are known from
It’s previous work [1] to have continuous sample functions, if separable as
we shall always suppose. It is easy to deduce that, if C(R) is the Banach
space of continuous functions on R, vanishing at if R is not compact, with
uniform norm, and if Utf is defined by

(2.3) (Utf)() fRf(v)p(t,,d),
then Ut takes C(R) into itself and defines a strongly continuous semigroup.
Hence the process has the strong Markov property (Loive [1]). It5 proves
that if f has continuous second derivatives,

(2.4) limt-,0 [(Utf)() f()]/t a2Af/2,

where A is the Laplace operator. This indicates (unrigorously) that if
Af __< 0, so that f is superharmonic, Ut f decreases as increases, that is, f de-
fines a supermartingale on the sample functions of an It5 process. To obtain
this result rigorously we proceed somewhat differently. In order to check the
property (e) of a Brownian motion process we first consider a special case. In
the following, the process z (t), 0 _-< < is a Markov process as constructed
by ItS. Let R be the finite plane, and let p be a transition function on R as
found by ItS, satisfying all the conditions we have verified so far, using the
trivial identity parametrization. Moreover, contradicting for the moment
one of our conditions on the variance function , suppose that has compact
support. In view of the latter condition, we cannot hope to verify property
(el) but we shall prove instead that almost every path frown a point at which
is strictly positive must reach the region of vanishing of (r. Since It5 [2] proved
that almost no path reaches interior points of this set, it is already known that
the paths are confined to the support of . In ItS’s development the process
{z(t), 0 -<_ < satisfies the equation

(2.5) z(t) f0 z[z(s)] dy(s),

where is the initial point of paths and the y(t) process is ordinary plane
Brownian motion (unit variance parameter for each component). Since any
stochastic integral like that on the right defines a martingale (Doob [2]), the
z(t) process is a bounded martingale. Hence there is necessarily convergence
when -- , so we need only show that the convergence must be to the set
of zeros of . On a path converging to a nonzero of , the integrand [z(s)]
would be asymptotically a strictly positive constant, whereas the integral
would converge, and this is absurd. Thus a limited version of (el) is satis-
fied. Furthermore, still in our special case when R is the finite plane, It5
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proved that if u is a function on the plane, with continuous second partial
derivatives, then u[z(t)] can be written in the form

(2.6) u[z(t)] + (2au/e) fo +
where the functions in the integrands have argument z(s), ul, u2 are the first
partial derivatives of u, and y(1)(s), y()(s) are the components of y(s). In
particular, if Au 0, the first integral on the right drops out, and the u[z(t)]
process is a martingale, since the stochastic integral on the right always deter-
mines a martingale. More generally, if u is a superharmonic function, so that
Au <_ O, u[z(t)] determines a process which is the sum of a martingale and a
process with monotone decreasing sample functions, and is therefore a super-
martingale. Hence the stopped u[z(t)] process described in (e2) is a super-
martingale, since stopping preserves the supermartingale property. Now
suppose more generally that u is specified as in (e2), defined and superhar-
monic only in a neighborhood of the closure of R0. Then in a smaller neigh-
borhood u is the limit of a monotone increasing sequence of functions, defined
on the whole plane, with continuous second derivatives, superharmonic in a
neighborhood of the closure of R0. The result already obtained, applied to
the members of this sequence, yields (e2).

Since the requirement (e2) is an in-the-small requirement, it is clear that
our treatment of the plane special case shows that the constructed process in
the general case satisfies the set conditions for Brownian motion processes.
We have thus shown that every Riemann surface has these processes.
We observe that, if u is a function defined on the direct product of a neigh-

borhood of the closure of R0 (defined as above) with the interval [0, tl], and
if the z (t) process is defined as in (e), then a slight extension of the reasoning
ust used would prove that u[to t, z(t)] defines a supermartingale, for
< to < t, excluding 0 if U[to, z(0)] , if u is superparabolic in the

sense that

(2.7) Ou/Ot >= 2Au/2.
(There is a corresponding generalization if u does not have the appropriate
derivatives.) We shall go no farther in this particular direction, nor shall we
investigate here how near the general case the Brownian motion processes we
have obtained on an arbitrary Riemann surface are, nor what is a proper
definition of superparabolic functions in the general case.

3. Conditional Brownian motion

Let h be a strictly positive superharmonic function on a Riemann surface
R. Then, in Hunt’s terminology, h is excessive in the sense that if p is a
Brownian motion transition function on R,

(3.1) h() >= fR h(v)p(t, ,
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and in the limit when -- 0 there is equality. (See Doob [4] for a proof of this
well-known fact correct in the present context.) Hence if ph is defined by

fR h(n)p(t,,dn)/h(),(3.2) ph t, li, A

hp is a Markov transition function with state space R, corresponding to
"h-path processes". Suppose first that h is harmonic. Then just as in an
earlier more special discussion (Doob [4]) the paths of a Markov process with
transition function p can be identified with those of a conditional Brownian
motion process. If h is constant, the process is of course simply a Brownian
motion process. If h is not constant, the surface must be hyperbolic, and
then almost all paths of the h-path process are continuous, converge to points
of the Martin boundary, and the distribution of endpoints is h-harmonic
measure on this boundary. The h-harmonic functions corresponding to
h-harmonic measure are the quotients u/h, where u is harmonic. If h is
minimal, almost all h-paths converge to the point of the Martin boundary
corresponding to h.

If h is superharmonic, h-paths are again almost all continuous, but my
simply stop in regions in which h is not harmonic. Almost none reach the
Martin boundary if h is a potential. In particular, if h is the Green function
with pole a, h-paths almost all converge to a.

4. Cluster values
We shll need an nlysis of various types of cluster vlues. If R is a

Riemann surface, limit concepts on R involving the Cartan-Brelot-Naim fine
topology will be qualified by "fine". A connection with probability theory
that we shall use frequently is the following. Let a be a minimal point of the
Martin boundary of RM, corresponding to the minimal harmonic function h.
An analytic subset A of R has fine limit point a if and only if almost every
h-path from a point of R meets A arbitrarily near a. In the contrary case
(R A) o {a} is a fine neighborhood of a. A function f on R has the [fine]
cluster value b at a if b is the limit of f on a subset of R with [fine] limit point
a (Doob [5]), the fine limit b at a if b is the limit of f on a subset of R which
is a fine deleted neighborhood of a (Naim [1]).
The "fine boundary function" of a function f from the hyperbolic Riemann

surface R to a topological space S is the function defined at each point of RM

at which f has a fine limit, with value this limit. In particular, suppose that
S is a Riemann surface, and let f be an S-valued analytic function on R. Here
if S is a noncompact parabolic surface, we allow f to have the fine limit ,
and if S is hyperbolic, we allow f to have fine limits in S. Let B be the
domain of the fine boundary function f’ of f, let B0 be a subset of B of har-
monic measure 0, and consider the closure on S (to which or S has
been adjoined) of f’(B Bo). The intersection of all these closures (equal
to the intersection of countably many, and therefore attained by a proper
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choice of B0) will be called the essential closed range of the fine boundary
function. The essential closed range may be empty, because the domain of
the fine boundary function may be empty. If we make the same definition
except that we replace B by the part of B in an arbitrary neighborhood of a
point a of RM, and take the intersection of the corresponding essential range
closures for all these neighborhoods, this intersection (which is again at-
tained for a suitable choice of B0) will be called the essential cluster set at
a of the fine boundary function. If in this discussion the domain of the
fine boundary function is replaced by a subset, the corresponding concepts
become those relative to that subset.

Let R be a disc. Then is called an angular limit of a function f on R at
a boundary point a if f has limit at a in every angle with vertex a opening
into R (that is with rays meeting R); is called an angular cluster value of f
at a if f has limit on a sequence of points converging to a in some angle as
above.

If R is any hyperbolic Riemann surface, the role played when R is a disc by
an angular limit [angular cluster value] is played by a fine limit [fine cluster
value] at a minimal point of RM. The latter concepts do not reduce to the
former ones if R is a disc, however. Some of the relations between these con-
cepts will now be discussed.

If R is a disc, let f be a meromorphic function on R, and suppose that f is
normal in the Lehto-Virtanen [1] sense that the family of transforms of f by
the linear transformations taking R onto itself is a normal family. Lehto and
Virtanen proved that if f has the limit a on a continuous path to a boundary
point of R, then f has angular limit a at the point. Hence f has angular limit
a at a boundary point whenever f has fine limit a there. We can go further
in the same direction. Let f be meromorphic and normal on the disc R, and
suppose that f has angular cluste value at a, f(an) -- , where the sequence
{a} lies in some angle with vertex a as above. Then a normal family argu-
ment (applied to the sequence of functions obtained by mapping R linearly
onto itself so that an goes into the center of R and a goes into itself) shows
that, for every e > 0, f is within e of on discs converging to a and meeting
the rays of some angle (depending on e) with ertex a. Since it is easy to
see that the union of such a class of discs has a as fine limit point, we have
obtained the following theorem.

THEOREM 4.1. Let f be a normal meromorphic function on a disc. Then
every angular cluster value at a boundary point is also a fine cluster value at the
point.

It is not known whether or not the converse of this theorem is true. There
is a global theorem in the same direction, with fewer hypotheses on f, as
follows.

THEOREM 4.2. Let f be a function from the disc R to a metric space, and sup-
pose that at every point a of a perimeter set A there is an angle opening into R
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in which f has a limit (a).
aof A.

Then f has (a) as fine limit at almost every point

To see this it is sufficient to mke the only pprently more restrictive hy-
pothesis that the ngles re ll obtained by rotations of R from single ngle,
nd we shall do so. The perimeter set for which there is convergence in the
ngles is mesurble, so we cn assume that A is mesurable, nd even, p-
plying the theorems of Egoroff nd Lusin, nd decreasing A slightly, that A is
closed, that there is uniform convergence to in the ngles, nd that the re-
striction of to A is continuous. Applying standard technique used in
cluster vMue theory (see for example Tsuii [2], p. 338) we then find simply
connected domain R0 in R, bounded by rectifiable curve, containing ll
points in lrge closed subdisc D concentric with R nd ll points in the given
ngles with vertices on A outside D. This is done in such wy that f out-
side D nd in one of the ngles is within v of its limit. Now ccording to a
theorem of Nm [1] (Theorem 25) R0 is deleted neighborhood in the fine
topology of lmost every (R0 hrmonic mesure) point of A, and the classes
of subsets of A of harmonic mesure 0 for R nd R0 are the sme. Moreover
in our ppliction f() is within 2e of (a) if is in R0 nd is near enough to a
in A. Since is rbitrry, f must hve the fine limit lmost everywhere
on A, s ws to be proved.
The converse of this theorem is flse. In fct if f is defined s 1 on the disc

R except at the points of a countable dense set, where f is defined s 0, f has
fine limit 1 t every perimeter point but does not hve limit t the boundary
in ny angle with vertex on the boundary.

Let f be function from the disc R to compact metric spce, nd consider
the angular cluster set C, of f at a boundary point a. Then for almost all a,
C, is the same as the cluster set of f at a in any angle with vertex a, opening
into R. In fct the usual proof of the Plessner theorem (see Noshiro [2] or
Tsuji [2]) gives this result immediately. The following theorem links angular
with fine cluster values.

THEOREM 4.3. Let f be a function from the disc R to a compac metric space.
Then at almost every boundary point of R the fine cluster set of f is a subset of
the angular cluster set off.
To prove the theorem we simply apply Theorem 4.2 to u(f), n >- 1, where

u() is the distance on the range space from v to the complement of the nth

set of a countable open neighborhood basis of the range space.
Example 1. Consider the function h on the unit disc R: {I z < 1},

(4.1) h(z) (1 z I)/] 1 z .
This function is minimal harmonic, corresponding to the perimeter point 1.
Let u -log [I z- 1 I/2] on R. Then u is positive and harmonic, and
according to a theorem of Naim [1], u/h has inf (u/h) as fine limit at 1.
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Since u/h has limit 0 on the radius to 1, the fine limit must also be 0 (because
the radius has the point 1 as fine limit point). Similarly 1/h has fine limit
0 at 1. Now consider the function f on R defined by

(: /
This function is the quotient of two bounded regular functions. Moreover

log lf -2h + u log 2.

Hence log Ifl has fine limit at 1, that is, f has fine limit 0 at 1, even
though f obviously has as limit along a tangential (circular) path to 1.
Lehto [2] noted that this function also has 0 as an angular limit at 1.

If a is a Martin boundary point of the hyperbolic Riemann surface R, it is
natural to call a a regular boundary point if the harmonic measure of the
boundary set contained in each neighborhood of a on R o R, at in R,
has limit 1 when -- a. If the same condition is satisfied even though R
is replaced by the part of R in an arbitrary open neighborhood of a, a will be
called a locally regular boundary point.

Let A be a subset of R, measurable with respect to harmonic measure.
Then n will be called a cluster value at a relative to A of a function f on R
if there is a sequence {} on R for which , ---+ a R, f(n) 7, Un 1,
where u is the harmonic measure at , of the part of A in any preassigned
neighborhood of a. If A contains almost all (harmonic measure) points of
R near a, and if a is a locally regular point of Ru, then any cluster value
at a is a cluster value relative to A, and in fact in this case R can even be
replaced by its part in any open neighborhood of a.

5. Brownian paths on covering surfaces
Let R1 and R2 be Riemann surfaces, and let R1 be a regular covering sur-

face of R.. If ps is a Brownian motion transition function on R, it deter-
mines one on R1 as follows. Let 1 be any point of R1, and let be the point
of Rs under 1. Brownian motion paths from are lifted in the usual way
into continuous curves on R with initial point . If A is a Borel subset of
R1, let pl(, t, A) be the probability of the set of image paths on R which
lie in A at time t. It is easily verified that p is then a Brownian motion
transition function on R1. Clearly, if , is a cover transformation,
p(,, t, /A) p(, t, A). Conversely any Brownian motion transi-
tion function pl on R which is invariant under the group of cover transforma-
tions defines a Brownian motion transition function p. on Rs by

(5.1) p(, t, A) p(, t, A),

where A is the class of all points of R over a point of A., and is any point
over 2

Example 1. Let R1 be the conformal universal covering surface of the
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torus R. Then R is the finite plane, nd R. is obtained from R by identi-
ficatio of congruent points in rectangular lttice. One example of
Brownian motion process on R is n ordinary plane Brownin motion process
(with any vrince prmeter). A corresponding Brownin motion process
on R is defined by (5.1).
Example 2. Let R be the conforml universal covering surface over R,

the finite complex plane less two points. Tke s Brownin motion transition
function on R= the ordinary plane Brownian motion transition function, with
any variance parameter. Note that the lifetime of the paths is , that is,
the transition function has maximum value 1. This Brownian motion transi-
tion function lifts into one with the same property on R. Now R is con-
formally equivalent to the interior of a disc by way of the elliptic modular
function. Hence another possibility for a Brownian motion transition func-
tion on R is the image of the ordinary plane Brownian motion transition
function, abbreviated to the disc. This transition function has maximum
value less than 1, for each initial point, corresponding to finite lifetimes for
the Brownian paths.
We have supposed heretofore that R is a regular covering surface of R..

Now suppose more generally that R is a smooth (no branch points), but not
necessarily regular, covering surface of R. Then it remains true that a
Brownian transition function on R. determines one on R, just as in the regu-
lar case. This correspondence has the following property. If is a point of
R, ’ and ’ are points of R over =, and if A is a sufficiently small open
neighborhood of ., there are open neighborhoods A’ of ’ and A’ of ’, the
local images of A=, such that the Brownian process from ’, stopped when
the paths meet the boundary of A’, has the same joint distributions of its
random variables (under the map from A to A by way of A) as the proc-
ess from ’ stopped when its paths meet the boundary of A’ ;in fact the
joint distributions are the same as those for the Brownian process from .
stopped when its paths meet the boundary of A= (under the map just re-
ferred to). Conversely any Brownian transition function on R with this
property yields a Brownian transition function on R in the obvious way
by building up the corresponding processlocally.

Finally, if R is a covering surface of R=, with no further restrictions, its
set B of branch points is countable, projecting down into a countable subset
B of R=. Since B. has cpcity zero, lmost no Brownian pth from a
point of R B= ever passes through a point of B., so that, just as above,
any Brownian motion transition function on R. defines one on R B.
The treatment we have given of Brownian motion processes on covering

surfaces requires few changes to be applicable to conditional Brownian proc-
esses. Let h be a strictly positive harmonic function on R, and let f be the
map taking a point of R into the covered point of R. Then an h-path
process from a point of R generates an h(f)-path process from any point

of R over . Let r be the lifetime of a path / on R, and let r be the
lifetime of the lifted path /. If r < r, R cannot be compact, and ,
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approaches . If R1 is parabolic, h2(f) must be a constant function, so h.
is also a constant function, and the paths considered are Brownian paths for
which the probability of going to is 0. Thus the only interesting case when
rl < r occurs when R is hyperbolic. Then , not only approaches the point

but even approaches a specific point of R1 (neglecting a set of paths of
probability 0) because the path ,1 is an h(f)-path, and conditional Brownian
paths almost all have this character. If r r, , is a typical h2(f)-path,
and has the properties discussed in Section 3.

Going in the other direction, suppose that R is hyperbolic, and that is
a minimal Martin boundary point of R. Define Brownian paths on R1
from by lifting paths on R with initial point 2. Suppose that h is the
minimal harmonic function on R1 corresponding to . The probability that
the projections of hi-paths from 1 have a prescribed limiting conduct is a
bounded h-harmonic function of , and, since hi is minimal, this function
must be a constant function. Moreover, by a standard argument (Doob
[3]) the constant must be 0 or 1. Hence almost all these paths have the
same asymptotic conduct on R2. If they converge, they must almost all
converge to the same point. Now if h is derived from a harmonic function
h on R., by way of hl h(f), and if R is also hyperbolic, the proiected
paths are h-paths, or initial segments of h-paths, which we know almost all
converge to points of R2 u R, and so almost all converge to the same point,
according to the above argument. If h is not so derived, we can obtain an
only slightly weaker conclusion as follows. Suppose again that R is hyper-
bolic, and make 1-pths (that is Brownian paths) correspond on the two
Riemann surfaces. As varies on R we obtain almost all 1-paths on R
from , proiecting into 1-paths on R2 from or initial segments of such
paths, which we know almost all converge to points of R u R. Hence, we
conclude: if h is the minimal function corresponding to almost any point of
R almost every h-path from a point of R1 proiects into a path from
f(), converging to a point of R u R independent of the pth.

6. Review of the Fatou and related theorems
Let f be a function defined and meromorphic on a disc, R. Then under

various conditions on f it is known that f has a finite angular limit at almost
every (harmonic measure or equivalently Lebesgue measure) boundary point.
The result is true for example, according to Fatou [1] if f is bounded. More-
over F. and M. Riesz [1] proved that if the Fatou boundary function of a
bounded f is constant on a set of strictly positive measure, f is identically
constant. By combining these results it follows that a function "of bounded
type", that is, one which is the quotient of two bounded regular functions,
also has a finite angular limit at almost every boundary point. R. Nevan-
linna [1] proved that a regular function f on a disc is such a quotient if and
only if the supremum of the average of log+ fl over concentric perimeters is
finite.

According to a theorem of Plessner [1] if f is a function defined and mero-
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morphic on a disc, then at almost every point of the boundary either f has an
angular limit, or the cluster set of f in any angle with vertex at the point is
the extended plane.

If R. is a Riemann surface, and if f is an analytic function from the disc
to R2, the natural generalization of the condition that f be of bounded type
is that f be "LindelSfian". The definition of this concept will be recalled
below. Under this hypothesis Heins [3] proved that f has an angular limit,
either a point of R2 or oo, at almost every boundary point of R1. Note that
the limit oo may occur at every perimeter point. In fact this is true for
R1 R2, both being the unit disc with the origin as center, and f(z) z.
This example illustrates the obvious fact that compactification of R by
ioining only a single point at infinity cannot be expected to yield fine structure
results involving

Let f be a superharmonic function, defined and bounded below on a hyper-
bolic Riemann surface R. Then it has been proved (Doob [4]) that f has
finite fine limit at almost every (harmonic measure) point of R. In par-
ticular, the result is of course also true for f a bounded analytic function and
is easily generalized to larger classes of regular or even meromorphic functions.

If an analytic function on a disc has a boundary function which is nearly
constant on a large set, the analytic function is a constant function. We
havealready noted the Riesz theorem that the Fatou boundary function of
bounded nonconstant regular function on a disc is not constant on a boundary
set of strictly positive measure. A very general theorem in this direction is
due to Tsuii [1]. He proved that if f is a function defined and meromorphic
on a disc, and if there is a set A of capacity zero such that the angular cluster
set at each point of a perimeter set of strictly positive measure lies in A, then
f is a constant function.
We now proceed to generalize the theorems stated in this section, together

with related theorems, to the case of analytic functions from one Riemann
surface to a second.

7. Generalizations of the Fatou and related theorems
Our analysis of the relation between pobability paths on covering surfaces

and on the covered surfaces leads quite trivially to generalizations of the
theorems of Section 6. Let R1 and R2 be arbitrary Riemann surfaces, and let

f be an R2-valued analytic function on R. The surface R thereby becomes
a covering surface of R: 1 covers if f() . The results we have ob-
tained concerning Brownian paths, which we shall need in this section, can
be outlined loosely as follows.

(a) Our path systems map into path systems under the transformation
determined by an analytic function.

(b) Our paths on a hyperbolic surface converge to individual boundary
points.
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(c) Our 1-paths on a parabolic surface are everywhere dense, even if
initial segments of the paths are deleted.

(d) Our paths miss sets of zero capacity, but have strictly positive proba-
bility of meeting sets of strictly positive capacity.
We first apply these facts when R1 and R are hyperbolic. In this case the

Brownian paths on R can be derived from Brownian paths on R. (which
converge to points of R) or to pieces of such paths, which converge to the
piece endpoints. In other words we have the following Theorem 7.1.
(Strictly speaking we have ignored the possible existence of branch points,
but these can in fact be ignored because they form a set of capacity zero.)
Theorems like the following can be stated in terms of the properties of a
function on Brownian paths (p), on conditional Brownian paths (cp), or in
terms of fine limit concepts (f), but only our first theorem will be stated in
all three ways, to exhibit the principle involved. Note that the results are
independent of the particular Brownian motion processes used, as shown for
example by the (f) version.

THEOREM 7.1p. Let f be an analytic function from the hyperbolic Riemann
surface RI to the hyperbolic Riemann surface R. Then f has a limit (on
R: u R on almost every Brownian path from a point of R1 to R

In terms of conditional paths this theorem can be phrased as follows (see
the corresponding discussion by the author in [4]). We recall that almost
every (harmonic measure) point of R is minimal.

THEOREM 7.1cp. If f is as in Theorem 7.1p, let be almost any (harmonic
measure) minimal point ofR corresponding to the minimal harmonic function
h. Then f has a limit (on R t R on almost every h-path from a point of
R to The limit is independent of the initial point of R and of the path.

Finally, we rephrase the result in terms of the fine topology. The rephrasing
incidentally shows that the results are not dependent on how the Brownian
processes on R and R discussed in Section 5 are related. We also add a
further result, (b) below, which could have been stated in Theorem 7.1cp,
and which is in fact trivial although important: but which was omitted to
avoid superfluous repetition. The relations between the fine topology and
conditional probability paths are discussed in Doob [4].

THEOREM 7.1f. Let f be as in Theorem 7.1p. If is almost any (harmonic
measure) point of R then

(a) f has a fine limit at say . (in R. u R), and
(b) if A1 is an analytic subset of RI for which A u w} is a fine neighbor-

hood of w, f A } is a fine neighborhood of w
Part (b) is essential to the understanding of why, if R1, R., and R3 are

hyperbolic Riemann surfaces, if fl is analytic from R into R, and if f is



536 z. Lo DOOB

analytic from R2 into R3, then f2(fl) has a fine limit at almost every point of
R. In view of (b) this limit assertion can be explained by following the
successive maps as well as by simply applying the theorem to the combined
map f.(fl). (Theorem 7.3 is also needed to make the reasoning complete.)
We now apply the general principles stated at the beginning of this section

to an analytic function from a hyperbolic Riemann surface R1 to a parabolic
Riemann surface R:. We determine the Brownian paths on R by lifting
those on R, as usual, but this coupling of path systems on the two surfaces
is irrelevant to the final result, whose validity is independent of the Brownian
processes used to obtain it. Under our hypotheses on the Riemann surfaces,
the images of Brownian paths on R are either full Brownian paths on R
(which are everywhere dense and even have everywhere dense ends) or are
initial pieces of these paths, which of course converge to their own endpoints.
Thus we have proved the following theorem, corresponding to Plessner’s
(see Section 6) in the classical case. (If R2 is hyperbolic, the Plessner theorem
becomes even simpler, in view of Theorem 7.1.)

THEOREM 7.2p. Let f be an analytic function from the hyperbolic Riemann
surface RI to the parabolic Riemann surface R. Then for almost every Brownian
path from a point of R to R either (a) f has a limit (a point of R.) on the
path, or (b) f has R as a cluster set on the path. If Case (b) occurs with strictly
positive probability, R. f(R) has capacity zero.

The assertion (b) means that the set of limiting values of f on the path, as
the parameter approaches the path lifetime, is R2. The last assertion of the
theorem follows from the fact that if R f(R) has strictly positive capacity,
f(R) is a hyperbolic Riemann surface, so that, according to Theorem 7.1p,
(b) cannot occur with strictly positive probability.
We omit the conditional-path version of Theorem 7.2, but state the fine-

topology version.

THEOREM 7.2f. If R1 R f are as in Theorem 7.2p, then at almost every
(harmonic measure point of R either a) f has a fine limit (a point of R),
or (b) f has every point of R as a fine cluster value. If (b) occurs on a subset
of R of strictly positive harmonic measure, R. f(R) has capacity zero.

Before leaving this analogue of Plessner’s theorem, we remark that the
last assertion can be strengthened to give local results. In fact if (b) occurs
on a subset A of R , of strictly positive harmonic measure, we can replace
RI by an open subset which includes a neighborhood of some point of R at
which A is metrically dense. If we then apply the theorem to the restriction
of f to this neighborhood, we find that there is a subset B of A of harmonic
measure zero, and a subset C of R of capacity zero such that
R f(R1 n N) c C. for every neighborhood N of any point of A B1.

If f is a meromorphic function on a disc in Theorem 7.2, we can combine
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this theorem with Plessner’s classical one and obtain, using Theorem 4.2, the
following result. If f is a meromorphic function on a disc R, then at almost
every (Lebesgue measure) point of the perimeter of R either (a) f has both an
angular limit and an equal fine limit, or (b) f has every point of the plane as
cluster value in every angle opening into R with vertex at the point, and f has a

fine limit at the point, or (c) f has every point of the plane both as cluster value
in every angle opening into R with vertex at the point and as fine cluster value.

It would be interesting to find an example to show that Case (b) can really
occur on a perimeter set of strictly positive measure, or a proof that it cannot.
It follows readily from theorems of Meier [1] that for every point $ of the
extended plane f assumes the value infinitely often in every angle with
vertex a on the perimeter, opening into R, for almost every a for which (b)
is true. Thus, for example, (b) can be excluded if the function is regular.
We now apply the general principles stated at the beginning of this section

to a function f from a hyperbolic Riemann surface R1 to a Riemann surface
Rs using this time the fact that (roughly) Brownian paths On Rs neither meet
a preassigned set of zero capacity (excluding the path initial point) nor, if
Rs is hyperbolic, converge to a preassigned subset of R of harmonic measure
zero. If Rs is parabolic, the paths do not approach . Then the Brownian
paths on R1 leading to paths on Rs with forbidden conduct must have proba-
bility zero, and we thus obtain the following theorem, a generalization of
Tsuji’s theorem stated in Section 6. (From now on we shall state only the
fine-topology version of a theorem, and shall omit the qualifying "f" from its
number.)

THEOREM 7.3. Let f be an analytic function from the hyperbolic Riemann
surface R to the Riemann surface R. Let A be a subset of RM1 of strictly posi-
tive outer harmonic measure. Let As be a set with the following properties. If
Rs is compact, As is a subset of Rs of capacity zero. If Rs is parabolic but not
compact, As is a subset of R2 u }, with As n Rs having capacity zero. If
is hyperbolic, A. is a subset of Rs t R for which A. R: has capacity zero and
As R has harmonic measure zero. Then if all the fine cluster values of f at
the points of A lie in As, f is identically constant..

Note that, in view of Theorem 7.2, the hypothesis of the present theorem
is not really more general than that f has a fine limit at every point of A1,
which limit is a point of
We have not applied the general principles stated at the beginning of this

section to analytic functions from one parabolic Riemann surface R to a
second parabolic surface Rs. In this case the full Brownian paths on the
two surfaces can be made to correspond to each other. One way of saying
this is simply that if is a point of R., the image of 1 on R, and if the
latter is not a branch point of R considered as a covering surface, then the
corresponding branch of the inverse of f at can be continued analytically
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along almost every Brownian path from .. This result is reminiscent of
the Gross star theorem on the continuation of the inverse of a function mero-
morphic on the finite plane along rays to .
The theorems of this section have all had rather trivial qualitative proofs,

once our foundations were laid. The generalization of the theorem that a
function of bounded type on a disc has an angular limit at almost every
perimeter point (see Section 6) needs more quantitative considerations, which
we now give.

Let R1 and R. be hyperbolic Riemann surfaces, and let f be an analytic
function from R1 to R.. Then, if g is the Green function of R,

(7.1) g2[f(l), 2] Zf(,1)--’2 g1(1, Vl) -t- u2(1), $ e R, f() 2,

where in the sum each term is counted as many times as f has the value
at , and u is a positive harmonic function on R. Note that the sum on
the right makes senseeven if R. is not hyperbolic, tteins [2] calls a function
f analytic from a hyperbolic Riemann surface R with Green function gl to a
Riemann surface R "LindelSfian" if the sum on the right converges when-
ever f(5) . Then f is necessarily LindelSfian if R is hyperbolic. If R1
is a disc and if R is the extended plane, so that f is a meromorphic function
on the disc, f is LindelSfian if and only if it is of bounded type. For this and
other reasons the class of LindelSfian functions seems to be a natural generali-
zation of the class of functions of bounded type.
We shall need the following lemma, due to Heins ([2], p. 433), which we

restate in probability language.

LEMMA 7.4. Let f be a Lindel@an analytic function from the hyperbolic
Riemann surface R to the parabolic Riemann surface R.. Then if e RI,
the infimum oer compact proper subsets C of R of the probability that a Brown-
ian path on R from meets f-(R: C.) arbitrarily near is O.

This lemma has the following trivial corollary.

COROLLARY. If R R f are as in the lemma, the supremum ouer compact
proper subsets C. of R: of the probability that a Brownian path starting from a
point of RI will lie entirely inf-(C) is one.

We shall now prove our desired generalization of Theorem 7.1, which we
state only in its fine-topology form.

THEOREM 7.5. Let f be a Lindel@an analytic function from the hyperbolic
Riemann surface R to the Riemann surface R. Then if w is almost any
(harmonic measure) point ofR

(a) f has a fine limit at w, say (in R. if R: is parabolic, in R ,J R if
R. is hyperbolic), and

(b) if A is an analytic subset of R for which AI t {v} is a fine neighbor-
hood of f A1) t w} is afine neighborhood of vs.
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The proof is now nearly trivial. We can suppose that R2 is parabolic
since otherwise Theorem 7.1f would be applicable. If C2 is an open subset
of R2, with compact closure C2 R, C. is a hyperbolic Riemann surface,
aside from possible disconnectedness, which does not affect the argument.
Let 1 be any point of R1 which is not a branch point of the surface as a cover-
ing surface of R. We apply Theorem 7.1p, considering paths from 1, and
the restriction of f to the open component C of f-(C.) containing 1. We
take as the Brownian paths on C those on R cut off when they first reach
R C1, if ever. Then f has a limit on almost all Brownian paths in C
from 1, which means, in view of the Corollary, that f has a limit on almost
every Brownian path in R from 1 IfR is noncompact (and parabolic), the
limit is almost never oo by Theorem 7.3. Thus part (a) of the present
theorem is true in its form as a theorem on limits along Brownian paths, and
therefore in the fine-limit form in which it is actually stated. The overall
picture is now like that in Theorem 7.1, so (b) is also true.
We observe that this theorem answers a natural question about Theorem

7.1. In that theorem, suppose that R2 is immersed in a larger Riemann
surface R3. Then f can be considered a function from R to R3. Will this
function still have a fine limit at almost every (harmonic measure) point of
R ? If R is hyperbolic, Theorem 7.1f itself gives an affirmative answer; if
R is parabolic, Theorem 7.5 gives an affirmative answer, since f is Lindel6fian.
(A direct proof can also be given by analyzing the relation between Martin
boundary points of R and ordinary boundary points of R relative to R3 .)

8. Functions of type B1

Let f be a function defined and regular on the unit disc z < 1. Suppose
that Ill -< 1 and that the modulus of the Fatou boundary function is 1
almost everywhere on the perimeter. Seidel [1] called the class of such
functions the class U, and this class has been studied extensively by him and
other authors. Storvick [1] generalized the class U into the class L defined
as follows. A function f, meromorphic on the unit disc, is in the class L if
its range R has complement of strictly positive capacity (which implies that
f is of bounded type) and if the Fatou boundary function of f, almost every-
where on ]z 1, has its values on the boundary of R.
Now let R and R2 be hyperbolic Riemann surfaces, and let f be an analytic

function from R to R:. Then (7.1) holds, and Heins [1] calls the class of
functions f for which u2 (for all .) dominates no bounded strictly positive
harmonic function the class BI. This is his generalization of the classes U
and L, and it is clear from his work that the class B1 is indeed an appropriate
generalization of these classes. We shall now show that the class BI can be
characterized by the exact analogue of Seidel’s characterization of the class
U and Storvick’s of L. To see this we note first that a positive harmonic
function u on R which dominates no strictly positive bounded harmonic func-
tion, is in our language simply one which has fine boundary function vanish-
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ing almost everywhere on R. (In fact if there is a bounded strictly positive
harmonic function h dominated by u, the fine boundary function of h does
not vanish almost everywhere on RM and is dominated by the fine boundary
function of u. Conversely if u has fine boundary function not vanishing
almost everywhere, Ca min [, a] is bounded and does not vanish almost
everywhere, for sufficiently large a, whereas a is the fine boundary function
of its corresponding Dirichlet solution, which is a strictly positive bounded
harmonic function dominated by u.) We now apply this remark to the
definition of the class B1.
The sum in (7.1), as a function of 1, is a potential, and so has fine bound-

ary function zero almost everywhere on R, according to a theorem of Naim
[1] (or see Doob [4]). Thus if 2 is fixed, the function of on the left, and
the function u2 on the right, have the same fine boundary function almost
everywhere on R. It follows that f is of type B1 if and only if g2(f, ) has
fine boundary function zero almost everywhere on R. If g(f, .) has this
fine boundary function, it is clear that f must have its fine boundary function
almost everywhere confined to R. Conversely, if f has this property, and
in view (i) of the fact that g2(., 2) has fine boundary function zero almost
everywhere on R and (ii) of Theorems 7.1f and 7.3, it follows that f is of
type BI. We have thus proved the following theorem.

THEOREM 8.1. Let f be an analytic function from the hyperbolic Riemann
surface R to the hyperbolic Riemann surface R. Then f is of type B1 if and
only if the fine boundary function off on R has as value a point ofR at almost
every (harmonic measure) point of R
The criterion of Theorem 8.1 suggests that one can generalize the B1 defi-

nition as follows: Let f be an analytic function from the hyperbolic Riemann
surface R to the Riemann surface R, and suppose that f has the following
properties. Let A1 be the subset of R at each point of which f has a fine
limit. The limit is allowed to be if R is parabolic and not compact, or a
point of R if R is hyperbolic. It is supposed that A1 has strictly positive
harmonic measure and that the fine limit at a point of A lies almost always
outside f(R). We now show that this situation is not essentially more
general than the B1 one. In discussing this situation we may as well assume
that R f(R), and we shall do so. Then R cannot be compact. If R.
is paralolic, f must have fine limit o almost everywhere on A, impossible
by Theorem 7.3. Hence R. is parabolic, and A1 includes almost all points of
R, by Theorem 7.1f. We are thus back in the conditions of the Heins B1
definition.
Heins proved that if f is of type B1 from R to R, if As is an open con-

nected subset of R2, and if A is a component of the inverse image of A2 un-
der f, then the restriction of f to A1 is of type B1, it being understood that R
is now replaced by As. This fact has a simple intuitive proof with the present
background. In fact let Brownian paths on A be taken as the inverse im-
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ages of those on Rs from a point of A2, up to the time the latter first leave As,
if ever. (Branch points and their images are to be avoided as initial points.)
Now the B1 hypothesis on f is that the paths of a Brownian process on
almost all go to R as their images on R1 go to R. It is then clear that the
corresponding property holds for the restricted f, us was to be proved.

If f is of type B1 from R1 to R, R. f(R) must have capacity zero. In
fact otherwise Brownian paths from a point of f(Rs) would have strictly
positive probability of hitting R f(R), whereas they actually almost all
go to R as their images on R1 go to R.
The following theorem is the analogue in the present case of theorems of

Seidel [1] and Storvick [1]. Note that, in their cases, the domain R is a
disc, and a fine limit at the boundary is necessarily also an angular limit (see
Section 4) because the functions in the classes U and L are normal. See
also Noshiro’s book [2] for related theorems.

THEOREM 8.2. If f is of type B1 from R to R. and if as is either a point of
R. f(R1) or a minimal point of R then f has as as a fine limit at some
point of R (and therefore as limit along some continuous path to the point).

At this level of generality Heins [1] proved that if as Rs f(R), then
a. is a limit along a path to on R.

In proving Theorem 8.2 it is sufficient to consider only the case when
as e R since the other case can be reduced to that one by replacing Rs by
f(R). Suppose then that a2 is a minimal point of R, corresponding to the
minimal harmonic function h on Rs. The hs-paths from a point of Rs (we
exclude an image of a branch point as initial path point) correspond to hs(f)-
paths, or initial pieces of these paths, from a point of R, and because of the
BI property the full paths correspond to each other. But then f has the
limit a on almost every h.(f)-pat, that is, f has the fine limit a at a set of
points of R of h. (f) -harmonic measure 1.
We now consider the local approach to the B1 property. Let R1 and

be any two Riemann surfaces, and let f be an analytic function from R to
Rs. Let A be any open connected set on R which, considered as a Riemann
surface, is hyperbolic, and let A be one of the open components of f-(A.).
Then A is also hyperbolic, and, following Heins, we say that f has the B1
property at a point if the point is in the closure of f(R1) and if it is a point of
some A. for which the restriction of f to AI, for each choice of the component
A1, has the B1 property as a function from A to A. Note that then A
can contain only a set of capacity zero outside f(R), or even outside f(A).
If f has the property B1 at every point of R., f is said to be locally of type B1.

THEOREM 8.3. Let f be an analytic function from the hyperbolic Riemann
surface R to the Riemann surface R Then f is of type B1 at s on R. if and
only . is in the closure of f(R) but is not in the essential closed range of the
fine boundary function of f.
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(See Section 4 for the definition of the essential closed range of the fine
boundary function, which may be empty.) Heins [2] proved a corresponding
result, generalizing a theorem of Lehto [1], under the stronger hypothesis that
f is LindelSfian, and using the angular instead of the fine boundary function
because he supposed that R1 was a disc. Under his hypotheses the fine bound-
ary function is defined at almost every point of R (the ordinary disc bound-
ary) according to Theorem 7.1f. The latter theorem involved the Martin
compactification of R if R2 is hyperbolic. Hence all the more, if R is
compactified in the noncompact case merely by the adjunction of o, f has a
fine boundary function defined almost everywhere on R. Heins [3] proved
that there is also an angular limit at almost every point of R, using the
same conpactification of R. Since these two types of boundary functions
obviously agree everywhere where both are defined, Theorem 8.3 reduces to
Heins’s result in his special case.
To prove Theorem 8.3 let be a point of the closure of f(R), and let A2

be an open neighborhood of 2. Suppose that f has a fine limit which is a
point of A. at each point of a subset of R of strictly positive outer har-
monic measure. Then there must be an initial distribution of Brownian
paths on R, giving a set of Brownian paths on R not of zero probability,
corresponding to Brownian paths on R1 starting from an open component A1
of f-(A2) and going to Ri while the paths on R go to points of As. But
then f cannot have the property B1 from A to As. It follows that if f has
the B1 property at 2, this point is not in the essential range C of the fine
boundary function. By definition of the B1 property, . must be a point of
the closure of f(R) if f is to have the property B1 at .. Conversely suppose
that is in the closure of f(R) but is not in C. Let A2 be any open neigh-
borhood of whose closure is compact and contains no point of C. Then
tracing Brownian paths from a point of A. in f(R), excluding images of
branch points as initial points, corresponds to tracing image paths from a
point in an open component A of f-(A2). In order to prove that f has the
property B1 at we show that the probability is zero that some of the latter
paths reach R" while the former paths go to points of A. (without having
left this set). But this is just the case vhen f has a limit, in A., on each of
a set of paths to R not having zero probability, and this contradicts the
fact that C contains no points of the closure of A.. The proof of the theorem
is complete.
The following theorem is a trivial consequence of the preceding one, and

we therefore can omit the proof. Part (a) is due to Heins [1].

THEOREM 8.4. Let f be an analytic function from the hyperbolic Riemann
surface R to the Riemann surface R

(a) If R. is hyperbolic, f is locally of type B1 if and only if f is of type B1.
(b) If R is parabolic, f is locally of type B1 if and only if f has a fine limit

at almost no point of R.
Note that in (b) if f is of type B1, R f(R) must have zero capacity or
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f(R1) would be hyperbolic, f would be Lindel6fian, and f would therefore
have a fine limit at almost every point of R

In proving the next theorem we shall need the fact that if f is a function
from a hyperbolic Riemann surface R to a separable metric space, the fine
boundary function is defined on a Borel subset of RM and is a Borel measur-
able function. To see this we use the fact proved by Naim [1] that the set
of those points in R which are not limit points in the fine topology of a
specified subset of R is an F set. Let Inn, n -> 1} be dense in the range
space, and let B. be the open ball with center nn and radius 1/j. Let A.n
be R less the set of points of Ru which are limit points of R f-l(Bj,) in
the fine topology. Then A. is an F set, and the domain of the fine bound-
ary function is L gl. (J A.. The proof of measurability of the fine
boundary function is routine.
We now show how the principles outlined at the beginning of Section 7

lead in k trivial way to a generalization of a theorem going back to LSwner
in 1923 and since generalized by so many authors that we only refer to the
books of Tsuji ([2], p. 322) and Noshiro ([2], p. 34) for further references.
The general idea is that a conformal map increases the harmonic measure of
boundary sets. In the following, (, A, R) is the harmonic measure of the
subset A of R relative to the point on the hyperbolic Riemann surface R.

THEOREM 8.5. Let f be an analytic function from the hyperbolic Riemann
surface RI to the hyperbolic Riemann surface R2. Let A2 be a Borel subset of
R and let At be the inverse image of A. on R under the fine boundary function
off. Then

(8.1) (f(), A, R) => (, A, R), e R.

There is equality at one point of R (equivalently at every point of R1) if and
only iff is of type B1, whenever A. is chosen to make the left side of (8.1) strictly
positive.

Heins [1] (p. 468) has already given the necessary and sufficient conditions
for equality stated here. Since both sides of (8.1) define harmonic functions
of 1, equality at a single point implies equality everywhere. We can as-
sume in proving (8.1) that is not a branch point of R1, regarded as a cover-
ing surface of R.. Then Brownian paths from f(l) correspond to image
Brownian paths from as usual. The left side of (8.1) is the probability of
the set of paths from to A2. Now neglecting a set of paths of zero probabil-
ity, tracing a path from to a point of A. corresponds either to tracing
a path from 1 tO a point of A or tracing a path from to a point of
R A1 which is reached before the path on R. reaches R. Since the
first possibility accounts for almost all paths to A, the stated inequality is
true, and there is equality if and only if f has a fine limit which is point of
R at almost no point of R, that is, if and only if f is of type B1, when-
ever A. is chosen to make the left side of (8.1) strictly positive.
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We observe that it would be possible, but would not really increase the
generality, to rephrase the theorem in terms of inner and outer harmonic
measures, allowing A2 to be an arbitrary subset of R.

9. Applications to the ranges of analytic functions
The first theorem we prove in this section generalizes theorem of Lehto

[1] who considered meromorphic functions of bounded type on a disc. Note
that in our theorem the results are not much stronger under the hypothesis
that the functions are LindelSfian, corresponding to Lehto’s hypothesis,
than without this hypothesis. Lehto obtains a slightly larger class of points
as asymptotic limits however.

THEOREM 9.1. Let f be an analytic function from the hyperbolic Riemann
surface R1 to the Riemann surface R2 and let A. be the essential closed range of
the fine boundary function of f (see Section 4). Let B be an open component
of R A containing a paint of f(R1). Then f(R) includes all of B2 except
for a set of capacity zero; each exceptional value is a fine limit of f at some point
of R if f is Lindel6fian, a limit of f along a continuous path to if f is not
Lindel4fian
Let C: be an open connected subset of B2, chosen so that (a) C. contains a

point of f(R), (b) the closure of C2 is compact, does not meet A., and is a
proper subset of R.. Then almost all Brownian paths from a point of
C2 fl f(Ri) to C have images on R which are Brownian paths to the Martin
boundaries of the open components of f-i(c2). That is, the restriction of f
to any one of these components, say C, as a map from C1 to C has the
property B1. Hence (see Section 8) f(C1) includes all of C except possibly
a set of zero capacity, and so f(R) includes all of B except possibly a set of
zero capacity. If a: is a point of C not in f(C), Theorem 8.2 implies that
a2 is the limit of f along a path to some point of C, which means a path to

on R. If R is parabolic, a need not be a fine limit at a point of R.
(Take R to be the disc z < 1, R the extended plane, f(z) exp (l/z),
a 0.) If R2 is hyperbolic, however, let a satisfy the conditions

o2 el(R2), ce e C2 f(Ci), f(C) n C2 O.

Then a is a minimal boundary point of R2 {a} corresponding to the mini-
mal harmonic function h, the Green function of R with pole a. Almost
all h-paths on R: from a point other than a2 go to a. The probability that
an h-path from a point of C n f(C) meets a before reaching A is strictly
positive. But then the probability that h(f)-paths on R, from a point of
C1 meet a point of R at which the fine boundary function of f has value a
must also be strictly positive. Thus f hs fine limit a2 at at least one point
of R. Finally, if R. is parabolic but if f is LindelSfian, f must have a as
a fine limit at some point ofR because this case can be reduced to the hyper-
bolic case just as in the proof of Theorem 7.5.
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The first theorem of the following type, drawing conclusions about the
range of a meromorphic function from the fact that its cluster set at a bound-
ary point a contains a point not in the cluster set of the boundary function
at a, seems to be the theorem of Iversen [1] and Gross [1]. For references to
the enormous amount of later work in the same direction see Noshiro [2].

THEOREM 9.2. Let f be an analytic function from the hyperbolic Riemann
surface R1 to the Riemann surface R2. Let al be a point of R let A be a
Borel subset of R and let A2 be the essential fine boundary cluster set of f on
A at . Suppose that a is a point of R2 which is a cluster value of f at
relative to At (see Section 4). Suppose that A., and let B be the open
component of R2 A containing o2. Then B2 B n f(R) has zero capacity,
and every point in this set is the limit of f on a continuous path to .
Our hypothesis implies that, deleting from A a set of harmonic measure

zero and all points outside some neighborhood of a, there is a sequence
{n} in R with the following properties: the harmonic measure of A1 at
goes to 1 when n -- ; a f(n) -- o2 ;the closure of the set of fine
limits (if any exist) at the points of A is a set 2: not containing a. We
can suppose, changing n slightly if necessary, that n is not a branch point
of R considered as a covering surface of R. Let D2 be an arbitrary compact
subset of B of strictly positive capacity. We suppose from now on that A
has been shrunk enough so that D is in an open component C2 of R
in fact in the same one as a. We also suppose below that n is so large that
f(n) is in this same component. To prove the first assertion of the theorem
it is sufficient to prove that f(R) D is not empty. Suppose that this
intersection is empty, and consider the probability that a Brownian path on

R2 from f(n) meets D before 2:. This probability is strictly positive and
has a strictly positive infimum as n varies. Now (neglecting path sets of
zero probability) a Brownian path from f(n) tO D which does not meet
corresponds to a Brownian path from to R A. By hypothesis the
probability of the set of paths of the latter type, which is at most the har-
monic measure of R A, goes to 0 with l/n, contradicting our description
of path probabilities on R. We have now proved that B B f(R1) has
zero capacity. A standard examination of the inverse images of a decreasing
sequence of neighborhoods of any point of this difference, shrinking to the
point, shows that the point is the limit of f on some path to , and the proof
of the theorem is now complete. The theorem is easily strengthened by
adding hypotheses to ensure that R can be replaced by its intersection with
any open neighborhood of

10. Application to the range of an analytic function on a disc
In this section we shall consider only functions on the unit disc R: z < 1.

If f is a regular function on this disc, with If’(O) ->- 1, Bloch [1] obtained
his classical result that f(R) contains a disc of radius independent of f, uni-
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valently covered by f. A related result (Doob [1]) whose exact relationship
with Bloch’s theorem is not yet clear is the following, which we state for-
mally, for ease of reference.

THEOREM 10.1. Let f be a regular function on the disc R, and let A be an
open arc of the perimeter. Suppose that f(O) 0 and that

(10.1) lim inf_, f() >= 1

if a e A. Then there is a number I( A I) depending on the length of A, A I,
but not on f, such that f R includes a disc in R of radius (I A [).

In this section we shall extend Theorem 10.1 by relaxing the conditions on
A and on the character of f near A. We first remark that Theorem 10.1
remains valid for meromorphic functions, even with a loosening of the re-
striction at A, according to the following theorem.

THEOREM 10.2. Let f be a meromorphic function on the disc R, and let A
be an open boundary arc. Suppose that f(O) 0 and that (10.1) is true at all
points a of A less a subset of zero capacity. Then there is a number
depending on A but not on f, such that f(R includes a disc in R of radius

We firs noe h Theorem 10.1 is sill rue, wih perhaps smller/, if
f is llowed o be meromorphic, ccording o he following rgumen. There
is nohing o prove if f(R) R, wheres if b is n excluded poin of R, Theo-
rem 10.1 cn be pplied o he function ,
(10.2) g (1 4- b [)f/(f b),

to obtain the desired result. Furthermore this extension of Theorem 10.1
yields Theorem 10.2 unless the function f in question has a cluster value of
modulus < 1 at some point of A. But the theorem is surely true for such
a function, because if this cluster value has modulus c < 1, and if A1 is the
closed subset of A (allowing endpoints of A if necessary) of zero capacity
at each point of which If[ has inferior limit __< c’, c < c’ < 1, f has all its
boundary limit values at a along A A of modulus -> d, so according to a
cluster value theorem of Noshiro [1], f(R) includes every point of modulus
< c’, save possibly two.
The next theorem shows what is still true if f need satisfy (10.1) only at

almost every point of A, and in fact the actual hypothesis supposes far less
than this. The hypothesis is satisfied, for example, if at almost every point
a of A there is a linear path to a along which every cluster value of f has
modulus >- 1.

THEOREM 10.3. Let f be a meromorphic function on the disc R, and let A be
an open boundary arc. Suppose that f(O) O, and suppose that at almost
every point of A, f either has no fine limit or has a fine limit of modulus >= 1.
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Then there is a number 3(1 A I), depending on AIbut not on f, such that
f(R) includes some disc in R of radius (I A [) except for a set of zero capacity.

We observe that if f has no fine limit at points of a subset of A of strictly
positive measure, then f(R) includes the whole plane less a set of zero ca-
pacity, according to Theorem 7.2, so that the fewer points of A at which the
fine limit exists the better! To prove the theorem we need only remark that
if (10.1) is satisfied at every point of A, we can apply Theorem 10.1, whereas
in the contrary case there is a cluster value of modulus < 1 at a point of A,
and we can then apply Theorem 9.2 to deduce that f(R) includes all of R
save a possible exceptional set of zero capacity.
The following examples show that Theorems 10.2 and 10.3 cannot be

strengthened in their present settings. Let B be a compact subset of R
which does not contain the center and for which R B is connected. Let f
be a regular function mapping R onto R B, with f(0) 0, derived from a
univalent conformal map onto the conformal universal covering surface of
R B. Then f has a limit of modulus 1 at each point of a certain union A
of boundary open arcs, and all fine and angular limits at other boundary
points are in B. Thenfis of type B1 from R to R B. According to
Theorem 8.5 the Lebesgue measure of A is equal to the harmonic measure
of the outer boundary of R B relative to the center, multiplied by 2.

In particular, let B be finite. Then (10.1) is satisfied almost everywhere
on the boundary, but f(R) need cover no disc in R of radius independent of
f, because B can be chosen as dense as desired in R. Thus Theorem 10.2
becomes false if "less a set of zero capacity" is replaced by "less a set of
measure zero" even if f is supposed regular and bounded.

If B is a finite union of disjunct closed discs, f(R) need cover no disc in R,
save for a set of capacity zero, of radius independent of f, even if the length
of A is arbitrarily near 2, because of the variety of possible choices of B.
Thus Theorem 10.3 becomes false if the arc A is replaced by a measurable
boundary set of measure A I.
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Note added in proof. The author has belatedly seen a paper by C. CON-
STANTINESCU AND A. CORNEA, ber das Verhalten der analytischen Abbildungen
Riemannscher Fldchen auf dem idealen Rand yon Martin, Nagoya Math. J., vol.
17 (1960), pp. 1-87. Although these authors do not phrase their results in
the language of the fine topology, their paper contains results which can be
shown to be equivalent to those in Section 7 (including answers to questions
raised in that section in connection with the Plessner theorem), as well as to
Theorems 8.1, 8.3, and 8.5. The methods used are purely function-theoretic,
with no use of or application to probability theory.
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