
SOME REMARKS ON TABOO PROBABILITIES

BY

K. L. CHUNG

Consider a discrete-parameter homogeneous Markov chain {x, n >= 0}
with state space I and one-step transition matrix ((p.)), i, j I. For any
subset H of I we define the taboo probability

and set

When H {} we write p]) for ,,i Furthermore we write for
(n) (n) (n)p and e for , rhus,

dij eij

The quantity f- is familiar, the quantity e- has been studied in [1] under the
notation e. We set also

mij :=1 r(n)
n]

0)and ,p .
In this paper a "well known" statement means one which can be found in

[1], particularly I.9 there which treats taboo probabilities. What follows
may be regarded as some interesting corollaries of well-known results which
seem worth stating. They are engendered by generalization (Proposition
7) of recent result of Spitzer [3]. This will be placed where it properly
belongs, and the proof will be strictly elementary. In doing so we shall
define a new binary relation between the states of a Markov chain.

Recall that two states i and j belong to the same recurrent class if and only
if f. f 1, or alternatively f and f,. > 0. A subset C of I is said
to form an equitable class if and only if for every i and j in C we have

(1)
A well-known example of an equitable class is the following" x is the

sum of n independent and identically distributed rndom variables with
mean zero, or more generally, x, is a recurrent Markov chain with stationary
and independent increments.
We hve the following characterization.

PnOeOSlTION 1. An equitable class C is recurrent. A recurrent class is
equitable if and only if for each i in C, we have

(2) 1,
namely when ((pi)) restricted to C is doubly stochastic.
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* and e*. 1 impliesProof. The first assertion is trivial since f* e 1,
f*. > O. Hence the second criterion for recurrence cited above applies. Next,
by a well-known theorem of Derman, the following system of equations

u ,eup i C,

has the unique nonnegtive solutions lug, j e C} given by

Uj Ci

for an arbitrary i C and an arbitrary c 0. This and the fact that e 1
establish the second assertion of the proposition.

PROPOSITION 2. An equitable class C is positive-recurrent if and only if C
is a finite set and

(3) m c

for each i C, where c is the cardinal of C.

Proof. It is well known that the recurrent class C is positive or null accord-
ing as ce. < or . In the former case it is also well known that

e m/m and e (1/m) 1.

The proposition follows from these facts.

PROPOSITION 3. For a class C to be equitable it is necessary and sucient
that there exists an i in C such that we have e I for each j in C.

Proof. Necessity is just a part of the definition of equitability. To prove
suciency we observe that C must be recurrent since i is. Now it is well
known that in recurrent class we have

(4) e. e e.

It follows that e 1 for every j and , proving that C is equitable.
Two distinct states i and j are said to be an equitable pair if and only if

It is important to note that an equitable pair of states does not necessarily
belong to an equitable class, since the latter need not exist.

PROPOSiTiON 4. If i and j are an equitable pair, then they belong to the same
recurrent class C, and * * for each in C. Furthermore we have

p p J f
where 5," ,P’, Z ,P with H i, j}.

Proof. The first assertion follows from the first criterion of recurrence
cited before; the second from (4). The rest follows from the well-known
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relations"

f*. 1 -f- iP* f* if* ( im
,1 ()\

e 1

(The one in the parenthesis is not needed to prove the others, but is the
heart of the matter.)
The next proposition, in some form, has been mentioned to me by several

persons, including Hoeffding, Orey, and C. J. Stone.

PnOOSTON 5. Whateer the states i and j, we ha,e

If e. 1 and e 1, then

(6) 0 < En=0 (n) (n)] N
[p p < n=o. N O.

Remark. The "silent" condition for (5) is of course f. 1 ndf 1.
Observe lso that if i nd j re recurrent, nd eel. 1, e 1, then i nd j
are in fct n equitable pir since 1 e e e.

Proof. We prove (6) only, since (5) is similar nd will not be used. We
my suppose that i j in (6). By well-known formula,

(n)

consequently

since -== e() =< e- =< 1. On the other hand, we have by another well-
known formula"

(r) (n-,)E =0
(n) (r) --r < r=O (r)

since -=o ei() < e =< 1. These inequalities establish (6)
The next proposition has nothing to do with probability; it is stated here

without (trivial) proof for the sake of explicitness.

PnOPOmTON 6. If [a[ < , b,] A < for all n, and
lim (b b_) 0, then

0.

PROPOSITON 7. If i and j are an equitable pair and belong to either a null-
recurrent class or an aperiodic positive-recurrent class, then we have

(7)

Remar 1. It is well known that 1 + p (f.i)- < in a rccurrent
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class. Since the left member of (7) is symmetric in i and j, (7) implies
prtial proof of the second sentence in Proposition 4.
Remark 2. The proposition is not true if i nd j belong to periodic,

positive-recurrent class; let pi 1 p.i.

Proof. Write the trivial equations"

(n) (v)N (n) EI f(v)En=0 Pjj + Ev=N+I En=O (n)
pjj

By well-known formulas, we hve

(10) En= 
N-- n) N n)11 n=O pi

Combining these four equations we obtain

N+ v=N+I (v)n=0 [P5 n)]
As N--) m, the third term converges to 1 + p*. The second term con-
verges to zero by virtue of (6), since p < m For the first term we apply

() (v);{’) and bn =0[ ]. The first conditionProposition 6 with a a,

in Proposition 6 is dearly satisfied, the second by virtue of (6). If i and j
are in a null-recurrent cla,ss we have

(n) (n)lim (b-- b_) limo(p 0-- 0=0.

If they are in an aperiodic, positive-recurrent class, the above limit is equal to

/m 1/m. 0

by Proposition 3. Hence in either ease the third condition of Proposition 6
is also satisfied, and so the first term above converges to zero. Proposition 7
is proved.
When x is the sum of n independent and identiea.lly distributed integer-

valued random variables with mean zero, Proposition 7 reduces to Theorem 1
in Spitzer [3]. His Theorem 2 can be proved in a similar way.
The following question is open, even in Spitzer’s case" Is the series

(n),, {P) e} convergent in a null-recurrent, equitable class? The
corresponding problem for a positive-recurrent class has been considered in
[1]. As a particular case in Theorem I. 11.4 there, we have, if the class is
aperiodic,

(n) (n)

I take this opportunity to correct a foolish slip in [1] about this theorem. If the
class has period d, the proof there yields the convergence of n=d_+r /pk p)} as

n--, foreach fixed r. The theorem as statedis correct when d 1; the corollary should
be deleted.
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If the class is also equitable, then it follows that the left member of (7) is
equal to

by (3). The last-written fraction is well known to be equal to 1 + .p*,
checking our previous result.

In a previous paper [2] I mentioned the problem of investigating the con-
(n) (n)vergence of , in null-recurrent class. Mr. C. J. Stone has

recently informed me that this series need not converge. In this connection
it my be worthwhile to record the following dul formulas. If f. 1, then
for ech k,

if e. l, then for ech lc,

The first formul is in [1]; the second is proved dually.

Addendum. I am indebted to Hoeffding and Snell (independently) for the
following extension of Proposition 7.

First, in formula (6), let i and j now belong to a recurrent class, but discard
the ssumption that e. 1, e 1. Then without changing the proof there
but noticing that e* *e 1, we obtain in lieu of (6)"

N n) N(e) 0 =< Z:0 [ ] <= Z:0 .-, N a 0.

Now let i nd j be distinct states belonging to a null-recurrent class. Multi-
plying (8) and (11) through by e, forming the following combination, and
proceeding as before, we obtain in lieu of (7)"

$ (n) (n) (n) * *(3) =o {e(p p + p e( + p) 1 + p.

Formul (13) is thus valid in any null-recurrent class and reduces to (7)
when the class is also equitable.
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