ON THE NUMBER OF MATRICES WITH GIVEN CHARACTERISTIC
POLYNOMIAL
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1. Introduction

Let K be a finite field with ¢ elements, and let K, denote the ring of all
n X m matrices with entries in K. Recently Fine and Herstein proved®

The number of nilpotent matrices in K, is ¢"" ™.
We shall prove here the following generalizations.

TureoreEM 1. Let f(x) be an trreducible polynomial in K[x] of degree d = 1.
Then the number of matrices X € K,q for which f(X) is nilpotent is

(1) n2d2-—nd'(1 - q—l)(l - q_2) e (1 - q—nd)
T = 0= ¢
Before stating the second result to be proved here, which includes the
above theorem as a special case, we introduce some notation. Define

(2) Flu,r) = (1 —w )1 —u?)--- (1L —u"),
where F(u, 0) = 1. Then we have’

TueoreM 2. Let g(x) € K[x] be a polynomial of degree n, and let
(3) g(x) = fi"*(x) -+ fi"*(x)

be 1ts factorization in Klx] into powers of distinct irreducible polynomials
filz), -+, fu(x). Set
d; = degree of fi(2), 1

Then the number of matrices X e K, with characteristic polynomial g(x) s

IIA

1t =k

(4) oo, Flom)
=1 F (g%, n:)
The proofs of these theorems do not require a knowledge of the Fine-
Herstein paper, except for the following combinatorial lemma which they
establish and which we state without proof.
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Lemma 1 (Fine-Herstein). Let u be any complex number which is not a

root of untty. Let {ry, --- , r,} range over all n-tuples of non-negative integers
for which
o+ 2r + oo 4 0, = 0,
and set
Sji=1r;j+ i+ o+ T, l=sj=n
Then
u812+322+...+8n2 n

(5) > “

i P, i) F ) - P, ) Flutn)

2. Automorphisms of modules over local rings

Throughout this section we let R be a commutative local ring with unity
element, and let 7R be its unique maximal ideal. Suppose further that = is
nilpotent, say =" = 0, and let

t = number of elements in the field R/=R.
Then

ROaRD7R>D ---Dx" 'RD «x"R = (0)

is a descending chain of ideals of R in which every ideal occurs, and each
(uotient is isomorphic (as R-module) to the field R/7R. Thus R contains
{" elements, and more generally R/x’R contains ¢’ elements.

We shall restrict our attention to R-modules which are finitely generated.
Since R is a principal ideal domain, each such R-module V is a direct sum of
cyclic R-modules. Moreover every nonzero cyclic R-module is a homo-
morphic image of R, hence is of the form R/%’R for some j,1 < j < n. Set

V; = R/7'R, 1

IIA
IIA

J=n.

Then V; contains t’ elements, and is indecomposable since it contains a unique
minimal submodule 7" 'V;. Thus every R-module V is expressible as

V=W1@®Wn;
W;=V,®---®V; (r; summands),

(6)

and such an expression is unique by the Krull-Schmidt Theorem.
Lemma 2. Let W; be given in (6). The number of R-automorphisms of
W ; 1s precisely
E (L, ;).
Proof. Since #’ annihilates W;, we may regard W; as an R’-module,
where
R' = R/x'R.
The number of R-automorphisms of W is then the same as the number of
nonsingular r; X r; matrices X with entries in R’.  Now a matrix X over R’ is
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nonsingular if and only if X is nonsingular, where X is obtained from X by
mapping each entry a of X onto its image & in R’/wR’. Since X has its
entries in the field R'/wR’ = R/7R, there are

CPF(t 7))

possible choices for X. But for givenathere are ¢ choices for o € R’, and
thus the number of nonsingular matrices X over R’ of size r; X r; is

(@ TE ().
This proves the lemma.

LemMmA 3. Let V be given by (6), and set

(7 si=r;+ i+ 0+, L=j=n
The number of R-automorphisms of V s then
(8) Ny = [0 F e, ry).

Proof. For convenience we rewrite (6) as
V= Z?=1 Z?Ll Vieii,
where e;; is just an indexing mark, say
eji=(0,---,0,1,0,---,0)

with the 1 in an appropriate position. Any R-homomorphism is completely
determined by its effect on the {e;;}.

For v e V, v 0, define the order of v to be the smallest integer s for which
v = 0. Let us say that 0 has order zero. The elements of W; have order
=< j, clearly.

Now let 6 be an R-automorphism of V. Then 6 preserves order, so that
for 1 = j = n we have

O(W]) CW1+ s Wj—1+Wj+7er+1+ "’+7I’n~jWn.

Hence if we set

(9) 0(cii) = 2omasi’, asi? e W,
then we see that for m > j we have

(10) asi? ex" W, .

Ifurthermore, for fixed j the mapping

(11) eji — ai’, 1=¢=ry,

must be an R-automorphism of W ;. It is easy to see that conversely if we
define an R-homomorphism 6 by means of (9) and (10), where for each
Jj (1 = j = n) equation (11) gives an R-automorphism of W, then 4 is
indeed an R-automorphism of V.
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For fixed j, 1 < j < n, the elements {a$?” :m < j} may be chosen arbitrarily.
Since there are r; choices to be made, and W; + --- 4+ W,_; contains
t1r1+2rz+"'+(j—l)rj_1
clements, this gives
(12) trj(lr1+2r2+-‘-+(j~1)rj_1)
possibilities for the {a{7’1m < Ll =i
Next the set of elements {a$’:1 < ¢ < r,;} may be chosen in

(13) tEE (L, 1)

IIA 1A

ways, by Lemma 2. Finally, since for m > j there are exactly ™ elements
in #"'W,, , there are

(14) i

choices for the elements {a;”

morphisms of V is therefore

NV = H;L=1 {tqu(ty r]')}’

Uj = Dot M T+ J75 D it T -

If we define the symbols {s;} by (7), a routine calculation establishes (8).
(The above generalizes the formula for Ny obtained by Fine-Herstein in
pp. 500-502, loc. cit., where Ny is referred to as u in their paper.)
Now let V range over a full set of non-isomorphic B-modules having exactly
1" elements, so that {r;, - -+, 7.} range over all n-tuples of non-negative in-
tegers for which

im > 4,1 =<4 = r;. The number of R-auto-

where for each j,

n=r4+2r4+ -+ nr,.
LemMMma 4. As V ranges over the above-mentioned R-modules, we have
(15) 2 v1/Ny = 1/t"F(t, n).
Proof. Use the formula (8) for N'y , and then apply Lemma 1 with u = £,

3. Nilpotent matrix polynomials

Let K be a field with ¢ elements, f(x) ¢ K[x] an irreducible polynomial of
degree d = 1, and let n be a fixed integer. We wish to determine the number
of matrices X e K4 for which f(X) is nilpotent. We remark that f(X) is
nilpotent if and only if f*(X) = 0, since f(X) is nilpotent if and only if the
characteristic polynomial of X is f*(x).

Define the ring R by

R = K[al/(f"(x)),

and for each polynomial g(x) e K[z] let g(xr) denote its image in B. Then
R is a commutative ring of the type discussed in the preceding section, with
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maximal ideal 7R, where = = f(z). We have =" = 0, and the number ¢ of
elements in the field R/7R is given by

(16) t = qd7

since R/wR = K[z]/(f(z)).

If V is any R-module of K-dimension nd, then V contains " elements.
Furthermore V gives rise to a representation of R by matrices in K,q, and
the matrix X corresponding to £ satisfies f*(X) = 0. Conversely each such
matrix X is obtainable in this way from some R-module with ¢" elements.

For the rest of the proof we restrict ourselves to B-modules V with ¢" ele-
ments. Each V gives rise to a set of equivalent matrix representations, and
hence gives not only one matrix X corresponding to £, but a system of matrices

{P7'XP:P ¢ K,q, P nonsingular}.

The number of distinet matrices in this system is just the number q"deF(q, nd)
of nonsingular matrices in K,q , divided by the number of nonsingular matrices
P ¢ K,q satisfying

P'XP = X.

But since & generates the ring R, any such P yields an R-automorphism of V,
and so there are Ny such nonsingular P’s, where Ny is given by (8) with
d
t=q.
On the other hand it is clear that non-isomorphic R-modules V, V* give
rise to matrices X, X* which are not connected by any relation

X* = PT'XP, P eK,;, P nonsingular.

The above discussion shows therefore that the number of matrices X ¢ K,,4
for which f(X) is nilpotent is precisely

> v " F(g,nd) /Ny,

where V ranges over a full set of non-isomorphic R-modules having t" ele-
ments. By using (15), the above is just

q""F(q, nd)/q"F(¢’, n),
that is,
maeae (1= ¢ DA =¢" - 1 —g™
A—-g¢gHA —qg%) - (1 =g~

This completes the proof of Theorem 1.

4. Matrices with given characteristic polynomial
We are now ready to prove Theorem 2. Let g(z) be given by (3), and let

S = K[2]/(g(z)) =B ® -+ @ Ry,

where

IIA
.
lIA
=

R; = K[2]/(f" (2)), 1
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Any S-module V can be decomposed into a direct sum
V—._.— Vl@"’@Vk,

in which V;is a left R;-module, 1 < 7 < k. We obtain all matrices X ¢ K,
with characteristic polynomial g(z) by letting V range over a full set of
non-isomorphic S-modules of dimension n over K, chosen in such a way that

(VI:K) = ’nld]_, e, (V}a:K) = Ny dk,

and then for each such module V taking the set of matrices which correspond
to & € S (the image of x € K[x]). Thus the number of matrices X ¢ K, with
characteristic polynomial ¢g(x) is just

2 vq"F(g,n)/Ny.

It follows readily from the fact that the {f;(x)} are pairwise relatively prime
that any S-automorphism of V maps each V; onto itself, and thus is composed
of a set of k automorphisms {6,:1 < 7 < k}, where 6,:V;, — V,;. Therefore

NV=NV1 ...va.

Furthermore, a full set of non-isomorphic S-modules V of the type described
above is obtained by letting each V', range independently over a full set of
non-isomorphic R;-modules with (V;:K) = n;d;,for¢ = 1,---, k. Thus
the number of matrices X ¢ K, with characteristic polynomial g(x) is

¢"F(q,n) 2 v1/Nv, -+ Ny, = ¢"F(g, n) [Tt { 2vi 1/N v}
= ¢"F(g,n)- { i1 ¢UF (g, ) 7

Using the relation n = > d:n;, we obtain formula (4). This completes
the proof of Theorem 2.
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