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Introduction

It is well known that, since sheves of modules over fixed shef of rings
R on topologicM space X form n belin ctegory, the set of equivalence
classes of extensions of shef A" by shef A’, i.e., of exact sequences

0 -- A’ A -- A" -- O,

is in 1-1 correspondence with the first derived functor Ext(A’, A’) of
Hom(A’, A’). This statement bout sheves corresponds exactly to the
nlogous statement bout nodules. Similarly, there is classification
theorem for extensions of n ssocitive Mgebr h by kernel A with triviM
multiplication which sserts that the set F(A, A) of equiwlence classes of
such extensions is in 1-1 correspondence with Ext(A, A), where A denotes
the enveloping Mgebr of A. It is nturM to sk whether or not the sme
result holds for sheves of ssocitive lgebrs. It will be shown that, in
generM, this is not the cse, but that under pproprite hypotheses there is
n exact sequence

/(X, A) --. F(A, A) -- Ext(A, A) --,/(Z, A) --where the symbols refer to sheaves of algebras and where/*(X, A) is the
Cech cohomology of X with coefficients in A.
The paper is divided into three parts. In the first section it is shown that

the groups Ext,(B, A) can be clculated from a "weakly projective and co-
herent" resolution of B instead of an iniective resolution of A. The main
result of the second section is that if A is itself a weakly projective and co-
herent sheaf of associative algebras, then the usuM standard complex is a
suitable resolution of A. Similar results are given for sheaves of supple-
mented algebras and for sheaves of Lie lgebrs.. In the third section it is
shown that the corresponding extensions can be classified by the cohomology
groups of a subcomplex of the bicomplex of Cech cochains of X with coeffi-
cients in the appropriate standard complexes. This leads to the indicated
exact sequence.

It is assumed throughout the pa.per that X is paracompact Hausdorff, and
essential use is made of the uniqueness theorem for cohomology with coeffi-
cients in a differential sheaf. As this theorem does not seem to be readily
available, a short proof of it which was suggested by J. C. Moore is given in
the first section. Also, Proposition 1.1 was included in a series of his lectures.
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In a subsequent paper, I hope to discuss the classification of extensions
by kernels with nontrivial multiplication. I hope, furthermore, that these
results will eventually apply to the problem of classifying deformations of
pseudogroup structures.

E1. Calculation of xt(B, A)
1.1 Preliminaries. In our treatment of sheaves, we will follow the usage

of Godement [3], particularly Ch. 7, and Grothendieck [4], Ch. 4. Thus, if A
is a sheaf of (left) R-modules, where R is a sheaf of rings (commutative with
units) on a topological space X, then A is a subsheaf of an R-iniective sheaf
of modules I, where I is the sheaf corresponding to the presheaf
U IIxv i(x), i (x) being an Rx-injective module containing A -1 (x).
Note that if B is any sheaf of R-modules, then

Hom,(B, I) IIx Hom,(B, I(x)).

This construction yields an injective resolution I* of A. The cohomology
groups of the cochain complex Hom.(B, I*) are denoted by Ext,(B, A). In
particular, the cohomology groups H (X, A) of the space X with coefficients
in A are, by definition, the groups Ext,(R, A). Similarly, if Hom.(B, A)
denotes the sheaf of germs of R-homomorphisms of B into A, then Ixt(B, A
will denote the cohomology sheaves of the complex Hom(B, I*).
A sheaf B of R-modules is called R-coherent if, for each x X, there exist

a neighborhood U of x and integers p and q such that

R[U-->Rq[ U--->BI U-->O

is exact. If B is R-coherent, then

Hom,(B, A) Hom,(B, Ax).

A sheaf B of R-modules is called weakly R-projective if B is R-projective
for all x X, and it is called wilted (flasque) if for every open set U X,
the map F(X, B) -- F( U, B) is surjective. Clearly, if I is injective, then
ttom.(B, I) is wilted. If B is wilted, then Hq(x, B) 0 for q > 0.

PROIOSITION. If B is weakly R-projective and R-coherent, then

txt(B, A) 0
for n

Proof. As in Grothendieck [4], Ch. 4, there is a diagram

0- I-Iom(B, A) - I-Iom(Rq, A) - I-Iom(D, A)x -- Ext,(B, A) -,0

0--Hom(B, A) -- Hom(Rq, A) -Hom(Dx, A) - Ext(B, A) --,0

where D is the kernel,

O--->D[ U-->Rql U-->B[ U-->O.
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The first two vertical arrows are isomorphisms, and the third is a mono-
morphism. Hence the map Ext,(B, A)x -- Ext(Bx, A) is a mono-
morphism. Since B is Rx-projective, Ext(B, A) 0, from which the
desired result follows.

1.2 Differential Sheaves. A differential graded sheaf is a positive graded
sheaf A* =0 A provided with a differential operator d of degree 1.
We define the cohomology sheaves of A* by

3Cn(A,) ker(d.A An+l)/im(d’A n-1
__

An).

As in Cartan-Eilenberg [1], Ch. XVII, every differential graded sheaf of
R-modules admits an R-iniective resolution I {IP(Aq)} such that, in
particular, I*(A) is an iniective resolution of A, and the sheaves

3C(IP(A*)) ker(d2.I(A) -- I(d+))/im(d2.I’(A-) I(A)),

where d2 is the differential operator induced by d"A -- A+1, for fixed q form
an iniective resolution of 3C (A*).

Let C’(X, A) F(X, I’(A)), and let

C(X, 3C(A) r(X, 5C(I’(A*) ).

Denote again by d2 the differential operator d2"C’(X, A) CP(X, A+)
induced by the operator d’A A+, and denote by

d’C’(X, A) --. C’+’(X, d)
the operator induced from the mapping I(A) -- I+(A), multiplied by
(- 1). Clearly, if Hrdenotes the cohomology bicomplex with respect to
d, then q P A* 3CH[C (X, )] C (X, (A*)) We define H*(X, A*) to be
the cohomology groups of I(A) with respect to the total differential operator
ti dl -d.
Cohomology groups/*(X, A*) can also be defined by the (ech process

(see [3], Ch. 5) as follows" If A is a sheaf of R-modules, let C*(, A) denote
the complex of (ech cochains with respect to an open covering at of X. The
direct limit of the O*(at, A) over coverings indexed by the points x e X and
satisfying x Ux will be denoted by O*(X, A). We note that if X is para-
compact Hausdorff, then *(X,) is an exact functor. If A* is a differential
graded sheaf, then the cohom01ogy groups of the bicomplex O(X, A) will
be denoted by/*(X, A*).

UNIQUENESS THEOREM. If X is paracompact Hausdorff, then

H’(X, A*) In(X, A*).

Proof. If A is a sheaf of R-modules, then, as in [3], Ch. 5, let ,*(X, A)
denote the direct limit over coverings at indexed by X of the sheaves (*(at, A
corresponding to the presheaves V -- *(at n V, A), where at n V denotes
the covering of V by sets of the form U V, U at. Note that if X is para-



162 JOHN W. GRAY

compact Hausdorff then ,*(X,--) is an exact functor, *(X, A)
F*(X, A), and *(X, A) is a resolution of A. Thus, if A* is a graded
differential sheaf, then ,*(X, A*) is a resolution of A*, and hence, by [1],
Ch. XVII, since I*(A*) is an injective resolution of A*, there exists a map

o’/(X, A) ---, I(A)
covering the identity map A* A*. We wish to compare the cohomology
groups of the complexes O(X, Ai) and C(X, Ai). If each complex is
filtered by the first index, then in the resulting spectral sequences the first
terms are respectively

Ef’q(*(X, A*)) HqP(X, A*) (P(X, C(A*))
and

Thus

and

Ef’q(C*(X, A*) C’(X, q(A*) ).

E’q( O*(X, A*) I:IP(X, 5cq(A*)

E’q(C*(X, A*) H’(X, cq(A*) ).

By the usual uniqueness theorem, if X is paracompact Hausdorff, then
induces an isomorphism

E’q(*(X, A*)) E’q(C*(X, A*)).

Therefore, by Theorem 3.2 of [1], Ch. XV, induces an isomorphism

In(X, A*) un(x, A*).

1.3 The Representation Theorem. Let A and B be sheaves of R-modules on
X. A weakly R-projective and R-coherent resolution P, of B is an exact
sequence

--* P.- P1 --* P0 --- B --,0

such that each P is weakly R-proiective and R-coherent. Of course, in
general, there is no way to know whether or not such a resolution exists. We
should like to show, however, that if B admits such a resolution then
Ext,(B, A) H’(X, Hom(P,, A)). We begin with the following pre-
liminary result.

LEMMA. If P, is a weakly R-projective and R-coherent resolution of B, and
if I is an injective sheaf containing A, then Hn(x, I-Iotas(P,, I)) 0 for
n > O, and H(X, I-Iotas(P,, I)) Hom(B, I).

Proof. If the complex C(X, I-Iom(P, I)) is filtered by j, then a spectral
sequence is obtained in which

Ef ’q Hq(X, I-Iom,(Pp, I)).

Since I is injective, the sheaves Hom(P, I) are wilted, and hence E’q 0
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ifq > 0, andE’ Hom(P,I). It follows thatE’’ 0ifq > 0, and
E’ H[Hom(P, I)] But, as was remarked in paragraph 1 1

Hom(P, I) IIx,x Hom.((P)x, I(x)).

Now, for each x e X, the complex HomR,( (P,),, I(x)) is acyclic in positive
dimensions since (P,), is an R,-projective resolution of B, and I(x) is Rx-
injective. Thus, since direct product commutes with cohomology, it follows
that

H[HomR(P,, I)] H [II,x Hom.((P,),, I(x))] 0

if p > 0, and

H[Hom(P,, I)l II,,x Hom,(B,, I(x)) Hom(B, I).

Therefore H’(X, Hom.(P,, I)) E ’ 0 if n > 0, and

H(X, I-Iom.(P,, I)) Hom(B, I).

THEOREM. If P, is a weakly R-projective and R-coherent resolution of B,
then Ext,(B, A) Hn(X, Hom(P,, A) ). If, in addition, X is paracompact
Hausdorff, then Ext (B, A /n(X, Hom(P,, A ).

Proof. Let Y* be an injective resolution of A. Then we shall show that
both of these sets of cohomology groups are equal to the cohomology groups
of the tricomplex K given by

Ki’’k Ci(X, Hom(Pj, Yk))
with the obvious induced differential operators taken with appropriate signs.
For, if K is filtered by k, then a spectral sequence is obtained in which

"El ’q Hq[c*(x, I-Iotas(P,, Y))].

The preceding lemma applies since Y is an injective module, and hence
"E’’q 0 if q > 0, and "E’’ Hom(B, yk). Therefore, H’(K)
E ,o Ext,(B, A).
On the other hand, if K is filtered by i 4- j, then a spectral sequence is

obtained in which

’El ’q H [i+= C(X, HomR(P., Y*))]

i+-- ci(x, q(Horn.(P., Y*)))

+__ C(X, Ext(P., A)).

But, by Proposition 1.1, Ext(P., A) 0 for q > 0 since P is weakly
R-projective and R-coherent. Therefore E’’q 0 if q > 0, and

’E ’ += C(X, Hom(P, A)).

Hence Hn(g) ’E2’’ Hn(x, Hom(P,, A)), which proves the first
statement of the theorem. The second statement follows from the unique-
ness theorem for differential sheaves on a paracompact Hausdorff space.
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2. Standard complexes
2.1 Sheaves of Augmented Rings. Extensions of sheaves of algebras will be

studied by use of the usual standard complexes. In this section it will be
verified that these complexes yield resolutions to which Theorem 1.3 can be
applied. As in [1], Ch. VIII, we shall utilize the unifying notion of a sheaf
of augmented rings, and we shall try to employ the notations of [1] more or
less consistently. Thus, a triple (A, , Q) consisting of a sheaf 3_ of rings
(with units), a sheaf Q of left A-modules, and a A-epimorphism : A -- Q
will be called a sheaf of (left) augmented rings. If A is a sheaf of left A-mod-
ules, then Ext] (Q, A) will be called the n*h cohomology group of the sheaf of
augmented rings (h, v, Q) with coefficients in A.

2.2 Sheaves of Associative Algebras. Let h be a sheaf of associative algebras
over a sheaf R of rings. We remark once and for all that all tensor products
will be tensor products over R unless there is explicit indication to the con-
trary. Let A A (R) A*, where A* denotes the sheaf of opposite algebras;
i.e., as a sheaf of R-modules, A* A, but *t** (t},)*. If A is a sheaf of
two-sided A-modules, then A may be regarded as a sheaf of left Ae-modules.
The map p:A A:tt (R) 5’* ---+ tts" determines a sheaf of augmented rings
(A*, p, A), and thus the groups Ext](A, A) are defined for any sheaf A of
two-sided A-modules. These groups will be denoted by Hn(h, A) and will
be called the (Hochschild) cohomology groups of h with coefficients in A.

LEMMA. Let F and A be sheaves of associative R-algebras, and let A resp., B)
be a sheaf of left F-modules (resp., A-modules). If A is wealcly F-projective
and F-coherent, and if B is weakly A-projective and A-coherent then A (R) B is
weakly F (R) A-projective and F (R) A-coherent.

Proof. Since (A (R) B)x Ax (R) Bx, it follows from [1], Ch. IX, Corollary
2.5 that A (R) B is weakly F(R) A-projective. To prove that A (R) B is F(R) A-
coherent, suppose that

are exact. Note that if r and s are any positive integers, then there exist
mappings so that

r’/ t
is exact. Now, since the tensor product is a right exact functor, it follows
that

[(r (R) A (r v (Fq @ Aq’)] V (A @ B) U 0

is exact, where " 6@6’ and " (@id) (ida9’). Hence, if
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q’ < q, for example, and if r is large enough, then there is an exact sequence

<r (R) A)l V-(r(R) h)ql U- (A (R)B)[U---0

which proves that A (R) B is F(R) A-coherent.
Let S(A), n -> --1, denote the (n + 2)-fold tensor product of A with

itself, and let

d (Xo, ..., ..., ...,
If A is weakly R-projective and R-coherent, then by [1], Ch. IX, 6 and by
the preceding lemma, Sn(A), n >__ 0, is a weakly Ae-projective and Ae-co
herent resolution of A. If we write

Sn(A) h 1) n(h) () h he() n(h),

where S(A) denotes the n-fold tensor product of 3_ with itself, then it fol-
lows from Theorem 1.3 that Ext]e(A, A) Hn(A, A) may be calculated as
the nth cohomology group of X with coefficients in the differential sheaf

Hom(S.(A), A) Hom.(S.(A), A)

taken with the induced differential operator.
Let A’ coker(R -- A), let 2n(A) denote the n-fold tensor product of

A’ with itself, and let Nn(A) A (8) 2(A). It is clear that if A’ is also
weakly R-projective and R-coherent, then Sn (A) and Sn(A) can be replaced
by Nn(A) and N(A).

2.3 Sheaves of Supplemented Algebras. A sheaf A of R-algebras together
with an R-algebra epimorphism e’A -- R is called a sheaf of supplemented
algebras. The augmentation ideal J ker e is a direct summand, and so,
as a sheaf of R-modules, A R -t- J. Since (A, , R) is a sheaf of augmented
rings, the appropriate cohomology groups are Ext] (R, A ), where A is a sheaf
of left A-modules.
On the other hand, given a sheaf A of left A-modules, a right action of A on

A can be defined by
a) a( e) e()a.

If the resulting sheaf of two-sided A-modules is denoted by A, then the
Hochschild groups Hn(A, A) Ext]e(A, A) can also be considered.

PROPOSITION. Let A be a wealdy R-projective and R-coherent sheaf of supple-
mented R-algebras, and let P. be a weakly A%projective and A%coherent resolu-
tion of A. Then P. (R) A R is a weakly A-projective and A-coherent resolution of
R as a sheaf of left A-modules. In this case

Ext,(R, A) Hn(A, A).
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Proof. By [1], Ch. X, Theorem 2.1, P. (R)A R is a weakly h-projective
resolution of R, and by Lemma 2.2, it is h-coherent. But, clearly,

HomA(P., As) Hom(A (R) P., As) Hom(P. (R) R, A)

by [1], Ch. X, Lemma 2.2. Hence

Ext, A, As) Ext(R, A ).

Note. In general, there is no induced cohomology map corresponding to a
map of sheaves of augmented rings. However, the "mapping theorem" of
[1], Ch. VIII, Theorem 3.1, which is used in the preceding proposition, is
still valid since the only map of weakly projective resolutions which enters
into the proof is the identity map.
The preceding proposition applies to the standard complexes of 2.2 and

yields the complexes Sn A, 7) Sn(A) ( A R and Nn(A, e) Nn(A) (R) R.
In this case, 3.’ J, and therefore h’ is weakly R-projective and R-coherent.
Hence the complex

N(A) (R)AR A(R)r(A) (R) A(R)AR A(R)(A)
can be used. Thus the cohomology groups Ext.] (R, A) can be computed as
the eohomology groups of X with eoefficients in the differential sheaf

HomA(N,(A, e), A) Hom(.,(A), A).

2.4 Sheaves of Lie Algebras. Let L be .a sheaf of Lie algebras over a sheaf
of rings R. The universal enveloping sheaf U(L) of L is the sheaf correspond-
ing to the presheaf W --, U[F(W, L IW)] where W is an open subset of X
and where U[F(W, L IW)] denotes the universal enveloping algebra of the
Lie algebra F(W, L W). (See [1], Ch. XlII, 1.) It is clear that U(L)
U(L), and hence the Poincar6-Birkhoff-Witt theorem remains true for
sheaves of Lie algebras. Consequently, we shall assume from now on that
L is R-free for each e X. If we assume in addition, as we must, that L
is R-coherent, it follows that L is loeMly free; i.e., for each x e X, there are a
neighborhood W of x and an integer q such that L]W R[W. If E,(L)
denotes the sheaf of Grssmann Mgebras- generated by L, then E,(L) is also.
locally free, and hence the standard complex V,(L) U(L) (R) E,(L) is
locally U(L)-free. By [1], Ch. XIII, 7, V,(L) is acyclic, since its restriction
to each x e X is acyclic. Hence if we define

nn(L, A) Extreme(R, A),

then H(L, A) cn be computed as the n* cohomology group of X with
coefficients in the differential sheaf

Homv(V,(L), A) Hom(E,(L), A).

Note that the complex N,(U(L), e) cannot be used since U(L) is never
R-coherent.
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3. Extensions of sheaves of algebras
3.1 Locally Trivial Extensions of Sheaves of Modules. If A and A" are

sheaves of R-modules, then an extension of A" by A’ is an exact sequence of
R-modules

O
__
A i__ A P A __. 0

Two extensions are equivalent if there exists a commutative diagram

It is well known that the set E(A", A’) of equivalence classes of such exten-
sions is in 1-1 correspondence with Ext(Atp, A’).
An extension of A" by A will be called locally trivial if there exists an

open covering t U.} of X such that for each U., the sequence

O--A’] U i P A"

splits; i.e., if there exists an R-homomorphism j,:A"IU,-- A IU, such
that pj, identity. In this case, A U, (A’ A") U,. The set of
equivalence classes of locally trivial extensions of A" by A will be denoted
by LTE(A", A’).

PROeOSITION. (See Deheuvels, [2], 2.) LTE(A", A’) is in 1-1 corre-
spondence with the ech cohomology group fI(X, Hom(A", A’) ). Further-
more, if X is paracompact Hausdorff, and if A ’ is weakly R-projective and
R-coherent, then every extension is locally trivial; i.e., LTE(A", A)
E(A",A’).

Proof. A proof of the first part is given in [2]. We shall indicate the
correspondence in some detail here in order to introduce some notation.
Suppose

O __. A i__ A P A ,t .._ O
is locally trivial extension with lifting homomorphisms j.’A" U. ---. A U..
In U. U. n Us, let h. j j.. Since ph. O, it follows
that h.’A" U. A’ U. Clearly, {h.} is a 1-cocycle in

(l(V, HomR(A", A’)).

Suppose two locally trivial extensions given by A and A* are equivalent
by a map k’A -- A*. For simplicity, we shall assume that A’ A A*.
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Then/c A’ idA, (i.e., the identity map of A’). If {j.l and {J*-/ are the
lifting homomorphisms, then

p*(j*. kj.) idA,, p*lj. idA,, pj. O,

and hence (j* kj.)’A" V. -- A’ V.. Furthermore, if {h.8} and
are the corresponding cocycles, then, since/h.8 h.8, it follows that

h.8- h.8 (38 kojs) (J*. koj.);

Thus, equivalent extensions determine cohomologous cocycles.
Conversely, if [h.8} is such a cocycle, let A be the sheaf which is the quotient

of U.(A’ @ A") U. by the relation

(a’, a"), (a’ + h.8(a"), a")8 for (a’, a") (A’ (R)

Then A determines an extension which realizes {h.8}. If {h.81 {h.8}
{-t, then the map

(a’, a"). (a’ Jc- ,.(a"), a")., (a’, a").e (A’ @

defines an equivalence k:A -- A*. Thus equivalence classes of extensions
are in 1-1 correspondence with cohomology classes.
To prove the second .part of the theorem, write Hom F Hom as a

composite functor. By [4], Theorem 4.2.1, there is a spectral sequence such
that part of the derived exact sequence of low degrees is

" E " A’ H(X, E tR( ,A’))--O--->HI(X, HomR(A A’)) -- xtR(A -- x A" ....
If A" is weakly R-projective and R-coherent, then by 1.1, Ext(A", A’) 0,
and hence Hl X, Hom(A",A’)) is isomorphic to Ext(A", A’). If, in addi-
tion, X is paracompact Hausdorff, then

/l(X, Hom(A", A’)) H(X, HomR(A", A’)) Ext(A", A’).

It remains to be shown that the diagram

LTE(A", A’) ) E(A", A’)

(i) $

is commutative. This can be done as follows: If

(2)

is locally trivial, then

0 -- Hom(A", A’) -- HomR(A", A) -- HomR(A", A") --. 0
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is an exact sequence of sheaves. Hence there is a diagram with exact rows

(3)

where , i, and d are the coboundary operators in the various cohomology
sequences. By [3], Part 2, 5.11, the upper half of diagram (3) is commuta-
tive. To prove that the lower half is commutative, let

be an injective resolution of (2). Then there is a commutative diagram of
complexes

0 -- C*(X, HomR(A", ’I*)) --. C*(X, HomR(A", I*)) --T C*(X, I-Iom(A t’, "I*)) -- 0

0 C*(X, Hom(A", ’A C*(X, Hom(A", A) -- T
c*(z, Hom.)A’, A")) --0.

It follows immediately from this that the lower half of diagram (3) is com-
mutative, where the vertical map is that given by the spectral sequence.

/-I(x, Hom(A" A’)) and ] e Ext(At, A’) areFinally, we note that if h e

the elements corresponding to the extension (2), and if i e HomR(A’, A’)
is the identity map, then h ]i and ] di. Therefore diagram (1) is com-
mutative.

3.2 Extensions of Sheaves of Associative Algebras. Let A be a sheaf of asso-
ciative R-algebras. We wish to classify extensions of the form

0-.A-/ FLP.)A--0

where F is a sheaf of associative R-algebras, A is a sheaf of two-sided A-
modules with trivial multiplication, and p and i are R-algebra homomorphisms
such that if ), p (,), then i(ha) ,i(a) and i(ah) i(a)/for all a e A.
For a fixed sheaf A of two-sided A-modules, F(A, A) will denote the set of
equivalence classes of such extensions with respect to the usual equivalence
relation.
The following notations will be used" If A is u sheaf of two-sided A-modules,

then AA will denote the subsheaf consisting of elements a e A such that
,a ah 0 for all ) A. Hn[HomR(.(A), A)] will denote the cohomology
groups of the complex HomR(S.(A), A) with respect to the differential
operator described in 2.2. The cycles and boundaries of this complex will be
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denoted respectively by Zn[HomR(.(h), A)] and Bn[Hom(JS.(A), A)].
It is clear that H[HomR(.(h), A)] F(X, AA).
THEOREM. If A is weakly R-projective and R-coherent, and if X is para-

compact Hausdorff, then there are two exact sequences

10 H [Hom(JS.(h), A)] -- Ext (h, A) --* (X, A)-- F(A, A) -- Ext (h, A) -- (X, A) --* ..-,

0 -- H[HomR(.(A), A )] F(A, A
(2)

--*/:(X, Hom (h, A)) --.....

Proof. It will be shown that associative algebra extensions correspond to
cohomology classes of a certain subcomplex of the bicomplex K given by

K’ (X, Hom(.(h), A)).

In this bicomplex, i will denote the coboundary operator induced from that of
the standard complex Hom(.(h), A), and will denote the (ech cobound-
ary operator. The total differential operator in K’ is (-1)+1
We shall regard K as being filtered by the second degree and define
FPK ,>= Ki’. In the resulting spectral sequence

E’* F’K/F’+IK *(X, HomR(.(A), A))

with differential operator (- 1 )q, and hence

El’* H[FK/F+K] fI*(X, Hom((h), A)).

Now, suppose 0 --. A - r h 0 is an extension. Under the hypotheses
of the theorem it follows from Proposition 3.1 that this extension is locally
trivial as an extension of sheaves of R-modules. Hence, on a sufficiently fine
covering t of X, there exist lifting homomorphisms j.’AIU.-- FLU..
Let h.a ja j. be the corresponding cocycle in ((ql, Hom(h, A)), and let m
denote ambiguously the multiplications in A, r, and A. Note that m regarded
as multiplication in A is identically zero. If we consider A as a subsheaf
of r, then, as in [1], Ch. XIV, 2, the composition f.: (h (R) h)l U. -- A U.
determined by

(1) (A(R)A) IU. J’(R)J" ,(r(R)r)iu. ,rlu.

where q. idr j. p, characterizes the multiplication in r (R) r)[ U. com-
pletely. We shall consider {f.} as representing a (0, 2)-cochain in K.
As usual, the fact that {f.} corresponds to an associative multiplication is

equivalent to i{f.} 0. Furthermore, if we write j. j h.a and note
that q. q -t- h. p and that pm m(p (R) p), then substitution in (1) yields
immediately that {f} {h.}. Thus {f.} {h.} is a cocycle of FK of
total degree 2. Conversely, given such a cocycle the "collation" process of
the preceding paragraph produces a locally trivial R-module extension from
{h.l. It is clear that the cocycle requirement is just the requirement that



EXTENSIONS OF SHEAVES OF ALGEBRAS 171

the multiplication determined by {f.} be compatible with the identifications.
Since it is obvious that cohomologous cocycles in F1K yield equivalent exten-
sions, it remains to be shown that equivalent extensions determine cohomol-
ogous cocycles.
Suppose the diagram

0--A A --- 0,//P*
F*

is commutative. We know from 3.1 that h.} /h} ${j* ]cj.}, and
we wish to show that f:} {f} lJ* kj}. As before, we shall assume
thatA Fn F*sothatklA idA. There isadiagram

(h(R)h)lu. J"(R)J" ;(r(R)r)iu. m qrlu.

q*m(A (R) A) U j* (R) j* (r* (R) r*)l v r*! v
where the composition of the top row is f. and that of the bottom row is f*.
Since k is an algebra homomorphism, the middle square is commutative.
Now, let s q*m*(k (R) k)(j (R) j), and let b j* kj.. Then, by sub-
stitution,

s()u, )) f*()u, ),) )u b(),) b()u)),.

Furthermore, let t q*km(j @ j), nd write

q k idr (idr. 3.P )](J P W q.)

Then it is easy to see that

Since, by commutativity, s. t., it follows that

{f.*} -{f.} {b.} {j*. kj.}.

Therefore F(A, A) is in 1-1 correspondence with H(FIK).
Now, by 2.2, Hn(FK) H’(K) Ext].(A, A). Furthermore, the

cohomology groups of F1K in low dimensions are H(FK) O,
H(FIK) ZX[Hom,(.(h), A), and H(FIK) F(A, A). Since
E’* * (X, Hom,(0(h), A) (*(X, I-Iotas(R, A) ), the cohomology
sequence associated with the exact sequence of complexes

0 FIK --> FK ---> Eo ---> 0
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starts with the terms

0 - F(X, A) -- F(X, A) ti ZI[Hom(,(A), A)] -- Exte(A, A) -But i(F(X, A)) Bl[Hom(.(h), A)], and hence we get the first exact
sequence stated in the theorem.
The second exact sequence is derived in exactly the same manner from the

cohomology sequence associated with the exact sequence

0 - F2K FIK -- Eo - O.

COROLLARY 1. If I(X, A) 0, then Exte(h, A) is isomorphic to the
group of derivations of h in A modulo the subgroup of inner derivations.

Proof. By the standard argument, H[Hom(.(A), A)] is isomorphic
to this group, and hence the result follows from the first sequence.

COnOLLARY 2. If /I(x, A) /2(X, A) 0, then Ext,(A, A)
F(h, A).

COROLLARY 3. The set of globally trivial extensions of A by A, i.e., extensions
which split over X as sheaves of R-modules, is in 1-1 correspondence with
U[Hom .(A), A )].

the map
This is an immediate consequence of the second sequence, since

F(A, A) -/I(X, Hom(h, A))

assigns to each algebra extension its underlying locally trivial module exten-
sion.

COROLLARY 4. f /I(X, Hom.(A,A))- 0, then every extension is
globally trivial as a sheaf of R-modules.

COROLLARY 5. If Ha(FK) O, then every locally trivial R-module extension

of A by A can be given the structure of a sheaf of associative R-algebras.

Proof. H3(FK) is the next term in the second exact sequence. Hence, if
it is zero, it follows that the map

F(A, A) -/(X, HomR(A, A))
is an epimorphism.
Remark. The hypothesis of Corollary 5 is not very useful since it is not

clear what H3(FK) is. It seems likely, though, that this group will also
contain the obstructions to the existence of a multiplication in the case
of a kernel A with nontrivial multiplication. We note also that if

/’(X, Hom(h (R) h, A)) O,

then every locally trivial R-module extension of A by A can be given the
structure of a sheaf of R-algebras, but it can no longer be guaranteed that
the multiplication is associative.
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3.3 Extensions of Sheaves of Supplemented Algebras. Let A be a sheaf
of supplemented R-algebras with e’A -- R as augmentation map and J
ker e as augmentation ideal. We wish to classify extensions of the form

0 -- A i p;F A-- 0

where F is 8 shesf of supplemenCed R-81gebms wiCh 8ugmentstion ep’F -- R,
A is 8 shef of left A-modules with A he corresponding shesf of two-sided
A-modules oonstrueted by defining a a(e(,) e(X)a, the product in A
being idenieslly zero, 8rid p 8rid i 8re R-81gebm homomorphisms such hs if, p(,), theni(Xa) ,i(a) and i(a), i(a(eX)) for alla eA. The
set F(A, A) satisfies the relations given in Theorem 3.2. However, exactly
as in [1], Ch. XIV, 3, the situation can be improved by using the complex

i, i(X, Hom,(.(A), A)).

F(A, A) still corresponds to H2(FI[) since the liftings j, may be chosen so
that j,(1) 1 and, consequently, h,]R 0. Hence {h,l is a cocycle of
(1 U, HomR(J, A) ). It follows then that/f,l may be regarded as a cochain
in (U, Hom,(J (R) J,A)).

THEOaEM. If h is a weakly R-projective and R-coherent sheaf of supplemented
R-algebras, and ifX is paracompact Hausdorff, then Hn(F) Ext]-(J, A ).
Furthermore, the first exact sequence of Theorem 3.2 is the cohomology sequence
corresponding to the exact sequence of sheaves

0 -- J -o h --* R -- 0

except that the connecting homomorphisms Ext](J, A) --. Ext]+(R, A) are
multiplied by 1) n+.

Proof. The complex N.(A, ) A (R) /.(A) is wekly A-proiective nd
A-coherent resolution of R. The lst few terms re

--A (R) J dl e
A R --* O.

By exsctness, the image of dx is J. Hence the complex A (R) r.(A), j __> 1,
is a weskly A-projective and A-coherent resolution of J. Therefore, the
cohomology groups of F are just the cohomology groups of X with coeffi-
cients in the differentiM shesf Hom(./.(A), A), j >__ 1, the dimension being
shifted by + 1. By Theorem 1.3 these groups are Ext] (J, A). The corre-
spondence of the cohomology sequences is n immediste corollary of Theorem
7.1 of [1], Ch. V.

COROLLARY. F(A, A) Ext’(J, A).

Remark. What has been shown here is that the analogue of Proposition 3.3

of [1], Ch. XIV still is true except that the map Ext(I(A), C) _0 Ext’(K, C)
(in the terminology of [1]) is no longer an isomorphism.
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3.4 Extensions of Sheaves of Lie Algebras. Let L be a locally free, finitely
generated sheaf of Lie algebras over R, and let U(L) denote the universal
enveloping sheaf of L. Further, let 2(L, A) denote the set of equivalence
classes of extensions of L by an abelian kernel A, i.e., of exact sequences.

0--*A --- M P L’-* 0

where M is a sheaf of Lie algebras and A is a sheaf of left L-modules with
trivial bracket operations such that xa [y, a] whenever p(y) x L.
Then the discussion of [1], Ch. XIV, 5 shows that every extension of U(L)
considered as a sheaf of supplemented algebras determines an extension of L.
This discussion shows also thut equivalent extensions of U(L) yield equiva-
lent extensions of L, and that if two extensions of U(L) determine equivalent
extensions of L, then they are equivalent. Thus, it remains to be shown that
the map F(U(L), A) -- Z(L, A) is onto. To do this we must assume that
X is paracompact Hausdorff. Then every extension of L is locally trivial
and is represented by a cocycle {f,} {h,} of total degree 2 in the subcom-
plex F () of the complex

’ (X, Hom(E(/), A)).

Since V,(L) U(L) (R) E,(L) may be regarded as a direct summand of
N,(U(L), ), {f,} {h,a} can be extended to a cocycle {],} ]} of
N,(U(L), ) which is zero on the complement of V,(L). It follows easily
that {],} -}- {],} yields a locally trivial extension of U(L) which induces the
given extension of L. Furthermore, it is clear that if (L) denotes the kernel
of the augmentation map " U(L) -, R, then, exactly as in the preceding
paragraph, the complex U(L) (R) E(L), j >__ 1, is a locally U(L)-free resolu-
tion of U(L). Therefore, we have the following theorem.

THEOREM. If L is locally free and X is paracompact Hausdorff, then every
extensionof U(L) islocally trivial, and there is a 1-1 correspondence F(U(L), A)--
Z(L,A). Furthermore,

Z(L,A) Extv()((/), A).
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