SOME INEQUALITIES FOR POLYNOMIALS AND RELATED ENTIRE FUNCTIONS

BY
Q. I. Rahman

1. Inequalities for polynomials

Throughout this section let $p(z)=\sum_{v=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree n. The following results are immediate.

Theorem A.

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{2} d \theta \leqq n^{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{1}
\end{equation*}
$$

Theorem B. For $R>1$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq R^{2 n} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{2}
\end{equation*}
$$

If $p(z)$ has no zeros in $|z|<1$, Theorem A can be sharpened.
Theorem C. If $p(z)$ has no zeros in $|z|<1$, then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right|^{2} d \theta \leqq \frac{n^{2}}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{3}
\end{equation*}
$$

Theorem C was proved by N. G. de Bruijn [4].
We prove a corresponding modification of Theorem B.
Theorem 1. If $p(z)$ has no zeros in $|z|<1$, then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq \frac{R^{2 n}+1}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{4}
\end{equation*}
$$

for $R>1$.
Proof of Theorem 1. If $q(z)=z^{n} \overline{p(1 / \bar{z})}$, then $|q(z)|=|p(z)|$ for $|z|=1$. Since $p(z) \neq 0$ for $|z|<1$, it follows that $|q(z)| \leqq|p(z)|$ for $|z|<1$. On replacing z by $1 / z$ we deduce that for $|z|>1$,

$$
|p(z)| \leqq|q(z)| .
$$

Now $q(z)=\sum_{\nu=0}^{n} \bar{a}_{n-\nu} z^{\nu} ;$ hence

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq \frac{1}{2} \int_{0}^{2 \pi}\left|q\left(R e^{i \theta}\right)\right|^{2} d \theta+\frac{1}{2} \int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \\
&=\pi \sum_{\nu=0}^{n}\left(R^{2 \nu}+R^{2 n-2 \nu}\right)\left|a_{\nu}\right|^{2}
\end{aligned}
$$

Received December 16, 1959.

The greatest of the quantities $R^{2 \nu}+R^{2 n-2 \nu}, \nu=1, \cdots, n$, is $R^{2 n}+1$. Therefore

$$
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq \frac{R^{2 n}+1}{2} 2 \pi \sum_{v=0}^{n}\left|a_{\nu}\right|^{2}=\frac{R^{2 n}+1}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta,
$$

which was the assertion.
In (4) equality holds for $p(z)=\alpha+\beta z^{n}$ where $|\alpha|=|\beta|$. We also prove
Theorem 2. If the geometric mean of the moduli of the zeros of $p(z)$ is at loast equal to 1 , then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq\left\{\frac{(\sqrt{2})^{2 n}+1}{2}\right\}^{(\log R) / \log \sqrt{2}} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{5}
\end{equation*}
$$

for $R<\sqrt{2}$, and

$$
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq \frac{R^{2 n}+1}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta
$$

for $R \geqq \sqrt{2}$. More precisely,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq\left(\frac{k^{2 n}+1}{2}\right)^{(\log R) / \log k} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{6}
\end{equation*}
$$

for $R<k$, and

$$
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq \frac{R^{2 n}+1}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta
$$

or $R \geqq k$ where $k>1$ is a root of the equation

$$
2 k^{2 n-2}=1+k^{2 n} .
$$

Proof of Theorem 2. We observe that the hypothesis implies $\left|a_{0}\right| \geqq\left|a_{n}\right|$, so that

$$
\begin{equation*}
\left|a_{n}\right|^{2} R^{2 n}+\left|a_{0}\right|^{2} \leqq \frac{1}{2}\left(R^{2 n}+1\right)\left(\left|a_{n}\right|^{2}+\left|a_{0}\right|^{2}\right) \tag{7}
\end{equation*}
$$

for $R>1$. Besides, in general

$$
\begin{equation*}
\left|a_{n-\nu}\right|^{2} R^{2 n-2}+\left|a_{\nu}\right|^{2} R^{2 \nu} \leqq \frac{1}{2}\left(R^{2 n}+1\right)\left(\left|a_{n-\nu}\right|^{2}+\left|a_{\nu}\right|^{2}\right) \tag{8}
\end{equation*}
$$

if both

$$
\left|a_{n-\nu}\right|^{2} R^{2 n-2 \nu} \leqq \frac{1}{2}\left(R^{2 n}+1\right)\left|a_{n-\nu}\right|^{2}, \quad\left|a_{\nu}\right|^{2} R^{2 \nu} \leqq \frac{1}{2}\left(R^{2 n}+1\right)\left|a_{\nu}\right|^{2}
$$

hold. For $\nu=1, \cdots, n-1$, therefore, (8) holds if $R \geqq \sqrt{2}$. Consequently for $R \geqq \sqrt{2}$

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \\
& \begin{aligned}
=2 \pi\left(\left|a_{n}\right|^{2} R^{2 n}\right. & \left.+\cdots+\left|a_{n-\nu}\right|^{2} R^{2 n-2 \nu}+\cdots+\left|a_{\nu}\right|^{2} R^{2}+\cdots+\left|a_{0}\right|^{2}\right) \\
& \leqq \frac{1}{2}\left(R^{2 n}+1\right) 2 \pi\left(\left|a_{n}\right|^{2}+\cdots+\left|a_{0}\right|^{2}\right) \\
& =\frac{1}{2}\left(R^{2 n}+1\right) \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta
\end{aligned}
\end{aligned}
$$

Now $\log \int_{0}^{2 \pi}\left|p\left(r e^{i \theta}\right)\right|^{2} d \theta$ is a convex function of $\log r$, and therefore for $1<R<\sqrt{2}$
$\left(\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta\right)^{\log \sqrt{2}}$

$$
\leqq\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta\right)^{\log (\sqrt{2} / R)}\left(\left.\int_{0}^{2 \pi} p\left(\sqrt{2} e^{i \theta}\right)\right|^{2} d \theta\right)^{\log R}
$$

$$
\leqq\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta\right)^{\log (\sqrt{2} / R)}\left\{\left.\frac{(\sqrt{2})^{2 n}+1}{2} \int_{0}^{2 \pi} p\left(e^{i \theta}\right)\right|^{2} d \theta\right\}^{\log R}
$$

$$
=\left\{\frac{(\sqrt{2})^{2 n}+1}{2}\right\}^{\log R}\left(\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta\right)^{\log \sqrt{2}}
$$

or

$$
\int_{0}^{2 \pi}\left|p\left(R e^{i \theta}\right)\right|^{2} d \theta \leqq\left\{\frac{(\sqrt{2})^{2 n}+1}{2}\right\}^{(\log R) / \log \sqrt{2}} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta
$$

2. Inequalities for polynomials (continued)

The following result is immediate.
Theorem D. If $p(z)$ is a polynomial of degree n and $\rho<1$, then

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p\left(\rho e^{i \theta}\right)\right|^{2} d \theta \geqq \rho^{2 n} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{9}
\end{equation*}
$$

Equality in (9) holds only for $p(z)=c z^{n}$.
The conclusion of Theorem D can also be written as

$$
\begin{align*}
\frac{1}{(1-\rho)^{2}}\left\{\int_{0}^{2 \pi}\left|p\left(\rho e^{i \theta}\right)\right|^{2} d \theta-\frac{1+\rho^{2 n}}{2}\right. & \left.\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta\right\} \tag{10}\\
& \geqq-\frac{1}{2} \frac{1-\rho^{2 n}}{(1-\rho)^{2}} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta
\end{align*}
$$

In case $p(z)$ has all its zeros in $|z|<1$, we may expect in analogy with Theorem 1 that for every $\rho<1$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|p\left(\rho e^{i \theta}\right)\right|^{2} d \theta \geqq \frac{1+\rho^{2 n}}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta \tag{11}
\end{equation*}
$$

But if $p(z)=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ has all its zeros on the unit circle, then

$$
\left|a_{\nu}\right|=\left|a_{n-\nu}\right|, \quad \nu=0,1, \cdots, n
$$

Consequently for $\rho<1$

$$
\begin{aligned}
\int_{0}^{2 \pi} \mid & \left.p\left(\rho e^{i \theta}\right)\right|^{2} d \theta \\
& =2 \pi\left(\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2} \rho^{2}+\cdots+\left|a_{n-1}\right|^{2} \rho^{2 n-2}+\left|a_{n}\right|^{2} \rho^{2 n}\right) \\
& =2 \pi\left\{\left(\left|a_{0}\right|^{2}+\left|a_{n}\right|^{2} \rho^{2 n}\right)+\left(\left|a_{1}\right|^{2} \rho^{2}+\left|a_{n-1}\right|^{2} \rho^{2 n-2}\right)+\cdots\right\} \\
& =2 \pi\left\{\left(\left|a_{0}\right|^{2}+\left|a_{n}\right|^{2}\right) \frac{1+\rho^{2 n}}{2}+\left(\left|a_{1}\right|^{2}+\left|a_{n-1}\right|^{2}\right) \frac{\rho^{2}+\rho^{2 n-2}}{2}+\cdots\right\} \\
& \leqq 2 \pi\left\{\left(\left|a_{0}\right|^{2}+\left|a_{n}\right|^{2}\right) \frac{1+\rho^{2 n}}{2}+\left(\left|a_{1}\right|^{2}+\left.a_{n-1}\right|^{2}\right) \frac{1+\rho^{2 n}}{2}+\cdots\right\} \\
& =\frac{1+\rho^{2 n}}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta
\end{aligned}
$$

In fact, strict inequality holds unless $p(z)=\alpha+\beta z^{n}$ where $|\alpha|=|\beta|$. Thus (11) is not necessarily true. We can however prove

Theorem 3. If $p(z)$ is a polynomial of degree n not having zeros in $|z|<1$ then

$$
\liminf _{\rho \rightarrow 1-} \frac{1}{(1-\rho)^{2}}\left\{\int_{0}^{2 \pi}\left|p\left(\rho e^{i \theta}\right)\right|^{2} d \theta-\frac{1+\rho^{2 n}}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta\right\}>-\infty
$$

Since $\left(1-\rho^{2 n}\right) /(1-\rho)^{2} \rightarrow \infty$ as $\rho \rightarrow 1-$, this result is an improvement on (10).

Proof of Theorem 3. Since $|p(z)| \geqq|q(z)|=\left|z^{n} \overline{p(1 / \bar{z})}\right|$ for $|z|=\rho<1$ we have

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|p\left(\rho e^{i \theta}\right)\right|^{2} d \theta \geqq \frac{1}{2} \int_{0}^{2 \pi}\left|q\left(\rho e^{i \theta}\right)\right|^{2} d \theta+\frac{1}{2} \int_{0}^{2 \pi}\left|p\left(\rho e^{i \theta}\right)\right|^{2} d \theta \\
& =\pi\left\{\left(\left|a_{0}\right|^{2}+\left|a_{n}\right|^{2}\right)\left(1+\rho^{2 n}\right)+\left(\left|a_{1}\right|^{2}+\left|a_{n-1}\right|^{2}\right)\left(\rho^{2}+\rho^{2 n-2}\right)+\cdots\right\} \\
& =\pi\left[\left\{\left(\left|a_{0}\right|^{2}+\left|a_{n}\right|^{2}\right)\left(1+\rho^{2 n}\right)+\left(\left|a_{1}\right|^{2}+\left|a_{n-1}\right|^{2}\right)\left(1+\rho^{2 n}\right)+\cdots\right\}\right. \\
& \\
& \quad-\left\{\left(\left|a_{1}\right|^{2}+\left|a_{n-1}\right|^{2}\right)\left(1-\rho^{2}\right)\left(1-\rho^{2 n-2}\right)+\cdots\right. \\
& \\
& \left.\left.\quad+\left(\left|a_{m}\right|^{2}+\left|a_{n-m}\right|^{2}\right)\left(1-\rho^{2 m}\right)\left(1-\rho^{2 n-2 m}\right)+\cdots\right\}\right]
\end{aligned}
$$

But $\left(1-\rho^{2 m}\right)\left(1-\rho^{2 n-2 m}\right) /(1-\rho)^{2} \rightarrow 2 m(2 n-2 m)$ as $\rho \rightarrow 1-$, and there. fore the theorem follows.

We can also prove

Theorem 4. If the geometric mean of the moduli of the zeros of $p(z)$ is at least equal to 1 , then

$$
\liminf _{\rho \rightarrow(1 / k)-} \frac{1}{1 / k-\rho}\left\{\int_{0}^{2 \pi}\left|p\left(\rho e^{i \theta}\right)\right|^{2} d \theta-\frac{1+\rho^{2 n}}{2} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta\right\}>-\infty
$$

where $k(>1)$ is a root of the equation

$$
2 k^{2 n-2}=1+k^{2 n}
$$

3. Inequalities for periodic entire functions of exponential type

Throughout this section let $f(z)$ be an entire function of exponential type τ, periodic with period 2π. Since $f(z)$ has the form [1, p. 109]

$$
f(z)=\sum_{k=-n}^{n} a_{k} e^{i k z}, \quad n \leqq \tau
$$

the following two theorems are immediate.
Theorem A^{\prime}.

$$
\int_{-\pi}^{\pi}\left|f^{\prime}(x)\right|^{2} d x \leqq \tau^{2} \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

Theorem B'. For all y

$$
\int_{-\pi}^{\pi}|f(x+i y)|^{2} d x \leqq e^{2 \tau|y|} \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

If $f(z)$ is $O\left(e^{\varepsilon|z|}\right)$ on the positive imaginary axis for some ε less than 1 , then $f(z)$ has the form

$$
f(z)=\sum_{k=0}^{n} a_{k} e^{i k z}, \quad n \leqq \tau
$$

Hence Theorems C and 1 may be restated as follows. (We use $h_{f}(\theta)$ to denote the indicator of $f(z)$.)

Theorem C^{\prime}. If $f(z) \neq 0$ for $\operatorname{Im} z>0$, and if $h_{f}(\pi / 2)=0$, then

$$
\int_{-\pi}^{\pi}\left|f^{\prime}(x)\right|^{2} d x \leqq \frac{\tau^{2}}{2} \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

Theorem 1^{\prime}. If $f(z) \neq 0$ for $\operatorname{Im} z>0$, if $h_{f}(\pi / 2)=0$, and if $y<0$, then

$$
\int_{-\pi}^{\pi}|f(x+i y)|^{2} d x \leqq \frac{1}{2}\left(e^{2 \tau|y|}+1\right) \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

A result in a different direction is the following.
Theorem 5. If $f(z)$ is real on the real axis, then for any real y

$$
\int_{-\pi}^{\pi}|f(x+i y)|^{2} d x \leqq \cosh 2 \tau y \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

Proof of Theorem 5. Clearly $f(z)$ is of the form

$$
f(z)=\sum_{k=-n}^{n} a_{k} e^{i k z}, \quad n \leqq \tau
$$

where $a_{-k}=\bar{a}_{k}$ for $k=1,2, \cdots, n$. Consequently

$$
\begin{aligned}
\int_{-\pi}^{\pi}|f(x+i y)|^{2} d x & =2 \pi \sum_{k=-n}^{n}\left|a_{k}\right|^{2} e^{-2 k y} \\
& =2 \pi\left|a_{0}\right|^{2}+2 \pi \sum_{k=1}^{n}\left|a_{k}\right|^{2}\left(e^{-2 k y}+e^{2 k y}\right) \\
& \leqq 2 \pi\left|a_{0}\right|^{2}+(2 \cosh 2 y n) 2 \pi \sum_{k=1}^{n}\left|a_{k}\right|^{2} \\
& \leqq(\cosh 2 y n) 2 \pi \sum_{k=-n}^{n}\left|a_{k}\right|^{2} \\
& \leqq \cosh 2 y n \int_{-\pi}^{\pi}|f(x)|^{2} d x .
\end{aligned}
$$

4. Inequalities for entire functions of exponential type belonging to L^{2} on the real axis

Throughout this section suppose $f(z)$ is an entire function of exponential type τ belonging to L^{2} on the real axis. In this section we give theorems for such a function analogous to the theorems of the preceding section. The following three theorems are analogues of Theorems $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and 5 , respectively.

Theorem $\mathrm{A}^{\prime \prime}$.

$$
\int_{-\infty}^{\infty}\left|f^{\prime}(x)\right|^{2} d x \leqq \tau^{2} \int_{-\infty}^{\infty}|f(x)|^{2} d x
$$

Theorem B". For all y

$$
\int_{-\infty}^{\infty}|f(x+i y)|^{2} d x \leqq e^{2 \tau|y|} \int_{-\infty}^{\infty}|f(x)|^{2} d x
$$

Theorem 5^{\prime}. If $f(z)$ is real on the real axis, then for all real y

$$
\int_{-\infty}^{\infty}|f(x+i y)|^{2} d x \leqq \cosh 2 \tau y \int_{-\infty}^{\infty}|f(x)|^{2} d x
$$

Theorem $A^{\prime \prime}$ is due to Boas [1, p. 211], Theorem $B^{\prime \prime}$ to Plancherel and Pólya [6], and Theorem 5^{\prime} to Boas [2, p. 32].

We shall prove the following analogues of Theorems C^{\prime} and 1^{\prime}.
Theorem 6. If $f(z) \neq 0$ for $\operatorname{Im} z>0$, and if $h_{f}(\pi / 2)=0$, then

$$
\int_{-\infty}^{\infty}\left|f^{\prime}(x)\right|^{2} d x \leqq \frac{\tau^{2}}{2} \int_{-\infty}^{\infty}|f(x)|^{2} d x
$$

Theorem 7. If $f(z) \neq 0$ for $\operatorname{Im} z>0$, if $h_{f}(\pi / 2)=0$, and if $y<0$, then

$$
\int_{-\infty}^{\infty}|f(x+i y)|^{2} d x \leqq \frac{1}{2}\left(e^{2 \tau|y|}+1\right) \int_{-\infty}^{\infty}|f(x)|^{2} d x
$$

Entire functions $f(z)$ of exponential type, not vanishing for $\operatorname{Im} z>0$, and satisfying $h_{f}(\pi / 2)=0$ were first studied by Boas [3]. Theorems 6 and 7 compare respectively with Theorems 2 and 1 of his paper.

Proof of Theorem 6. To prove Theorem 6 consider $\omega(z)=e^{i \tau z} \overline{f(\bar{z})}$, an entire function of exponential type $\geqq \tau$. Since $f(z)$ has no zeros for $\operatorname{Im} z>0$, $h_{f}(\pi / 2)=0$, and $h_{f}(-\pi / 2)=\tau$, the function $\omega(z)$ has no zeros for $\operatorname{Im} z<0$, $h_{\omega}(-\pi / 2)=\tau$, and $h_{\omega}(\pi / 2)=0$. Thus $\omega(z)$ belongs to the class P discussed
in [1, p. 129]. Since $|f(x)|=|\omega(x)|$ for $-\infty<x<\infty$, it follows by a theorem of Levin [1, p. 226] that

$$
\begin{equation*}
\left|f^{\prime}(x) \leqq\left|\omega^{\prime}(x)\right|\right. \tag{12}
\end{equation*}
$$

for $-\infty<x<\infty$.
Since $f(z)$ belongs to L^{2} on the real axis, we have by the Paley-Wiener Theorem [5, pp. 499-501]

$$
f(z)=\int_{0}^{\tau} e^{i z t} \varphi(t) d t, \quad \varphi \in L^{2}
$$

Now

$$
\omega(x+i y)=e^{i(x+i y) \tau} \int_{0}^{\tau} e^{-i(x+i y) t} \overline{\varphi(t)} d t
$$

hence by (12)

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|f^{\prime}(x)\right|^{2} d x & \leqq \frac{1}{2} \int_{-\infty}^{\infty}\left|\omega^{\prime}(x)\right|^{2} d x+\frac{1}{2} \int_{-\infty}^{\infty}\left|f^{\prime}(x)\right|^{2} d x \\
& =\pi \int_{0}^{\tau}(\tau-t)^{2}|\varphi(t)|^{2} d t+\pi \int_{0}^{\tau} t^{2}|\varphi(t)|^{2} d t \\
& \leqq \tau^{2} \pi \int_{0}^{\tau}|\varphi(t)|^{2} d t=\frac{\tau^{2}}{2} \int_{-\infty}^{\infty}|f(x)|^{2} d x
\end{aligned}
$$

Proof of Theorem 7. To prove Theorem 7, consider the same function $\omega(z)$. The function $g(z)=f(z) e^{-i z z / 2}$ has no zeros for $y>0$, and $h_{g}(-\pi / 2)=h_{g}(\pi / 2)=\tau / 2$. By another theorem of Levin [1, p. 129] we have $|g(z)| \leqq|g(\bar{z})|$ for $y<0$. Thus for $y<0$,

$$
\begin{aligned}
|f(z)| & \leqq\left|e^{i \tau z / 2}\right|\left|f(\bar{z}) e^{-i \tau \bar{z} / 2}\right| \\
& =\left|e^{i \tau z / 2}\right|\left|\overline{f(\bar{z})} e^{i \tau z / 2}\right| \\
& =\left|\overline{f(\bar{z})} e^{i \tau z}\right|=|\omega(z)|
\end{aligned}
$$

It follows that for $y<0$,

$$
\begin{aligned}
\int_{-\infty}^{\infty}|f(x+i y)|^{2} d x & \leqq \frac{1}{2} \int_{-\infty}^{\infty}|\omega(x+i y)|^{2} d x+\frac{1}{2} \int_{-\infty}^{\infty}|f(x+i y)|^{2} d x \\
& =\pi \int_{0}^{\tau} e^{-2 y(\tau-t)}|\varphi(t)|^{2} d t+\pi \int_{0}^{\tau} e^{-2 y t}|\varphi(t)|^{2} d t \\
& \leqq\left(e^{2 \tau|y|}+1\right) \pi \int_{0}^{\tau}|\varphi(t)|^{2} d t \\
& =\frac{1}{2}\left(e^{2 \tau|y|}+1\right) \int_{-\infty}^{\infty}|f(x)|^{2} d x
\end{aligned}
$$

References

1. R. P. Boas, Jr., Entire functions, New York, 1954.
2. -, Inequalities for functions of exponential type, Math. Scand., vol. 4 (1956), pp. 29-32.
3. --, Inequalities for asymmetric entire functions, Illinois J. Math., vol. 1 (1957), pp. 94-97.
4. N. G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. Ser. A, vol. 50 (1947), pp. 1265-1272.
5. B. Ya. Levin, Raspredelenie korne亢 tselykh funktsǐ, Moscow, 1956.
6. M. Plancherel and G. Pólya, Fonctions entières et intégrales de Fourier multiples, Comment. Math. Helv., vol. 9 (1936-1937), pp. 224-248; vol. 10 (1937-1938), pp. 110-163.

Imperial College
London, England
uslim University
Aligarh, India

