SOME INEQUALITIES FOR POLYNOMIALS AND RELATED
ENTIRE FUNCTIONS

BY
Q. I. RaamMAN

1. Inequalities for polynomials

Throughout this section let p(2) = D a, 2 be a polynomial of degree n.
The following results are immediate.

THEOREM A.
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TaeorEM B. For R > 1
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If p(2) has no zeros in | 2| < 1, Theorem A can be sharpened.

TueoreMm C. If p(z) has no zeros in |z | < 1, then
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Theorem C was proved by N. G. de Bruijn [4].
We prove a corresponding modification of Theorem B.

TaeorEM 1. If p(z) has no zeros in |z | < 1, then
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for R > 1.

Proof of Theorem 1. If ¢(z) = 2"p(1/z), then |g(2)| = |p(2)| for
2| = 1. Since p(z) # 0 for | 2| < 1, it follows that | ¢(2) | = | p(2) | for
| 2| < 1. On replacing z by 1/z we deduce that for |z | > 1,

Ip(2) | = 1q2)].
Now ¢(2) = D »@n 2; hence
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The greatest of the quantities R” + R*™™™
Therefore

, v=1 - m is R+ 1.

27T 2n 2n 27
/ |p(Rei0) l2 d0 R 2+ 1 2 Zv—ﬂ [ 2 R + 1
0

| p(e”) |* df,
which was the assertion
In (4) equality holds for p(2) = a + 82" where | a | = | 8|

We also prove
THEOREM 2. If the geometric mean of the moduli of the zeros of p(z) s at
lrast equal to 1, then

2n (logR) [logy/2
for R < /2, and
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for R = /2. More precisely,
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for R < k, and
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or R =

k where k > 1 1s a root of the equation

2k2n-—2 — 1 + k2n'

Proof of Theorem 2. We observe that the hypothesis implies | ao |
so that

(7

for B > 1.

(8) | @ PR+ |0, PR 2 3R + (| tues '+ [ a0 [*)
if both

2 |al,

lan P B + Jao ' = 3(B™ 4+ (el + o)
Besides, in general

| ooy PR < 3B 4+ 1) | @ [, @ PR” S 3R+ 1) |0, [
hold. For » 1, ---

= ,n — 1, therefore, (8) holds if R = +/2. Conse-
quently for R = /2
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Now log f | p(re®) [*d6 is a convex function of log r, and therefore for
0
1<R<A2
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2. Inequalities for polynomials (continued)

or

The following result is immediate.

TueoreM D. If p(z) is a polynomial of degree n and p < 1, then
27 . 2 i
©) [ 1pteey Pasz o [ 1p(e® [ao.

Equality in (9) holds only for p(z) = cz".
The conclusion of Theorem D can also be written as

27 . 2n 27 .
. - | p(oe™) [?ds — 12 Ip(e”) " do
1 =020 2 0

- 1 1_p2n 2 0 .
= “-2-(—1—_—_7)2 A lp(e )l as.

In case p(z) has all its zeros in | 2| < 1, we may expect in analogy with
Theorem 1 that for every p < 1

2w . 2n 21 .
(11) fo | p(pe™) " do = 1—*'2—”[0 |p(e™) |* do.

(10)
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But if p(2) = D moa, 2" has all its zeros on the unit circle, then
lal’l=|an—y|, y=0,1’...,n‘

Consequently for p < 1
/02, | p(0e®) "o
=2r(|al’ + @’ + -+ + |aua[ o + |au[* o™
= 2r{(lal’ + a. " p™) + (&l p" + [auaa[* ™7 + -}
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In fact, strict inequality holds unless p(2) = « + (2" where |a| = |8].
Thus (11) is not necessarily true. We can however prove

THEOREM 3. If p(2) s a polynomial of degree n not having zerosin |z | < 1
then

.. 1 2” By |2 140" [ i021
hmmf(l——_‘pﬁ{‘/; Ip(peo)|d0———-2—’3—f0 ]p(e)ld01>-—co.

p>1—

Since (1 — p*)/(1 — p)* —  as p — 1—, this result is an improvement
on (10).

Proof of Theorem 3. Since | p(z) | 2 | q(z) | = | 2"p(1/2) |for|z| = p < 1
we have

27 P 1 27 p 1 27T i
f | p(pe™) |*do = —f | q(pe”) |* do + —f | p(oe”) |* db
o 2 J 2 J

=m{(lal +]a. A+ + (la [ + |t D+ ™) + -}
=al{(Jal +1aHDA+0") + (a4 |aua )@ +0") + -}

— (e +laa DA =p)A = p"") + -+

+ (a4 | o A = ™)1 = ") + -+ 1.

But (1 — o) (1 — &™) /(1 — p)* — 2m(2n — 2m) as p — 1—, and there-
fore the theorem follows.
We can also prove
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TaeoRrREM 4. If the geometric mean of the moduli of the zeros of p(z) is at
least equal to 1, then

- 1 o TR I o 0y (2
hmlnfl—/k—_—;{fo | p(pe®) |" do 3 /; | p(e”) |"dgp > — oo,

p>(1/k)—
where k (>1) 2s a root of the equation
2k2n-—2 — 1 _|_ k2n.
3. Inequadlities for periodic entire functions of
exponential type

Throughout this section let f(2) be an entire function of exponential type 7,
periodic with period 2. Since f(z) has the form [1, p. 109]

f(Z) = ZI?——'” 47 eikzy n

the following two theorems are immediate.

IIA

Ty

THEOREM A’.
f_” |§'(z) Pdo < 7 [_ | f(z) ! da.

TureoreMm B’. For all y
[ 1+ Fae s ™ |5 1 da.

If f(2) is O(e'™) on the positive imaginary axis for some & less than 1,
then f(z) has the form

f(z) = 2ioae™, n

Hence Theorems C and 1 may be restated as follows. (We use h/(8) to de-
note the indicator of f(z).)

IIA

T.

TareoreM C'. If f(z) 5 0 for Im z > 0, and if hy(w/2) = 0, then
T 2 T
Y] 2 T 2
f_r|f(96)| dﬂvég[_rlf(x)l dz.
Tuarorem 1. If f(2) # 0for Imz > 0, ¢f hy(w/2) = 0, and if y < 0, then
[l raes i@+ 0 [

A result in a different direction is the following.

TueoreMm 5. If f(2) s real on the real axis, then for any real y

f_r | f(x + dy) |* de < cosh 2ry f_w | f(z) |” da.

Proof of Theorem 5. Clearly f(z) is of the form
f(2) = 2™, n

liA

Ty
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where a_;, = dyfork = 1,2, --- , n. Consequently
f (@ +ay) P de = 2m 2oken [ @i [P 7™
= 27 l Qo l2 + 27 217::1 | (272 |2 (6—.2,(1/ + 62ky)
<27 |ao |’ + (2 cosh 2yn) 2r D iy | i IF
(cosh 2yn) 27 D e | @i |°

cosh 2ynf_ | f(z) |? da.

I\

IIA

4. Inequalities for entire functions of exponential type
belonging to L2 on the real axis

Throughout this section suppose f(z) is an entire function of exponential
type 7 belonging to L’ on the real axis. In this section we give theorems for
such a function analogous to the theorems of the preceding section. The
following three theorems are analogues of Theorems A’, B/, and 5, respectively.

TaroREM A”.

[1r@rass [ 1 P
TurorEM B”. For all y

f [f(x 4+ iy) ["da < & f | f(2) | de.
TaeoreM 5. If f(2) is real on the real axis, then for all real y

[: [f(x + dy) |* de £ cosh 27y [: | f(x) |” da.

Theorem A” is due to Boas [1, p. 211], Theorem B” to Plancherel and
Pélya [6], and Theorem &’ to Boas {2, p. 32].
‘We shall prove the following analogues of Theorems C’ and 1’.

TaEorEM 6. If f(2) = 0 for Im 2z > 0, and if hy(w/2) = 0, then
[ir@eas? [ ¢
TueoreM 7. If f(z) ## 0 for Im 2z > 0, of hy(w/2) = 0, and if y < 0, then
[+ ra s e+ f_: () | de

Entire functions f(z) of exponential type, not vanishing for Im z > 0, and
satisfying h;(w/2) = 0 were first studied by Boas [3]. Theorems 6 and 7
compare respectively with Theorems 2 and 1 of his paper.

Proof of Theorem 6. To prove Theorem 6 consider w(z) = e"*f(Z), an
entire function of exponential type = 7. Since f(2) has no zeros for Im z > 0,
hy(w/2) = 0, and hy(—=/2) = 7, the function w(z) has no zeros for Im z < 0,
ho(—7/2) = 7,and h,(7/2) = 0. Thus w(z) belongs to the class P discussed
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in [1, p. 129]. Since |f(z) | = |w(z) | for —» < 2 < =, it follows by a
theorem of Levin [1, p. 226] that
(12) [f(z) £ |o'(2) |

for —o <2< .

Since f(z) belongs to L’ on the real axis, we have by the Paley-Wiener
Theorem [5, pp. 499-501]

f(2) = l ™o (t) dt, el

Now
oz + 7y) = ez‘(w+i1/)ff e—i(x+iy)t;(—t‘5 dt;

o
hence by (12)

[ 7@ ra
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L e@ra+ [Cir@ra

[ G- 0w latx [ Pl ar
0 0

IIA

o [le@Pa =75 [ 156 P

Proof of Theorem 7. To prove Theorem 7, consider the same function
w(z). The function g(z) = f(z)e "* has no zeros for y > 0, and
ho(—7/2) = hy(x/2) = 7/2. By another theorem of Levin [1, p. 129] we
have | g(z) | = | 9(2) | fory < 0. Thus for y < 0,

£ | = ™" || f(2)e ™" |
= l eifz/2 l {ﬁemm |

= [f(2)e" | = | w(2) |.
It follows that for y < 0,

[ise+mras) [oe+mra+d [Cie+afae

- fo S | o) [P dt + w fo | o(t) P dt
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(& 4 1)r f | o(t) 12 dt
0

G f_: | £(2) |" d.
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