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1. Inequalities for polynomials
Throughout this section let p(z) 0a z be a polynomial of degree n.

The following results are immediate.

THEOREM A.

(1)

THEOREM B.

(2)

s
e,0) 1. n e,0Ip’( dO < ]P( )1 dO.

ForR> 1

p Re’ dO <= P e’ ) dO.

If p(z) has no zeros in zl < 1, Theorem A can be sharpened.

THEOREM C. If p(z) has no zeros in zl < 1, then

n fo(3) P’(e’) dO <= P(e’) dO.

Theorem C was proved by N. G. de Bruijn [4].
We prove a corresponding modification of Theorem B.

THEOREM 1. If p(z) has no zeros in z[ < 1, then

fo
2

12 R2 - 1 fo2r(4) p(Re’) dO p(e) d
2

for R > 1.

Proof of Theorem 1. If q(z) zp(1/), then q(z) In(z)] for
z 1. Sincep(z) Ofor z] < 1, it follows that q(z) In(z) ]for
z < 1. On replacing z by 1/z we deduce that for z > 1,

(z) iq(z) l.
Now q(z) 0a- z; hence

p(e) do (e) do + p(e) do

( + -i, .
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The greatest of the quantities R2-t Rn-2,
Therefore

v 1,...,n, is R2 + 1.

which was the assertion.
In (4) equality holds for p(z) a -t- z where We also prove

THEOREM 2. If the geometric mean of the moduli of the zeros of p(z) is at
,,ast equal to 1, then

Ip(Re) dO < p(e) dO
2

for R < /-, and

P Re dO <-

for R >= %/. More precisely,

R2n -[-- 1 fo
2’

].
2

P(e) dO

(6) [p(Re
2

p dO

for R < k, and

2

or R k where k > 1 is a root of the equation

2kn- 1 + kn.
Proof of Theorem 2. We observe that the hypothesis implies ]a0]

so that

(7) ]al R + la0 + l)(la + ]a0

for R > 1. Besides, in general

(8) an- R- + a R (Rn + 1)(] an- ] + a )

if both

]a_

hold. For 1,...,n 1, therefore, (8) holds if R . Conse-
quently for R

In(Re) dt <- 2r _,=o a, In( )1 dO,
2 2
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fo" p(Re) dO

2(I am 12 R2n + --lan-,l R2n-2’ + +a[ R + +]a0
(n2n + 1) 2([al + + ]a01)

(R2 % 1) P(e) 12 dO.

Now log p(re) dO is a convex funegion of log r, and gherefore for

(fo2" p(ReiO) [2 dO)gV

or

(f0<-_ Ip(e) d p /e’ 12 dO

<- P(e) 12 d 2
p d

2 P(e) 12 dO

p(Re) dO <- W 1 c,oR)

122 P(eO) dO.

2. Inequalities for polynomials (continued)
The following result is immediate.

TEORV.M D. If p(z) is a polynomial of degree n and p < 1, then

fO
2r

[2 p2n f02"(9) P(Pe’) dO > P(e’) [2 dO.

Equality in (9) holds only for p(z) cz’.
The conclusion of Theorem D can alo be written as

(lO)

1 pei 12(1 p)2
p( dO

2
lp(e) d

> 1 1- p2n f02" 12-- (1 p)2
p(e) dO.

In case p(z) has all its zeros in zl < 1, we may expect in analogy with
Theorem 1 that for every p < 1

2r

12(11) p(pe) dO>=
1 - p2n fo2r2 P(ee) 12 dO.
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But if p(z) "vo a z has all its zeros on the unit circle, then

]a]=lan_l, v =0, I,

Consequently for p < 1
2r

fo lp(pei)12dO

12 12p2 p2n--2 p2n)2’(lao A--la -4- + la,-] A-lal

2" (]ao -4-la,

=< 2 f (] ao [2 -4- ]a, [2)

2n

12 p2 2--2 }1 "- p
-}- (]al -}-]an-ll2) -- p --2 2

2n 1 "Jr- p2n }1 -4- p
-4- (I a -4- an-1 ]2) "4-2 2

1 + p2, fo2, (eiO ]2
2 IP dO.

In fact, strict inequality holds unless p(z) a -4- z where
Thus (11) is not necessarily true. We can however prove

THEOREM 3. If p(z) is a polynomial of degree n not having zeros in z < 1
then

Iim inf
(1 p)------- P(pei) ]2 dO ]p(e) d >

pl-- 2

Since (1 p2n)/(1 p)2 aS p ---> 1-, this result is an improvement
on (10).

Proof of Theorem 3.
we have

Since p(z) -> q(z) z’p(1/) ]forl z p < 1

fo
2r

12 lf
2

,2 1 fO2r 12p(pe) dO >= q(pe) dO / p(pe) dO

n--2mBut (1 p2’)(1 p )/(1 p)
fore the theorem follows.
We can also prove

-- 2m(2n 2m) as p --, 1 --, and there.
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THEOREM 4.
least equal to 1, then

lim inf
1 f f0

2

12
p-,l/k)- 1/tc p

p(pei) dO

where k (> 1) is a root of the equation

If the geometric mean of the moduli of lhe zeros of p(z) is at

f’(x) 12 dx <= r" If(x) 12 dx.
THEOREM B’. For all y

I_f(x + iy)12 dx <- e’’Iyl If(x) 12 dx.

If f(z) is 0(e11) on the positive imaginary axis for some e less than l,
then f(z) has the form

f() ,.z k=0ae n

_
v.

Hence Theorems C and 1 may be restated as follows. (We use h(O) to de-
note the indicator of f(z).)

the following two theorems are immediate.

THEOREM A

3. Inequalities for periodic entire functions of
exponential type

Throughout this section let f(z) be an entire function of exponential type r,
periodic with period 2r. Since f(z) has the form [1, p. 109]

f z -__,, ak ei,

THEOREM Ct.

THEOREM lt.

f_r 1 e2 v f_,rf(x + iv)12 dx <- -( + 1) If(x) I" dx.

A result in a different direction is the following.

THEOREM 5. If f(z) is real on the real axis, then for any real y

f(x + iy) 12 dx <= cosh 2ry f(x) 1" dx.

Proof of Theorem 5. Clearly f(z) is of the form

f(z) -n a ei‘,

If f(z) # 0 for Im z > 0, and if hs(r/2) 0, then

f’(x) dx <_ If(x) [" dx.

If f(z) # 0 for Im z > O, if hs(r/2) O, and if y < O, then

n _<_ r,

n<_r,

22n- 1 + k2’.

2
]p(e) dO > -,
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where a_k ck for k 1, 2, n. Consequently

f_ f(x + iy) 12 dx 2- =_, 12 e-2ky

2- ao + 2" =1 ak -12 e--2ky 2ky

-< 2 [a0 [ + (2 cosh 2yn) 2

_
a

-<_ (cosh 2yn) 2- =--n a ]2

_-< eosh 2yn f x 12 dx.

4. Inequalities for entire functions of exponential type
belonging to L on the real axis

Throughout this section suppose f(z) is an entire function of exponential
type r belonging to L on the real axis. In this section we give theorems for
such a function analogous to the theorems of the preceding section. The
following three theorems are analogues of Theorems A’, B’, and 5, respectively.

THEOREM Atp

THEOREM B’.

THEOREM 5t.

f’(x) [2 dx <- r If(x) 12 dx.
For all y

f(x -+-iy)12 dx <= e2Iyl If(x) dx.

If f(z) is real on the real axis, then for all real

[f(x + iy)12 dx <- cosh 2ry If(x) 12 dx.

Theorem A" is due to Boas [1, p. 211], Theorem B" to Plancherel and
I)Slya [6], and Theorem 5’ to Boas [2, p. 32].
We shall prove the following analogues of Theorems C’ and I t.

THEOREM 6. If f(z) 0 for Im z > O, and if hs(’/2) O, then

f’(x) dx <= - If(x) 12 dx.

THEOREM 7. If f(z) 0 for Im z > O, if hs(v/2) 0, and if y < O, then

1 (e2rlylf(x + iy) 12 dx <- - - 1) If(x) 12 dx.

Entire functions f(z) of exponential type, not vanishing for Im z > 0, and
satisfying h(r/2) 0 were first studied by Boas [3]. Theorems 6 aud 7
compare respectively with Theorems 2 and 1 of his paper.

Proof of Theorem 6. To prove Theorem 6 consider w(z) eiZf(2), an
entire function of exponential type _-> r. Sincef(z) has no zeros for Im z > 0,
h(/2) 0, and h/(-/2) r, the function co(z) has no zeros for Im z < 0,
h(-/2) , and h(r/2) 0. Thus c0(z) belongs to theclass P discussed



in [1, p. 129]. Since If(x) l= Io(x) for -: < x < , it follows by a
theorem of Levin [1, p. 226] that

() If’(x) -< ’(x)

for-

Since f(z) belongs to L on the real axis, we have by the Paley-Wiener
Theorem [5, pp. 499-501]

f(z) e(t) dt,

Now

hence by (12)

w (x + iy) e(+i) fo e-i(+)t(- dr;

Proof of Theorem 7. To prove Theorem 7, consider the same function
o(z). The function g(z) f(z)e-12 has no zeros for y > 0, and
ho(-r/2) ho(r/2) r/2. By another theorem of Levin [1, p. 129] we
havetg(z) --< Ig() Ifory < 0. Thus fory < 0,

f(x -k- iy)[2 dx

e-2’ (t) 12 dt

It follows that for y < 0,

f(x -t-iy)12 dx <=- Io(x -t-iy)12 dx

r I,( dt + r

if(x) } dx.
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