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1. Introduction

The concept of a contour for a Frichet surface was introduced by Cesari
[1] who made use of contours to establish the Cesari-Cavalieri inequality, to
develop some of the most fundamental properties of Frtichet surfaces, and to
investigate variational problems for surface integrals. In a recent paper [3],
Cesari and the author introduced several methods for smoothing contours by
deleting certain inessential portions from them and proved the equivalence of
several such methods. The method of contours is of value chiefly because it
provides a means for constructing on the surface a conveniently disposed fam-
ily of continuous curves. The counterimages of these curves, which are called
contours, lie in the two-dimensional set over which the surface is defined, and
it is the principal purpose of this paper to show that a representative mapping
defining the surface can be found for which almost all of the contours have a
simple structure. To this end we rely heavily on the methods and results of
the previous paper [3] on smoothing methods for contours, and in Section 2 a
brief exposition of smoothing methods will be given. In Section 3 we estab-
lish certain properties of smoothed contours and show that, in computing the
length of the image of a smoothed contour, either an outer or inner border
may be used. The principal result is established in Section 4 in which it is
shown that for a nondegenerate surface of the type of the disk, a represen-
tation can be found for which almost all contours are arcs, points, or simple
closed curves. This constitutes a considerable improvement over a previous
result of the author [4] in which he showed that a countable dense set of con-
tours had this property.

2. Notations and definitions
Let Q be a bounded, closed, simply connected, planar Jordan region, and

let T’Q --) Ev be a continuous mapping from Q into euclidean N-space. Then
T defines a Frchet surface S. We assume that S has finite Lebesgue area,
and we denote by [S] the set of points in EN occupied by the surface. It may
also be assumed that Q is the unit square in the (u, v) coordinate plane,
Q {p (u,v)[O-< u,v _-< 1}.

Let f be a real-valued continuous function defined on IS] with upper and
lower bounds t, t. respectively. For t <_- __< t we define D-(t), D+(t),
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C(t), respectively, as the set of points p Q for which

f( T(p) < t, f(T(p) > t, f( T(p) t.

The set C(t) is the contour associated with f, T, t, and the set of boundary
points [D-(t)]* D-(t), [D+(t)]* D+(t) are called respectively the lower
and upper borders of D-(t), D+(t) in Q. Let a(t) be a component of D-(t),
and let "r be a component of [a(t)]* a(t). As in [1] the set A A(a, )
is the set of points of Q which lie in a plus those which are separated from ,
by other components of [a(t)]* a(t) plus those components of [a(t)]* a(t)
which separate points of Q from ,. A (a, ,) is an open simply connected set
in Q with , as a connected portion of its boundary. Evidently , is a portion
of the lower border of D-(t), and in [3] several methods of replacing "r by a
smoother set were defined and their equivalence proved. Since these smooth-
ing methods will be extensively used in the following sections, we shall give a
brief exposition of them here.
The definition of the smoothing methods depends strongly upon the theory

of ends and prime ends for open simply connected domains as developed by
Cesari in [1]. Consider the set , and the corresponding open set A (a, ,).
Any point p of accessible from A (a, ,) by an arc defines one or more ends.
An arc b lying in A with end point p e , defines an end, and two different arcs
bl, bs define the same end if for every neighborhood N of p either (i)

(bl- (p)) n (bs- (p)) 0,

or (ii) there exists in N an are c joining bt (p) to b2 (p) such that
bl u b. u c bound a simply connected Jordan region in N n A. If nt, ns, n3, m
are ends, then n, n3 separate ns, n4 if there exists a cross cut made up of de-
fining arcs for n, na which separates defining arcs for ns, n4 in A. In terms
of this separation an order can be defined on , which orders the ends in a cyclic
or linear order, and by a method of completion as described in [1], prime ends
can be defined in such a way that to every point of ,, accessible or inaccessible
from A (a, ), there is associated at least one prime end. The boundary point
on associated with the end n will be denoted by w,, and the points of "r
associated with a prime end 0 will be denoted by E.
The smoothing method which will chiefly be used in the following sections

is described as follows. Let I’ be the set of all maximal continua of constancy
for T in Q, nd let ’ 1 be the set of all such continua which intersect .
Consider the set {}, of all prime ends of A corresponding to points on .
This set can be linearly or cyclically ordered as defined in [1]. Let ol < cos
be two prime ends in/}.. Let ’, o" be given -< ’ < " =< s. As-
sume that E, a E,, 0. If there exists n end o’’ with o’ < 0’’ < ’,
let (’, ’) be the subset of ’ obtained by deleting from z’ all elements
which intersect any E for J < 0 < ". Let z0(l, cos) be the intersection of
all sets of the form z’ (’, ) for all ’, " with =< o’ < ’ =< 2. This set
will be the smoothed contour between w and s in z’. It was shown in [3] that
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in the hyperspace topology of F, a0(01, o.) is an arc. We can order the ele-
ments of a0(ol, o) by the order of the prime ends ending on the elements of
a0(l, o2), and when the order on a smoothed contour is mentioned, we make
no distinction between the ordering of the elements of a0(01, 02) and the or-
dering of the prime ends ending on them since for a smoothed contour no
ambiguity will arise.
Another method of smoothing contour which was defined [3] and shown

to be equivalent to the above method for appropriately chosen elements, e {} ,, is defined as follows. Again, let ’ be the set of all elements
gelforwhichgn 0.
LetK (Jg,,g c Q. LetDi,i 1, 2, 3,..., be the complementary

domains of K in Q which do not intersect A (a, ). Let ai be the family of all
g e a’ which intersect both A (a, ,) and D, and let a0 [J as in F. Let
K’ g0 g c Q, and let Do A (a, ) be the component of Q- K’ which
contains A (, ,). Let /, i 0, 1, 2, be respectively the boundaries of

f!D and Q0, and for i 1, 2, 3, let , be the subset of ’0 given by

,(g /%).
The set a0 is the smoothed contour corresponding to % and the ,, / are said
to lie respectively on the outside and the inside of the smoothed contour a0.

In case , o. correspond to elements of the same a, then the portion of
between 1 and is the same smoothed contour 0(, .) as described above.
The ordering on 0 can be constructed by ordering the as in a consistent man-
ner, either from the outside or inside of the contour.

3. Relations between the sides of a smoothed contour
Let us assume that the contour /has been smoothed according to the second

method described in the last section and that the sets as, ,, etc. have
been constructed as above. In this section we describe a method of defining
lengths of the images of the various portions of the contour and show that the
lengths coincide whether computed from inside or outside the contour. The
lengths l(’0), l(/), l(,) are defined as follows. In each let

g(i) < g(i) < < (i)

be an ordered set of elements of zi. Form the sum

= T(g(i) T(g+(i) I,
and define l(,) as the supremum of all such sums for all possible choices of
the {g(i)}.

THEOREM 1. For each i 1, 2, l(’) l(’), and l(/i) is the same
as the Cesari generalized length of "

Proof. The theorem follows from the definitions of the ordering of the a
given in [1]. The ordering is the same considered relative to D or to Do
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since each g e t intersects both Dt and Do. Thus all sums in the definition
of l() are defined in the same way in forming the sums for l(,’). Hence
l(,) l(,’). To prove the second part of the theorem, consider an ordered
set of ends {,(i)}, 1(i) < 2(i) < < t(i). If w(i) is the end point
of v(i) on ,, then w(i) egs(i) for somej. If wl(i), ws(i) lie in the same
set gs(i), then

T(w(i)) T(ws(i)) T(gs(i)).

Thus in the sum 2ll T(w(i) T(w+(i) l, if w(i), w+(i) gs(i)
for some j, T(w(i)) T(w+(i)) 0 and may be omitted from the sum
defining the lengths. However, by [3], /’t is a boundary corresponding to a
smoothed contour, and if w(i), w+(i) e gs(i), then all points corresponding
to ends v between v(i) and v+(i) also lie in g(i). Hence

T(w(i) T(w+(i) z.,s-- T(gs(i) T(gs+(i)

where the sum is taken over all gs(i) which contain points w(i). Thus the
length defined in terms of ends is not greater than that defined as above. The
opposite inequality is trivial, and hence the lengths are the same.

ToaM 2. If l(’r) < and if at, as are subsets of F corresponding to
D Ds as above, then at, a can have at most two elements g e F in common.

Proof. Suppose tha at as consists of at least three elements, gl, g., ga.
Thengn/)i 0, g/s 0, k 1,2,3. Assume thatg < g. < gain
the ordering on a. By definition of the ordering on with respect to D,
this implies that there exist two arcs b, b (possibly indefinite, i.e., the homeo-
morphic image of a half-open interval; see [2] )which intersect at a single point
in D, terminate respectively on g, g, and lie entirely in Dt with the excep-
tion of points on g, g, and such that if b is an arc (possibly indefinite) end-
ing on g., then a subarc of b g lies in the open set bounded by b u bu/
where/ t is the subset of ’t consisting of points of on elements g
between g and ga inclusive. Similarly for Ds there exist two such arcs, b, b
contained in D except for end points on gi, g. Then b b g u g. u b b
bound an open set G which contains g. However G D u D. u K’. Since
g contains boundary points of Do, G Do 0. However this is impossible
since (Dr u D u K’) n Do 0.

THOC,M 3. Let " be a contour for which l(’) < o, and let
i 1, 2, ..., be as defined above. Then l(’) 7=1 l(,’)

<-

Proof. Let at, a. be two sets.as defined above. By the previous theorem,
a n at can consist of at most two elements, g, g e F. Assume first that
a as consists of exactly two elements g, g2 e F, g < g.. By the previous
theorem, the family G {g g e at a., g =< g -< g.} must be a subfamily of
one of the sets a, a, and the family G complementary to G in a a must
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be in the other. Hence G1, j G.. Thus the length

/

by definition since it is the length of the image of at most three arcs in F with
only end points in common.

Let i n . gl e F. If i and . are arcs in F with common end point g,
then again, the above argument shows that l(,’ u ") l(’) u l(’). If
this is not the case, then one of the sets must consist of g only since if g, g. e ,
then either the arc consisting of elements g for which gl -< g =< g2 or the set
{g g =< gl, g >= g2, g e u } must lie entirely in .. If consists of more
than one element, then in the first case, i can contain no element g > g.,
and in the second case, no element g with gl < g < g., since’otherwise n .
would contain more than one element. Hence if gl, g e , a g, and

u ,.) l(,) l(,) - l(j).
If i " 0, the equality above is obvious.
Since there can be at most a countable family of the open sets Di in Q,

there can be at most a countable family of the sets . Hence by enumerat-
ing the i and performing successively the above steps, it can be seen that
l(U ,=. ,) l(0) ;=. l(,). The nequahty at the conclusion of the
theorem is obvious.

4. The structure of contours for nondegenerate surfaces
A continuous mapping T’Q ---. E defines a nondegenerate surface if no

maximal continuum of constancy for T in Q separates Q or the plane. In
this case it is known that there exists a mapping T’, Frchet equivalent to T
which is light (i.e. all continua of constancy for T’ are single points). Assume
that T is light, and let C() be a contour defined by T, f, in Q whose image is
of finite length in the sense of Cesari [1]. This implies that all sets of the form
E are continua of constancy and hence points in this case. Let a be a com-
ponent of D-(), and let , be a component of * . Since all sets E ,
are single points, in this case, all such sets are accessible from a, and each
prime end is an end. We shall show that in this case, almost all contour com-
ponents have an exceptionally simple form.

THEOREM 4. Let T’Q ---> E be a ligh mapping defining a Frche surface
S, and let f’[S] ----> Reals be a continuous function. Le$ {,} be he se of all
components of contours corresponding o f in Q and whose images on S are of
finite length. Then there exists a countable sel {’, ", ...} such tha$ if, e I’} " " i 1, 2, 3, hen " is a point, a simple arc, or a simple
closed cure.

Proof. Let C() Q be a contour with image of finite length on S. Let
D-(t) be the corresponding open set as defined in Section 2, and let a be a
component of D-(t). Let be a component of a* . Assume that on
there exist a point p and two distinct ends, 2 from A (,) to which
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have common end point p. Let bl, b. be defining arcs for nl, m respectively
which have common end point p and such that

b- (p)eA(a,), b.- (p)eA(a,’),),

and(b (p)) (b (p)) p’eA(a,,),p’ apoint. Thusb
simple closed curve in Q which intersects only at p and lies otherwise in
A (a, ,). Also since n n there exist ends between nl and n., and by defini-
tion of the ordering of the ends, there exist points of lying interior to the
closed curve/. Assume nl < n.. To prove the theorem several cases must
be considered.

Case I. There exist ends n, n with n < n < n < n ending on, - with

w,i w, w, p, w,l p such that defining arcs exist for n, n which
together form a cross cut c for A (a, ) and such that (i) t (p) lies in the
component of A (a, ) c which contains as boundary points the point
where nl < n < n. (ii) there exist no end n between n and n for which
w,;, w% and no end n between n and n with w,i w,[.

This case is illustrated in Figure 1. Let n0 be an end with
Since n < n., such ends exist. By using the first smoothing method de-
scribed in Section 2, let the set be smoothed between n and n0. By [3]
the smoothed contour between n and n0 is an arc in the hyperspace topology
in F. However, since all elements of F are single points in Q, the hyperspace
topology of F coincides with the ordinary topology in Q. Hence the smoothed
portion of is an arc in Q. Let also be smoothed between nl and n and
between n and n This yields three arcs in Q with one end point in common
but with the other end points all distinct. Such a configuration contains
triod, i.e., three arcs which are distinct except for one point which is a common
end point of all three. By a theorem of R. L. Moore [5], there can exist at
most countably many distinct triods in the plane. Thus there can exist at
most countably many contours having components /which satisfy Case I.

Case I. This case is the same as Case I, except that here

The same arguments hold in this case when the obvious modifications in order
relations in the proof are,made. (See Figure 2.)

Case II. n is the first end on ,, and there exist an end n > n: with w,i p
and a cross cut c from Q* to w% which contains a defining arc for n and such
that (p) lies in the component of A (a, ,) c which incIudes among its
boundary points the points w, e , for which n < n <

Let n0 be an end with n < n0 < n. Let the portion of /between n0 and
n. and the portion between n. and n be smoothed. This yields, as in Case I,
two arcs , r., rl with initial point W,o, r. with initial point w, W,o, and
each with terminal point p. In case r a r. contains a point other thn p,
then r t.r contains a triod. In case r r. p, the arcs intersect only on
Q*. A configuration consisting of two arcs with this property we shall call a
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Figure 1

Figure 2

V-set. Since all contour components are distinct, no two such configurations
can have points in common. Since the set of these components which con-
tains triods is at most countable, we need only show that there can exist only
countably many V-sets in Q.

Let V be a V-set, and assume first that V n Q* contains points other than p.
Then either V contains a V-set V’ such that V’ n Q* is a single point, or a
subarc of V lies in Q*. Since Q* can contain only countably many distinct
subarcs, only countably many contour components can contain V-sets of this
kind. Each of the remaining V-sets can then be assumed to intersect Q* in
only one point. Let be one side of the square Q, {u, vlv 0, 0 __< u =< 1}.
Parallel to let the sequence of line segments {ln}, n 1, 2, be con-
structed wherel {p (u,v) QI0 -< u =< 1, v 1/n},n 1,2,....
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Then if V is a V-set with V Q* a single point on l, one of the segments
must intersect both arcs , of V. Thus the union l will bound
an open set G(V) Q. However, since all V-sets are distinct, if V V.,

G(V ) O.

Since there can be at most countably many disjoint open sets in the plane,
only countably many V-sets of this type can have vertex point on l, and simi-
larly for the other sides of Q. Thus under any circumstance only countably
many contour components can fall under Case II.

Case III. As in Case I there exist two distinct ends w with

satisfying,, (,i) ,f Case,, I but not, (ii),; i.e., for every choice of v’, : there exists
an end w w < w < w, v, vsatisfying (i) butw,, w,, or an end

f! l!

w . < 2 < 2, , satisfying (i) and w,
We shall show first that under these conditions, exactly two ends end at p.

Assume that three ends, v, n=, va, , < w. < va, have the property that
w, w, w,, p. Choose < vbut w " va,w, p. Choose
such that w < w < w, w,. p. Let bz, b., ba be defining arcs for , ,
respectively which intersect at p and also at a point p0 e A(a, ). Thus
bz u ba is a simple closed curve , and all ends between v and va huve defining

t!
arcs which lie inside/’. However, for < , va, w,;, p, then
does not lie inside ’. Hence vo, w, for any such v". A similar argument
shows that no w as described above can exist. Thus p is the end point for
at most two ends.
Assume now that on /Cases I, I’, II do not hold. Assume also that, n Q* 0, and hence the ordering on y is cyclic. Case III must hold, and

any point of y is the end point for at most two ends.
If each point of , is the end point of exactly one end, then the contour is

smooth between any two of its points and is hence an arc between any two of
its points. Since the ordering on , is cyclic, it can be seen from elementary
considerations that, since Cases I and I’ do not hold, , consists of two arcs
joined only at their end points, and hence , is a simple closed curve.
Assume that there is a point p e y which is the end p,oint of two, ends, v,,

withn < v.. Assume that there are two endsw,v=, , < n < <
t!

for which there exist no ends 2 with w, w,, w, w,. Since

and the order is cyclic, there exists an end v0, w 0 v.
Assume as in Case I that , is smoothed between and , a and v,

and v0. As in Case I, this ,gives rise to a triod in ,. Similarly, the same argu-
ment holds if w. v w w. Thus such cases can occur at most count-
ably many times. If these cases are deleted, there carl exist at most one end
v, v w w for which there is no end v0withw,0 w,. Asimilar

situation must exist for the interval v v w
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Assume that in the interval nl -< n -< n the ends occur in distinct pairs with
one possible exception where n, n’ belong to the same pair if w, w,,. Divide
the ends into two classes. If n, n’ is a pair as defined above, we place n in
class C1. if n < n’, and we place n’ in class C, and similarly for the ends in the
interval n. -< n =< n Consider the classes C, C for the interval nt -< n =< n
This includes all the ends of the interval with one possible exception, and
every end in C precedes every end of C. in the ordering. Hence the classes
C1, C define a prime end by definition and hence an end n0, since in this case
all prim,e ends correspond to ends. Also n0 is not a member of any pair since
if n0, n0 were a pair, n0 < n0, then there would exist an end between n0 and ,0
and hence an end in C which follows n, or an end in C. which precedes
contrary to the fact that n0 is defined by the classes C1 and C.. Hence n0 is
the unique end which is not paired to another in the interval n -< n0 -<
Similarly there is a unique end 0 in the interval n =< n -< n with the same
properties. However, the two intervals nl <- n =< n and n -< n =< nl include
all ends ending on . Consider the interval 0 =< n =< n0. The points
for this interval include all points of ,. However, in this interval each point
of , is the end point of exactly one end ending on ,. Hence /is smooth be-
tween 0 and n0 and is thus an arc.

If , n Q* 0 and n,- < n is such that wl w p, then if n and
are not respectively the first and last ends on , t,he s,ame methods as above
can be used to show that either there exist ends n, n., nl < n <n < n., where

w,i w, and n, n are respectively the first and last end on ,, or that /con-
tains a V-set or a triod. If nl, n are respectively the first and last ends on ,,
then the methods used above show that either , contains a triod, or that all
ends with one possible exception nl can be paired as above, and the interval
from n to n0 defines an arc with one end point on Q*.
Thus in Case III, /is an arc or contains a triod or a V-set. If we delete the

components /which contain triods or V-sets, we arrive at the conclusion that
all but a countable family of the components in Case III are arcs.
The cases considered above exhaust all possible cases in which the contour

is not smoothed between any two of its points. Thus with the exception of
a countable number of cases and of the contour components in Case III which
have already been shown to be arcs, all contour components /with images of
finite length are smooth between any two ends. If /is a contour component
having first and last ends ending on it, then V is smooth between the two end
points and is hence an arc, since in the hyperspace F, a smoothed contour be-
tween two elements is an arc, and in this case F Q. If the ordering of the
ends on , is cyclic, then given any two points of , , consists of two arcs with
these two points in common. Since all components containing triods have
been deleted, the two arcs meet only at these points, and , is a simple closed
curve in Q. Finally, in the trivial case in which there is only one end ending
on /, , is a point. Thus all contour components whose images are of finite
length, with the exception of a countable family, are arcs, simple closed curves,
or points.
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COROLLARY. Let T: Q -- Ev be a nondegenerate mapping defining a surface
S of finite Lebesgue area. Let f: [S] --, Reals be a Lipschitzian function. Then
there exists a representation T’ of S for which the components of contours corre-
sponding to almost all values of f([S]) are points, arcs, or simple closed curves.

Proof. Let T be the light representative of S. By the Cesari-Cavalieri
inequality [1, p. 328], contours corresponding to almost all values of f([S])
have images in IS] of finite length. By the theorem above, all but a countable
family of these have the desired form. Hence almost all contours have
the desired form.
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