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Introduction
This paper introduces and studies the notion of a left adequate subcategory

of an arbitrary category (and the dual notion). Definition follows.
Let a be a full subcategory of e. For any object X of (, let Map ((, X)

denote the contravariant functor on a into the category of all sets and all
functions which takes each object A of ( to the set Map (A, X), and each
mapping f:A’ A in a to the function from Map (A, X) to Map (A’, X)
defined by [Map (a, X)(f)](g) gf. Observe that every mapping h X --. Y
in e induces a natural transformation from Map (a, X) to Map (a, Y)
by multiplication. We call a left adequate if every natural transformation
between these functors is induced by a mapping in e and distinct mappings
induce distinct natural transformations. Right adequate is defined dually.
A little thought will show that the phrase "a is right adequate in e" is a

natural formulation of the somewhat variable idea "every object of e has
sufficiently many mppings into objects of a". Then the main results of
this paper are the examples. Using the usual mappings (for topological
spaces, the continuous functions, and similarly for other objects), we have
the following. In a category of algebras with n-ary operations, the free
algebra on n generators is left adequate. In compact spaces, the 2-cell is
right adequate. In sets, a single point is left adequate. The duals of these
examples are less neat. For sets, a countably infinite set is right adequate if
and only if no measurable cardinals exist. For compact spaces, no set of
them is left adequate. The 1-cell is left adequate for Peano spaces, and for
all products of Peano spaces up to the first weakly inaccessible cardinal. No
nontrivial instance is found of a single algebra being right adequate for a large
class, excepting the few which come from the examples mentioned by duality.
The first part of the paper is devoted mainly to inverting the notions of

adequacy in order to obtain a reasonable closure operation on arbitrary cate-
gories. Left or right adequacy alone is unsuitable because a left adequate
subcategory of a left adequate subcategory is not generally left adequate.
Further, if a is a left adequate subcategory of (, almost no useful restriction
on ( can be inferred from restrictions on a. Neither of these objections ap-
plies to the notion of left and right adequacy. This does yield a closure opera-
tion. The main drawback, as the examples show, is that the operation is
rather feeble.
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To handle the case that the smaller category a is a proper class, we define a
to be properly left adequate in C if ( is left adequate and for each object X of
C there is a set of objects A, of ( such that every mapping B -- X, B in a,
can be factored in the form. B --> A, --> X. Properly right adequate is defined
dually, properly adequate by conjunction. Then for every category ( there
is a largest (in the sense of equivalence) category which contains a as a
properly left adequate subcategory. Consequently there is also a largest
category (R(6) in which ( is properly adequate. ((6) is equivalent
to 6t((). If ( can be isomorphically represented as a category of algebras
with certain operations, satisfying specified identities and identical implica-
tions, then so can ((). Similar statements are true for topological spaces
and topological algebras.

I am indebted to J. P. Jans, N. Kimura, and R. J. Nunke for refuting some
naive conjectures on right adequacy in algebraic categories, and to S.
Mac Lane, J. H. Walter, and the referee for suggestions which improved the
definitions.

1. Set functors
Terminology not explained here is from Grothendieck [3]. A subctegory

a of a category ( is called full if every mapping in ( whose domain and range
are in a is in 6. A skeleton is a full subcategory containing exactly one repre-
sentative of each equivalence class of isomorphic objects. We shall use the
easily verified remark that two categories re equivalent in the sense of [3]
if nd only if they have isomorphic skeletons (i.e., if nd only if they are
coextensive in the sense of [4]).

Since the categories will be mostly non-belian we write Map (X, Y) in-
sted of Hom (X, Y). If A is a full subcategory of and X is n object of, Map 6, X) denotes the contravariant functor on a into the ctegory of ll
sets and functions which assigns to each obiect A of a the set Map (A, X)
and to each f:A’ A the function which takes each g e Map (A, X) to
gf Map (A’, X). The functor Map (X, a) is defined dually.
For short, we shall call a functor on a into the ctegory of 11 sets and ll

functions a set functor on 6. We call a natural transformation from a contr,-

variant set functor T on a to another such set functor U a right transforma-
tion from T to U. We extend this usage to call a natural transformation from
Map (6, X) to Map (6, Y) a right transformation from X to Y over 6. For
covariant set functors, a natural transformation from U to T will be clled a

left transformation from T to U; and similarly for Map (X, ().
Note that a mapping f:X---. Y induces natural transformations from

Map (6, X) to Map (a, Y) and from Map (Y, 6) to Map (X, 6) by mul-
tiplication. Both of these induced transformations (right and left) are

from X to Y as defined above.
We define a to be a left adequate subcategory of ( provided a is a full sub-

category of e, every right transformation between objects of over a is
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induced by a mapping, and different mappings induce different right trans-
formations. We define a to be properly left adequate if ( is left adequate and
for each object X of C there is a set S of objects of a such that every mapping
from an object A of a to X can be factored A --* B -- X over some object
BinS.

In the important special case that a has only a set of objects, left adequacy
is the same as proper left adequacy; and in this situation we shall usually
omit the "proper".

1.1. Every skeleton of a category is a properly left adequate subcategory.
Every full subcategory containing a (properly) left adequate subcategory is
(properly) left adequate.

The proof is omitted.

1.2. A left adequate subcategory of a left adequate subcategory need not be
left adequate.

To prove this take three objects, W, X, Y, with the nine sets Map (A, B)
as follows: Map (W, W) is a cyclic group of order 2; Map (X, Y) is a two-
element set; Map (X, W), Map (Y, W), and Map (Y, X) are empty; the
others are one-element sets. This determines the multiplication. The full
subcategory whose objects are W and X is left adequate; in it the full sub-
category whose only object is W is left adequate; but transitivity fails.
For any category a, the principal contravariant set functors on a are the

functors Map (a, A), A an. object of a. Any contravariant set functor F
on a is said to be dominated by a set S of objects of a if every set F(A),
A in (, is a union of sets F(f)(F(B)), B ranging over the elements of S
and f ranging over mappings in Map (A, B). If F is dominated by some set
of objects, it is called proper. All the proper contravariant set functors on a,
with all their natural transformations, form a category (p*(a). The full
subcategory whose objects are the principal functors is called the regular
representation of a. We shall use the same term for the natural isomorphism
of a into (*(a).

In most of this, duality calls for no special comment; but it should be noted
that the principal covariant set tunctors form an isomorphic representation
of the dual category a* (in fact, the regular representation of a*).

1.3. For a category containing ( as a full subcategory, ( is properly left
adequate in if and only if the regular representation of ( can be extended to an
isomorphic representation of in 6)*( ().

This is obvious.

1.4. If ( is a full subcategory of 53, every proper contravariant set functor
on ( can be extended over 53 in such a way as to embed 6)*(() isomorphically
in )*(53) as a full subcategory.



The proof is omitted. There is no unique natural extension; one must make
several choices.
A subcategory a of a category is called adequate (properly adequate) if

a is both left and right (properly) adequate. This implies that for each
object X of , for each object A of a, Map (X, A) is in a natural one-to-one
correspondence with all the natural transformations from Map (a, X) to
Map (a, A), and dually, Map (A, X) corresponds with the natural trans-
formations from Map (X, a) to Map (A, a). That is, either of the functors
Map (a, X), Map (X, a) can be derived from the other by taking natural
transformations into principal set functors.
For any proper contravariant set functor F on a category (, we define the

conjugate set functor F* as follows. For each object A of (, F*(A) is the set
of all natural transformations from F to Map (a, A);for each mapping
f:A A’ in a, F*(f) takes F*(A) to F*(A’) by composing each element of
F*(A) with the natural transformation which f induces from Map ((, A)
to Map (a, A’).
Thus the conjugate of a proper contravariant set functor is covariant (but

it need not be proper). The conjugate of a proper covariant set functor is
defined dually. If both F and F* are proper, then there is a natural trans-
formation from F to F** defined by evaluation, as follows: for p in F(A),
p* in F*(B), the mapping p*(p) Map (A, B) may be denoted by I(P*),
and/ so defined is a natural transformation in F**(A). We call F reflexive
provided F is proper, F* is proper, and the evaluation from F to F** is a nat-
ural equivalence.

1.5. A properly left adequate subcategory ( of a category is properly right
adequate if and only if all the functors Map a, X) are reflexive.
The rest of the proof is omitted.
In contrast with 1.2 and 1.4, we have

1.6. An adequate subcategory of an adequate subcategory is adequate, and
the same for properly adequate.

1.7.
tension.

Not every reflexive set functor on a full subcategory has a reflexive ex-

For 1.6 we shall prove a little more: A left adequate subcategory of an ade-
quate subcategory is left adequate. The checking of domination for proper
adequacy will be omitted.
Then let a be a left adequate subcategory of qt, which in turn is an ade-

quate subcategory of . We show first that any two different mappings
f:X Y, g:X--> Y, in induce different right transformations over a.
Since is adequate in , there exist W in ( and p:W -- X such thatfp gp.
Similarly there exist Z in and q: Y -- Z such that q(fp) q(gp). Then,
since a is left adequate in (, there is e:U ---. W, U in a, with qfpe qgpe.
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Thereforefpe gpe, andf and g induce different right transformations over a.
Now consider the special case of an object X in 5, Y in , and a right

transformation T from X to Y over a. We shall determine the corresponding
mapping g:X ---+ Y by constructing the left transformation G which it induces
over (. For any mapping h: Y-- Z, Z in 5, G(h) must be a mapping
]c :X --. Z. Since X and Z are in , ]c can be determined by defining the
right transformation K which it induces over a. Let e: U -- X be any map-
ping with domain U in a; we define K(e) hT(e). Since T is a right trans-
formation, so is K; then K is induced by a unique mapping ], and the values
of G are defined. G is a left transformation because G(qh) and qG(h), for
any q, induce the same right transformations over a; thus G is induced by
g:X -- Y. FromthedefinitionswehavehT(e) e hgeforalle:U-- X,
U in a, and all h: Y -- Z, Z in (; that is, T(e) and ge induce the same left
transformations over , and T is indeed induced by g.
The general case of T from X to Y over a, X and Y in , reduces to the

previous case. For each f: W - X, W in , there is a mapping T’ (f) :W -- Ycorresponding to the right transformation over a which takes each e: U -- Wto T(fe);and T’ is a right transformation over 5 whose restriction to a
coincides with T. Hence T is induced by a mapping.
Proof of 1.7. Let the category ( have two objects X, Y. Map (X, X)

is the set of all 2 by 2 integral matrices, Map (X, Y) the set of all 3 by 2 in-
tegral matrices; Map Y, Y) has just one element, and Map Y, X) is empty.
Multiplication is matrix multiplication. Let a be the full subcategory with
object X. Let F be the covariant set functor on a which assigns to X the
set of all 2 by 3 integral matrices and to e in Map (X, X) the operation of
left multiplication by e. We omit the verification that F is reflexive.
For any extension G of F over (, G*(Y) is empty, since G(X) is nonempty

and Map (Y, X) is empty. Now consider the set G(Y). The subset S
which is the union of all G(f)(G(X)), f in Map (X, Y), is nonempty; the
remainder T might be empty. Turning to G*(X), an element j must assign
to each matrix d in G(X) a matrix j(d) in Map (X, X), with j(ed) ej(d)
for all 2 by 2 matrices e; this implies j(d) =- djo for some 3 by 2 matrix j0.
Further, j must assign to each G(f)(d) in S the matrix fj(d) in Map (X, Y);
finally, j maps T to Map (X, Y) quite arbitrarily. Assuming G is reflexive,
we can exhibit an element/c of T in G**(Y). Since G*(Y) is empty, we need
only define ](j) for j in G*(X) let ](j) be the matrix j0, considered as an
element of Map (X, Y). It follows that there are two natural transforma-

.!
tions j,j’ in G***(X) differing only on 1; since 30 j0, this is a contradiction.

From 1.5 and 1.6 we obtain the following theorem.

1.8. THEOREM. The reflexive contravariant set functors on a category (

form a category 5( () containing the regular representation of ( as a properly
adequate subcategory. Every category in which ( is properly adequate is equiva-
lent to a subcategory of 5((), and (()) is equivalent to (().
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This concludes the presentation of the concepts. We turn now to illus-
trations, and this almost forces us to turn to examples. However, there is
an exception.

1.9. For any mapping p X -- X in a category ( such that pp p, there is a

reflexive contravariant set functor on ( which is dominated by X and has a unique
reflexive extension over any category containing a as a full subcategory.

The functor F referred to in 1.9 associates to each object A the set of all
elements of Map (A, X) of the form pf. We omit the verification of its
properties. The result may be restated roughly: ny obiect is right and left
adequate for its own retracts.

2. :xampes
A few results on adequacy can be established for abstract algebras in the

most general sense. It is possible to give definition so general as to include
compact Hausdorff spces, but the following seems to be nearly standard.
A family of operations is a well-ordered family of finite ordinal numbers n
an algebra hving that fmily of operations consists of a ground set A and a
well-ordered family of functions Q, ech Q mpping A na into A. The n
re Mlowed to tke the value 0; a 0-ry operation is just a distinguished ele-
ment.
A full category of algebras is concrete category of sets and functions whose

sets cn be tken s the ground sets of certain lgebras, all having the same
fmily of operations, in such wy that the mappings of the category are
exactly the homomorphisms. The concepts of subalgebm and direct product
require no explanation. Similar terminology (full category, subobiect,
direct product) will be used for topological spces, topological algebras, uni-
form spaces, and categories. The meanings are obvious except perhaps for
the following. In the topological cases, by subobject we mean a closed sub-
spce (closed subalgebra). The objects of a full category of categories are
of course rther smll ctegories, since they must be sets; the mappings are
the covarint tunctors. Note that for two functors, f, g, on a category
into a category , the set of all mppings x in such that f(x) g(x),
with their domains and ranges, forms a subctegory. The corresponding
proposition for topological spaces is true in the case of Husdorff spaces.

2.1. THEOREM. [f ( is isomorphic with a full category of algebras, cate-
gories, Hausdorff spaces, Hausdorff topological algebras, or uniform spaces,
then so is (a) in fact, (a) is isomorphic with a full category of subobjects
of direct products of objects of (.

Proof. We give the proof only for the case of algebras; trivial modifications
suffice for the other cses. Since any full subcategory of (R(a) containing
the regular representation of ( is properly adequate, we can proceed by
transfinite induction; and we need only prove that if 6t is a full category of
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algebras, any reflexive contravariant set functor F on st is in fact Map (St, X)
for some suitable algebra X, such that 6 is properly adequate in the full
category of algebras formed by adjoining X to 6.

Let S be a set of objects of 6 dominating both F and F*. Let I denote
the union of all the product sets W X F(W), W an element of S. For each
g F(W) let denote the function on the algebra W into the index set I
defined by (w) (w, g) for each w W. Let P be the direct product
of algebras defined as follows. The index set H is the union of all F*(Z),
Z in S; the factor algebra corresponding to each h e F*(Z) is a copy of Z.
We define a function X:I --* P by its coordinates h for each (w, g) in I,
h(w, g) hg(w). Let X be the smallest subalgebra of P which contains
X(I).
We shall define a natural transformation a from F to Map (St, X) by

a(g) X;Xg is a homomorphism since all its coordinates are homomorph-
isms. It remains to verify several things, most of which are immediate.
For W in St, not in S, each e in F(W) is F(f)(g) for some g in F(V), V in
S, and somef:W -- V in St; a(e) is defined as a(g)f Xf for any such repre-
sentation. This is independent of the choice of g and f because each h
coordinate of Xf is just h(g)f h(e). For the same reason, a is a natural
transformation. It maps each F(W) one-to-one into Map (W, X) since F
is reflexive and S dominates F*. On the other hand, for any homomorphism
m:W -- X, W in St, define a natural transformation t in F**(W) as follows.
For h in F*(Z), Z in S, t(h) is the h*h coordinate r m of m; for other values
(Z not in S) is defined by means of representations h F*(k)(j), wherej
is in F*(Y) for some Y in S. Since F** F, we have t in F(W) and
is m. Thus a is a natural equivalence.

Entirely similar arguments show that Map (X, St) is naturally equivalent
to F*. Finally, a natural transformation v from F* to F* induces a homo-
morphism on X into the product algebra P, by applying v to the coordinate
indices; this homomorphism may be verified to take the generating set X(I)
into itself, and therefore it maps X into X. Conversely, a homomorphism
n:X ---> X induces a natural transformation from Map (63, X) to itself, and
one may verify the equivalence.

Concerning 2.1 it is obvious that axiomatic versions of the theorem exist.
A good axiomatization should give a dual conclusion also. For algebras (to
justify a statement in the introduction) note that identities and identical
implications are preserved in forming products and subalgebras.

In a full category of algebras, an algebra F generated by a set G of its ele-
ments is called free on G if every function from G to any algebra A in the cate-
gory can be extended to a homomorphism from F into A. (Existence of
free algebra with given generators can be proved e.g. if the category is closed
under forming products and subalgebras. For an axiomatic study, see
[6].)

2.2. If is a full category of algebras with operations at most n-ary, and N
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is a free algebra on n generators in a, then N with its endomorphisms forms a left
adequate subcategory of (.

(It is assumed that n => 1.)
Proof. Evidently, since a generator of N can be mapped anywhere by a

homomorphism, two different homomorphisms induce different right trans-
formations over N. Then let a be a right transformation from X to Y over
N. For each x in X, there is a unique homomorphismf "N -- X which takes
all the generators to x. Moreover, a(f) takes all the generators to the same
element a(x) of Y; for the homomorphisms from N to Y which are constant
on the set of generators are characterized as those which are unchanged by
composition with any endomorphism of N permuting the generators, and
this condition is preserved under right transformations. Next consider
any g in Map (N, X). For each generator s of N, a(g)(s) is ag(s); if we let
e’N-- N take all generators to s, we have

a(g)(s) a(g)e(s) a(ge)(s) ag(s).

Next we check that a is a homomorphism. Let Q be an algebraic operation
m-ary, m-_< n--and let x0 Q(Xl,..., x) in X. Let g’N--X take
some m generators s, s to x, x, and let q’N -- N take each
s to Q(s, s). Then gq takes all generators to x0, and a(xo) is the
value of a(gq) on all (any) s. Also a(gq) a(g)q; a(g) takes the first m
generators s to a(xi), and a(g)q takes every generator to

Q(a(x), a(x) ).

Thus a is a homomorphism. For every g in Map (N, X), then, ag is a homo-
morphism coinciding with a(g) on the generators; consequently a is induced
by a.

Concerning right adequacy for algebras, we have little information. For
abelian groups the construction Horn (G, H) is available; but it is closer to
the mark to consider the ring E of all endomorphisms of H, which acts on
Horn (G, H) by composition, converting the group into an E-module G*,.
Let G*,* be the group consisting of all E-homomorphisms of G*, into H. There
is a natural evaluation homomorphism e’G-- G*,*, and we write G,** G
if e is an isomorphism.

2.3. In a full category of abelian groups containing an infinite cyclic group Z
and a group H such that G*,* G for all G in the category, the group H @ H
(if in the category) with its endomorphisms forms a right adequate subcategory.
In any additive category composed of finite direct sums of objects A,, the full
subcategory whose objects are the sums A @ A is adequate.

The proofs are omitted; they are on the same lines as the proof of 2.2.
We turn to topological spaces. We assume acquaintance with the notion

of a measurable cardinal number [8]. Ulam’s results on nonexistence of
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measures have been extended in one direction by Mazur as follows. An
infinite cardinal m is strongly accessible if every limit cardinal , satisfying
R0 < , _-< m can be represented as a sum of fewer than , cardinals each
smaller than ,. Mazur’s theorem: a sequentially continuous real-valued
function on a product of a strongly accessible number of separable metric
spaces is continuous [7].

2.4. If ( is a full category of topological spaces and 6t a full subcategory of (
including a nonempty space, then for any objects X and Y of a, each right trans-
formation from X to Y over gt is f ---> gf for some function g, net necessarily con-
tinous, on X to Y.

Proof. First, a right transformation J takes every constant function to a
constant function, since the constants ]c’W --, X are precisely the functions
unchanged by composition with any e:W--) W. Observe next that if Y
is the empty space, there are no right transformations from X to Y, unless X
is also empty. In the remaining case, select a nonempty space W in 6t and
define g(p) for each point p of X as the constant value of J(k), where k
is the constant function on W to X whose value is p. The verification that
J(f) gf for each f: V -, X, V in , proceeds pointwise. For each v in V,
let p f(v), and let ]:W -- X be the constant with value p. Let e: V -- Wbe some constant function. Then J(]ce) J(lc)e is the constant function on
V to Y with value g(p). Consider the constant d: V-- V with value v;
since fd tee, J(f)d has the constant value g(p) gf(v), which on the other
hand is J(f)(v). Since v is arbitrary, the proof is complete.

2.5. In the category of discrete spaces, a space of one point is left adequate.
A countable space is right adequate if and only if no measurable cardinals exist.

Proof. The first statement follows from 2.4 and the observation that two
different functions with the same domain and range differ on some point.
Next suppose there is an Ulam measure on a discrete space S. Let P
be the one-point space and N a countable space. We define a left trans-
formation J from P to S over N as follows. For each h:S N, the inverse
sets h-1 (n), n e N, form a countable partition of S; thus there is exactly one
n such that (h-l(n) 1. Let J(h) be the mapping of P to N which takes
the value n. Obviously J is an inverse transformation, and since t vanishes
on points, J is not induced by any mapping of P to S.
Now suppose there are no measurable cardinals. It is obvious that two

different mappings X--. Y induce different left transformations over N.
On the other hand, let J be a left transformation from X to Y over N, and
p a point of X. Consider the set function defined on subsets S of Y, as
follows:t(S) 1 ifforallhinM(Y,N), J(h)(p) e h (S); otherwise (S)
0. Evidently is monotone and superadditive. To see that is countably
additive (and not identically zero) consider any indexed countable partition
K} of Y. Let us identify N with the positive integers, and let h: Y N
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take the value i on each Ki. The point J(h)(p) is one of the values i of h,
for it is fixed under all g :N .- N which satisfy gh h. For that i, I claim
(K) 1. Suppose on the contrary that f is a mapping from Y to N,
J(f) (p) ef(K). Consider the mappings d and e: d(y) 1 if f(y) f(K),
d(y) 2 otherwise; e(y) 2h(y) + d(y). Then we have d rf se
for suitable mappings r, s, of N to N. Moreover, h has the form re; and e
never takes on the value 2i -- 2, so that (though t(n) must be the greatest
integer in (n 1)/2 for most values of n) we may define t(2i -- 2) arbi-
trarily. Now J(d)(p) rJ(f)(p) 2-- sJ(e)(p), so that J(e)(p)
is even; but i J(h)(p) tJ(e)(p), which yields a contradiction if we
specify t(2i + 2) i -- 1. This establishes (Ki) 1; is countably
additive; hence there is a point y in Y such that t(/y}) 1. We define
g(p) y. The fact that t(g(p)) 1 means precisely J(h)(p) hg(p)
for all h; defining g for all p, we have the mapping g which induces J.

2.6. THEOREM. A square (2-cell) is right adequate for compact spaces;
an arc (1-cell) is left adequate for products of m Peano spaces if m is strongly
accessible. A plane is right and left adequate for products of m real lines if m
is strongly accessible. A 1-cell is not right adequate for compact spaces.

Proof. Let us take first the plane W; let X and Y be products of accessibly
many real lines. By Mazur’s theorem [7], a sequentially continuous real-
valued function on X is continuous. Then the same is true for a function on
X to Y, since it is continuous if and only if all its coordinate projections are
continuous. (The fact that Y is a full product space is not needed here.)
Now a right transformation from X to Y over W is induced by a function
g:X Y, by 2.4. If g is not continuous, there is a convergent sequence
pc- p in X with g(p) not converging to g(p). Since X is a linear topo-
logical space, there are line segments joining pi to p+l since X is locally con-
vex, these line segments and p make up a compact subspace which is a con-
tinuous image of a closed interval. Then we may retract W upon some closed
interval contained in it to obtain a continuous f: W -- X such that gf is dis-
continuous, a contradiction.
There remains the case of a left transformation J from X to Y over W.

Here we need the structure of pairs of real numbers, which we bring in by
passing to the rings ot real-valued continuous functions, C(X), C(Y). If
we can exhibit a homomorphism j* from C(Y) to C(X) satisfying j* 1 1,
we can conclude that j* is induced by a continuous function g:X Y, the
values j*(f) being fg [5].

Accordingly choose definite coordinate axes in the plane W, and let us use
the following notation for particular functions on W to W:

t(x, y) (y, x), ql(x, y) (x, 0), q.(x, y) (0, y),

+(x, y) (x + y, 0), re(x, y) (xy, 0).
Let i be the function on the line to the plane defined by i(x) (x, 0), and r

on the plane to the line, r(x, y) x. For each fin C(Y), letj*(f) berJ(if).
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Now for a pair of functions, h, tc, in C(Y), let [h, ]] be the function on Y to W
defined by v[h, t] h, rt[h, k] t. We have J ([h, /]) [j* (h), j* (k)].
For ql J([h, /])--J(q[h, /])---J(ih), and q2J([h, ]])= J(tit) simi-
larly. Then

j*(h + It) rJ(i(h + l)) J(+[h,/]) (-(J([h,/])))

r(+[j*(h), j*(]c)]) j*(h) - j*(k);

and the same computation goes for multiplication. One may verifyj*(1) 1
e.g. by rotating W around the point (1, 0). Then j* is a homomorphism.
This yields continuous g:X -- Y satisfying j*(f) fg for all f in C(Y).
But every h in M( Y, W) is [e, f] for some two elements e, f of C(Y); and
we have

J [e, f]) [j*(e), j*(f)] [eg, fg] [e, f]g.

This completes the proof of the statements about the plane.
The left adequacy of the arc for products of accessibly many Peano spaces

is proved in almost the same way. By Mazur’s theorem and 2.4, it suffices
to show that in such a product X of factors X,, every convergent sequence is
contained in a Peano subspace. The analogue of local convexity is supplied
by Bing’s theorem [2] that each Peano space X, has a metric de in which
it is metrically convex, i.e., any two points can be joined by an arc isometric
to a real interval. Choose such a metric for each factor, and let p-- p in
the product space X. We select intervals I joining p to p+l so that the pro-
jections joining the coordinates p to p,+l are isometric to real intervals (no
more care is needed). We must verify that every neighborhood of the limit
p contains almost all I. Considering the definition of the product topology,
it suffices to verify that each coordinate p, has a basis of neighborhoods Un
which have the property that any isometric interval in X, whose ends are in
Un lies wholly in U. But if V2 is the spherical (1/2n)-neighborhood, and
Un the union of all intervals whose ends are in V2", then U is a neighborhood
contained in V and the Un form a basis.
For right adequacy, let X and Y be compact spaces and J a left trans-

formation from X to Y over the square S. Let us regard S as the product of
two closed intervals [-1, 1]. For those functions f in C(Y) which satisfy

fl -<- 1 we can repeat the previous construction. For each real constant 0
between 0 and 1, let c0 :S -- S be the contraction (x, y) -- (0x, 0y). Ob-
serve that J (c0 h) co J (h). Then since Y is compact, there is for every h
in C(Y) some > 0 such that [0hl =< 1; if we define j*(h) as 0-j*(eh),
the definition is independent of 0 and yields a homomorphism j* as before.
Then j*, hence also J, is induced by a continuous function g:X-- Y; and
the proof, as to S, is complete.

Finally we shall exhibit left transformation from a point P to a 2-cell S
over a 1-cell I, which is not induced by a continuous function on P to S.
Consider S as a triangle abc. To each mapping h: S -- I we associate the
mapping J(h):P I whose value is that unique x in I such that the set
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h-l(x) has a component K whose intersection with each of the three sides,
ab, ac, bc, is nonempty. Evidently, if x always exists, J will be the required
counterexample. The existence of such an x is routine and may be known;
a proof follows.

First, one easily sees that if K and L vcere two disioint closed connected
subsets of S each meeting all three sides, then in the 1-sphere which is the
boundary of S some two points of K would separate two points of L. This
conflicts (e.g.) with the Jordan curve theorem; if we replace K with an arc
in the locally arcwise connected space S L, ioining two suitable points, p, q,
we can then embed S in the plane and continue the arc to a Jordan curve
separating the given points, r, s, of L. Thus there is at most one such x.
On the other hand, consider the set of all components K of inverse sets h-1 (x)
which have nonempty intersections with both ab and ac. There is such a
K, namely the component of a in h-(h(a)). Evidently for any two such
K, one separates a from the other;and by continuity and compactness, there
is a K0 farthest from a. Suppose K0 fails to meet bc, and x0 is the value of
h on K0. There is a relatively open-closed subset A of the compact space
h-(Xo) which contains K0 and is disioint from bc. Let R be the component
ofbcin S- A, T RuA. On a neighborhood UofAin T, hdoesnot
take the value x0. Since R is connected, h x0 has constant sign on U.
We may suppose h _>- x0 W on the boundary of U relative to T. Then
h-1 (x0 - ) separates A, and in particular K0, from bc in the space T; there-
fore h-(x0 W ) separates K0 from bc in the 2-cell S. This implies that some
component K of h-(Xo ) separates K0 from bc [1], and therefore meets
both ab and ac, lying farther from a than K0. This contradiction completes
the proof.
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