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The main result of [6], stating that S4n-1 is not parallelizable except for
n 1 and 2, can be reformulated in terms of homotopy groups of the rota-
tion group SO(4n 1) as follows" For n >= 3, m,_(SO(4n 1)) is not zero;
or equivalently, for n >= 3, m,_.(SO(4n 2)) is not zero. (Compare [6],
Lemma 2.)

In the present paper, the results of R. Bott [2] on the stable homotopy of
the classical groups and the isomorphism 2q(U(q)) - Z/q! Z are used to
derive more precise information on m-2(S0(4n 1) ), 4-2(S0(4n 2) ),
and further nonstable homotopy groups of the rotation group SO(m) and the
unitary group U(m). Our results also rely essentially on the computations
of G. F. Paechter [8].
As seen from the tables below, periodicity persists "for some time" in the

nonstable range in the sense that ’,+m(SO(m)) for r =< 1 and large m de-
pends only on the remainder class of r + m modulo 8. (Periodicity breaks
down for low values of m, due to the fact that S1, S3, S are parallelizable.)
Similarly, for m large enough and r =< 2, r2m+r(U(m)) depends only on the
parity of r.
r,+r(U(m) is given for r __< 2 by the following table"

1 0

2k

Z2
Z. + Z(+.

Ze
for / > 1
for k 1

r+,(SO(m) is given by the following table, valid for s => l"

--1
0
1
2
3
4

8s+3 8s+4 8s+5 8s+6 8s+7
Z2 Z + Z Z Z Z
Z Z + Z2 Z Z Z
Z2 Z2 + Z Z Z Z. +

Z2 "- Z2 Z4 Z24d Z Z2 Z12 -- Z2 Z2 -" Z2
Zs Z + Z. Z2 Z Z

Z + Z2 Z Z2 Zs Z + Z2

In this table d is ambiguously 1 or 2.
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For low values of m, rm+r(SO(m)) is mostly well known.
for completeness the following table"

We mention

r\ 3 4 5 6 7

The knowledge of ’m+r(SO(m)) provides information on the homomor-
phisms of the homotopy exact sequence of the fibering SO(m)/SO(m 1
Sm-1. We obtain

THEOREM 1. Let ,-1 be the generator of r,( Sm-) Z2 Then 0v4-2 0

for n >- 3, where O" r,( S"-) ---> r,_l(S0(m 1)) is the boundary homo-
morphism.

Remark. 0/ 0, 06 0 because S and S are parallelizable. It is
well known that Om- O, OV4n O, and 0,/4.+1 0. (Compare P. J.
Hilton and J. H. C. Whitehead [4], [5].)

Similarly, we obtain

THEOREM 2. Let 0,_1 be the generator of the group r+l(Sm-i) , Z.
(0,_ ,-1 q, .) Then 004+1 0 for s >= 2.

Remark. 005 0, 004n--2 0, CO4n--1 0, 004n 0 are well known.
(Compare [4], [5].)

THEOREM 3. Let ,,_ be the generator of the stable group r,+( S"-) (m >= 6),
and O: r,n+2 (Sm-) r,+(SO(m 1 the boundary operator of the homotopy
sequence of the fibering SO m /SO m 1 ). We have

(i)
(ii)

(iii)
(iv)
(v)
(vi)

vii
(viii)

0us,-a 0, 20us,-a 0, for s >= 2; Ou5 O,
the kernel of O" s,+(Ss-2) -- rs.(S0(8s 2) contains 0, and
12ss-2 Ys-2 8s-1 VSs,

0" s+(Ss) s2(S0(8s) is injectie,
0,s+ 0, 20s.+ 0,
the kernel of O" s+(Ss+) s+(S0(8s + 2)) is cyclic of order 2
generated by 12s+ s+ vs+ s+4,

0s+a 0, 20s+a 0,
the kernel of O’s+(Ss+) s+(SO(8s + 4)) is at most Z.

Some lemmas

The following preliminary lemma is a generalization of a lemma of B.
Eckmann (compare [3]).
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Let be a fibre space with projection p, and let

+I(E) P- +l(X) a

be the homotopy sequence of .
LEMh 1. /f e r+(X) has the form a’ o E, where e i(S’) and

’ e r,+(X), then Oa (0’) .
Proof. Letf" (B+, S) -- (E, F) be such that p ofrepresents a’. Then

f’lS represents 0’. Let Cfl’(B+1, Si) ---+ (Bre+l, Sm) be the mapping
induced by f, and definer: (B+1, Si) -- (E, F) to bef f’ C. Clearly pof
represents ’ E. Hence O(a’ o E) O(p of) f St (f’] S)

LEMMA 2. Let be a generator of the stable group r(SO(m) (whenever
nonzero). We have the relations

8s--I ]8s--i 8s 8s--I ()Ss--I Ss-l-I
for all s -> 1.

Proof. Let b" SO(n) -- SSO(16n) be the Bott map.
Since bi =t=v+s, the above relations hold if they do for s 1. Thus

we have only to verify that 0, 0. In fact, J( v) 0
and J( ) 0.

S SNotice that J() E % where / -+ is the Hopf map. (See
Milnor-Kervaire [7].)
Now , and , O are known to be nonzero (see Adams [1]). (Recall

that J(a o ) :}:Ja o E’, where a e (SO(m)), (S).)
I. The unitary groups

LEMM 1.1. Let q: U n --+ S’- be the natural projection. Then
q," r, U(n) --) S-) is given by

q, a 0 for n odd,

q, an 2,- for n even,

where a, is a generator of (U(n)).

Specifically, we shall take a to be a Oi+, where 0 is the boundary
homomorphism in

r+,( U(n - t) -- .+(S2n-l) .(U(n) (U(n + ) o.

Proof. Let n 2. Consider the homotopy sequence of W+I,/S4-

4k+l

1.2. m+(W.+,) - m+(S+) A S_,( ) ,(w+,).

Added in proof. See R. Boww, The stable homotopy of he classical groups, Ann. of
Mth.(2), vol. 70 (1959), pp. 313-337.
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Since S4k+1 does not admit a 3-field, Ai+ 0. Hence

1.3. Ai+ w-.

Since A q, 0, it follows that q, a2k q, 0i4+ Ai+ m-. Let
n 2k 1. Since W,:/W_. S4- has a cross section, it follows that
Ai4_ 0. Hence q, a:_ q, Oi_ Ai_ O.

LEMMA 1.4. m- U(2 1) 0, m+l(U(2k) Z (k 1), generated
by 0+.

This is an immediate consequence of Lemma 1.1, by using the exactness of
the sequences

4k (V 2 ) q$ 4k(4k-1) m_(U(2 1)) 0,

m+(U(2 + 1)) q, , m+(S+) 0 m+(U(2k)) 0.

LEMMA 1.5. q,+ 0_, for 1, where

q,.+(u(2)) +1(-).

Proof. q,+ A+, where A is the boundary operator of the fiber-
4k+1ing W+I.:/W. By Lemma 1, Aw+ Ai+ o

_
v

O4_. (Compare 1.3.)

LEMMA 1.6. m(U(2k 1)) Z()/, m+(U(2k)) Z + Z(+)
for > 1. For 1, m+(U(2k)) re(U(2)) m(S X S) Z,
as is well known.

Proof. Consider the homotopy sequence of the fibering

U(2)/U(2 1) S-1" (S-)+(u()) q*

0 q, S4k_l(v(2 )) i. .(u(2)). , ( ).

The above results show that the sequence

0 (v(e 1)) i,
Z() Z: 0

is exact. It follows that m(U(2k 1)) Z()/.
Similarly, the homotopy sequence of U(2k + 1)/U(2k) S4+, i.e.,

ok+ 0 q, 4+.+. -+(v(e)). .+(v(e + 1)) 4k+2

shows that the sequence

0 Z 4+(U(2) Z(:+, 0

is exact. (00+ OEO a 04 0, since q,(a 04) m- O4
12_ 0.) If m+(U(2)) is cyclic, then 0041 is divisible by (2k + 1) !.
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Hence, 124_ q, 00a+ is lso divisible by (2/c -- 1)!. This implies
/ 1. In other words, for k > 1, r4+e(U(2k)) is the trivial extension-
Z + Z+).

II. The rotation groups

We shll need the following information bout homotopy groups of complex
Stiefel mnifolds.
The following isomorphisms hold for n 3"

LEMMA II.1. (i) m_(W_,)= 0, (ii) 4n-2(W2n-l,2) Z12,
(iii) m_(W,) Z.

Proof. The first ssertion follows from the exact homotopy sequence of
W2n-1,2/W2n-2,1 S4n-3"

S_ A S_4_(z-) ._(w_l,) 4_ ._ ).

For n 3, the groups m-(S-) are zero (compare Serre [9]); m-(Sn-)
is Cyclic of order 2, generated by 0._ v4- v4"-. We huve

AO4n- AEO4n_t Ai4n_ 04n-4 q, 0i4n_ O4n-4 q, a_ 04n-4.

By Lemma 1.1, q, a_ m,-. Thus AO4_ 12v4_ 0. Extending
the bove sequence

4n--1 S4n-3) 4n--5
4n--2k 4n-2(W2n-l,2) 4n--2(S4n-3)

and using An4- mn- n4-4 04- 0, we obtain m_(W_,) Z.
Now, the last assertion of the lemma follows from exactness of the sequence

q" s4n_ A,_(w_,) ,_(w,) _( _(w_,) z
IncidentMly we see that q" mps generator onto a times generator, where
a is divisor of 12.

Consider now the commutative diagram

p’,(so(e)) ._(v,+)_(so(- )) o

where m is go be large (2n < m). m-l(W.....+) is independeng of m for
m 2, and ghe projeegion m-(Wm,-+a) m-(W....+) can be
identified wigh "" m-(W,a) m-(S-) considered above. Since

q" ’. m-(U(m) m-(W,-+l) maps a generator onto (2n 1)
imes a generagor, i follows hag q’ mulgiplies by (2n 1 /a (a, divisor of 12).
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The map/’ is also imbedded in the following diagram

p,,
_l(V,_+) ,,, _(v,_+) - 4_(v_,) zo

where b is equal to 1 for n odd, 2 for n even. Since m-(V,-+) Z,
nd m-(V-,) Z for n > 1, it follows that Imp" 2.m(V,_+)
for n odd, nd p’ is surjective for n even. It is esily seen that ’ is surjective.

Let n be odd’n 2s + 1. We hve s+(V.m-s+) Zs (see [8]).
’q’ is divisible by (2n 1)/2. Consequently, ’q’ is zero for n 5. By
commutativity, p’ 0 for n 5, i.e., s 2. Since

"+(V(m) .+(O(2m)

is surjective (s,+(SO(2m)/U(m)) s,+,(SO(2m)) 0, by [2]), it fol-
lows that p"m,+(SO(2m)) s+(V.2_s,+), and hence

s,+" rs,+ (SO(2m) s,+(V.-s,+)

is zero for s 2, i 2. Therefore,

.2. .+,(o(ss i) .+(v,,_,+,)

Letn 3, ors 1. We use the diagram

p’(o(era)) (y.,,._) 0(so(s)) 0(o(era)) o

((m) 1(,_ o(v() 1,(() o.

fori =< 2ands => 2.

By Lemma 1.6, rl0(U(4) Z2 + Z120. Hence q’ is divisible by 120. Since
rl(V2m.m_s) Z24 -+- Zs (see [8]), it follows that /’q’ 0. Since/3 is an
isomorphism, p’ is zero, and a fortiori ’rn(SO(2m)) --+ rn(V,.,,_) is
zero for i => 8. This gives rl(V.m.m_) ro(SO(i)) for i __> 8. From
G. F. Paechter’s table, we obtain

,0(so(8)) z.o + z,
rlo(SO(lO) z4,

ro(SO(9)) Zs,

"o( SO( 11 - Z.

Since ru (Vm.,--) -- rll(V,m-s) is injective (rl(S) 0), it follows
that also rl(V,_) r0(S0(7)). This gives

II.4. r10(S0(7) --- Zs.
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Let n be even’n 2s. We have rs-l(V:,2m-ss+6) Z16 for s >_- 2. Now
’q’ is divisible by (2n 1) !. Hence ’q’ 0 for n 4, i.e., s 2. Since

" S-l( U(m)) s- SO(2m)) maps a generator onto 2 times a generator,
and p’ ’q’ 0 for s 2, it follows that in the sequence

p’._i(O(m)) .-i(w,-.+) ._(zo(s ))II.5.
_(O(m)) o,

p’ is divisible by 8 for s 2. Now rs-(V,-s+) Zs. Therefore
s_’vs_(SO(2m)) vs_(V,,_s+) is zero for i 3, s 2. Hence

II.6. m_(SO(8s i)) vs_(V,_s+) for i 3 und s 2.

The groups rs,_(SO(8s 6)), s_(SO(8s 5)), s_(SO(8s 4)) are
either Zs, Zs, Z + Z4, respectively, or Zi, Z, Zs + Z, respectively.
I do not know whether the decision of this alternative depends on s or not.

The groups vs+(SO(8s i)) for -2 N i N 3 are obtained from the
sequence

+(SO(m)) 8+(v....+) +(So(ss i))

8s+i(O(m) 8s+1(Vm,m-8s+i),

where r8+(S0(m)) O.
Since s+(V,-s,+4) 0 for s 2, it follows that

8s+l11.7. 8-" Y8,+1(SO(m)

is zero for i 4 and s 2, and the sequence

0 8s+2(V.....8s+i) 8s+1(S0(88 i)) rs,+x(SO(m)) 0

is exact for i 4, s 2. Because of commutativity in the diagram

0 zs,+(V.....8,+,-) vs,+(S0(8s i + 1)) rs,+(SO(m)) 0

o +(v.....+) .+l(SO(a i)) .+(SO(m)) o,
ig follows hag ghe upper sequence is a spli exgension if ghe lower is. The
sequence splits rivially for i a, since (V....,+) 0, for 1.
Thus

II.8. a+(SO(8 i)) Z + a+(V....a+) for i N a, 2.

or 1, wehavego sudy’m(SO(m)) m(V,_) Z. Ois
an epimorphism, since a(SO()) 0 (see Serre [10]). herefore,
m(SO()) 0(V,_) 0. Now ghe sequence

(SO(m) (,_) (so(a)) (SO(m,
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which reads Z2 -- Z12 --+ Z24 Z (compare Serre [10]), shows that q is zero.
Therefore, the sequence

0 -’-> 71"10 V....8+i) --- r9(S0(8 i)) -- ’9(SO(m)) --+ 0

is exact for i -< 2. This sequence splits, because it splits trivially for i 2
(rlo(Vm.._6) O, according to Paechter [8]). We obtain

0(6)) z, 0(7)) z + z,
(0(8)) z + z + z,

(so(9)) z, + z_, SO(IO)) Z -+- Z..

The groups ms(S0(Ss i)) for 1 =< i =< 4. Consider the sequence

,+(SO(m) - ,+(Vm..--,+) ,(SO(Ss-- rss SO m --where the first homomorphism *s-i) is zero for i _-< 4, s >_- 2, bijective for
i 3, s 1, and zero fori <_- 2, s- 1.
The value of the last homomorphism is obtained using Lemma 2. Since

8s Ss--1
8s 8s--1 V8s--i it follows that s.-(es,) *s,-i(8s-l) V8s--1 We have

,..,8 s--1seen that _(s_l) is divisible by 8 for i <- 6, s => 2. It follows that
8ss-(es) 0fori < 6, s > 2 We also have s-i(e8) 0 for i =< 2 and

s 1, for rs(V,,-s+.) 0 for s _>_ 1.
This gives an exact sequence

II.10. 0 -- rs+(V....s+) -- rs(SO(8s i)) -- rs,(SO(m)) Z -- O,

valid fori-<_ 6, s => 2andi =< 2, s 1. Again the sequence splits for any
i =< i0 if it does for i i0. We use this withi0 4fors => 2, acasewhere
the splitting is obvious since ms+(V....s+4) 0. If s 1, the sequence
is known to split for i =< 1 (see Serre [10]). However it does not split for
i 2 ((0(6)) Z).

The groups rs_(SO(8s i)) for 1 =< i =< 5. Consider the sequence

(SO(.)) (R);- (V._+)-_(S0(8- ))- ws.-x (SO 2m ),
fori-< 5. Since

s,
I,s,_ is zero for s >= 2, it follows that rs_(SO(Ss i)) is

isomorphic to the direct sum of Z and zs(V,.m-ss+). Thus,
II.11. For s >= 2, ’s_(SO(Ss i)) Z + Z. for 3 =< i __< 5,

and rs_(SO(8s i)) Z for i 1, 2.

For s 1, the groups are well known.

The groups rs+a(SO(8s i)) for i =< 1 are obtained from the sequence

rs+4(S0(m)) 0 - rs+4(V.-s,+) rs+a(S0(8s i)
-+ rs+a( SO(m) rs+(V.,,_s+).
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We know that 88-i’r88+’(S0(m)) -- r8+3(Vm.m-88+i) is zero for s _--> 2,
i--< 2, ands 1, i 0.

Consequently, s+(S0(Ss i)) m,+(V,-8+) + Z for i 2, s 2,
ands= 1, i 0.

The groups 8+(S0(8s i)) and 8+(S0(8s i 1))for i 0 follow
from the sequences

0 rs.+a(SO(m)) rs.(V,-s.-i)

vs4(SO(Ss + i)) s+(SO(m)) 0
and

0 + 0(m)) .+(V,_.__I)
rs+(S0(Ss + i + 1)) rs+(S0(m)) O,

where m is to be large (m > 8s 7), by using G. F. Paechter’s computa-
tions [8].
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