SOME NONSTABLE HOMOTOPY GROUPS OF LIE GROUPS

 $\mathbf{B}\mathbf{Y}$

MICHEL A. KERVAIRE

The main result of [6], stating that S^{4n-1} is not parallelizable except for n = 1 and 2, can be reformulated in terms of homotopy groups of the rotation group SO(4n - 1) as follows: For $n \ge 3$, $\pi_{4n-2}(SO(4n - 1))$ is not zero; or equivalently, for $n \ge 3$, $\pi_{4n-2}(SO(4n - 2))$ is not zero. (Compare [6], Lemma 2.)

In the present paper, the results of R. Bott [2] on the stable homotopy of the classical groups and the isomorphism $\pi_{2q}(U(q)) \cong Z/q! Z$ are used to derive more precise information on $\pi_{4n-2}(SO(4n-1)), \pi_{4n-2}(SO(4n-2))$, and further nonstable homotopy groups of the rotation group SO(m) and the unitary group U(m). Our results also rely essentially on the computations of G. F. Paechter [8].

As seen from the tables below, periodicity persists "for some time" in the nonstable range in the sense that $\pi_{r+m}(SO(m))$ for $r \leq 1$ and large *m* depends only on the remainder class of r + m modulo 8. (Periodicity breaks down for low values of *m*, due to the fact that S^1 , S^3 , S^7 are parallelizable.) Similarly, for *m* large enough and $r \leq 2$, $\pi_{2m+r}(U(m))$ depends only on the parity of *r*.

 $\pi_{2m+r}(U(m))$ is given for $r \leq 2$ by the following table:

 $\pi_{m+r}(SO(m))$ is given by the following table, valid for $s \ge 1$:

r^{m}	88	8s + 1	8s + 2	8s + 3	8s + 4	8s + 5	8s + 6	8s + 7
-1	Z + Z	$Z_2 + Z_2$	$Z + Z_2$	Z_2	Z + Z	Z_2	\boldsymbol{Z}	$oldsymbol{Z}_2$
0	$Z_2 + Z_2 + Z_2$	$Z_2 + Z_2$	Z_4	Z	$Z_2 + Z_2$	${m Z}_2$	Z_4	\boldsymbol{Z}
1	$Z_2 + Z_2 + Z_2$	Z_8	Z	${oldsymbol{Z}}_2$	$Z_{2} + Z_{2}$	Z_8	Z	$Z_2 + Z_2$
2	$Z_{24} + Z_8$	$Z + Z_2$	Z_{12}	$Z_2 + Z_2$	$Z_4 + Z_{24d}$	$Z + Z_2$	$Z_{12} + Z_2$	$Z_2 + Z_2$
3	$Z + Z_2$	0	Z_2	$Z_{\scriptscriptstyle 8d}$	$Z + Z_2$	Z_2	Z_2	Z_8
4	0	${oldsymbol{Z}}_2$	$Z_{\scriptscriptstyle 8d}$	$Z + Z_2$	${oldsymbol{Z}}_2$	Z_2	Z_{8}	$Z + Z_{2}$

In this table d is ambiguously 1 or 2.

Received November 10, 1958.

For low values of m, $\pi_{m+r}(SO(m))$ is mostly well known. We mention for completeness the following table:

$r \setminus^m$	3	4	5	6	7
-1	0	Z + Z	Z_2	Z	0
0	Z	$Z_{2} + Z_{2}$	Z_2	0	Z
1	Z_2	$Z_2 + Z_2$	0	Z	$Z_2 + Z_2$
2	Z_2	$Z_{12} + Z_{12}$	Z	Z_{24}	$Z_2 + Z_2$
3	Z_{12}	$Z_{2} + Z_{2}$	0	Z_2	Z_8
4	Z_2	$Z_2 + Z_2$	0	$Z_{120} + Z_2$	$Z + Z_2$

The knowledge of $\pi_{m+r}(SO(m))$ provides information on the homomorphisms of the homotopy exact sequence of the fibering SO(m)/SO(m-1) = S^{m-1} . We obtain

THEOREM 1. Let η_{m-1} be the generator of $\pi_m(S^{m-1}) \approx Z_2$. Then $\partial \eta_{4n-2} \neq 0$ for $n \geq 3$, where $\partial: \pi_m(S^{m-1}) \to \pi_{m-1}(SO(m-1))$ is the boundary homomorphism.

Remark. $\partial \eta_2 = 0$, $\partial \eta_6 = 0$ because S^3 and S^7 are parallelizable. It is well known that $\partial \eta_{4n-1} = 0$, $\partial \eta_{4n} \neq 0$, and $\partial \eta_{4n+1} \neq 0$. (Compare P. J. Hilton and J. H. C. Whitehead [4], [5].)

Similarly, we obtain

THEOREM 2. Let Θ_{m-1} be the generator of the group $\pi_{m+1}(S^{m-1}) \approx Z_2$. $(\Theta_{m-1} = \eta_{m-1} \circ \eta_m)$ Then $\partial \Theta_{4n+1} \neq 0$ for $s \geq 2$.

Remark. $\partial \Theta_5 = 0$, $\partial \Theta_{4n-2} = 0$, $\partial \Theta_{4n-1} = 0$, $\partial \Theta_{4n} \neq 0$ are well known. (Compare [4], [5].)

THEOREM 3. Let ν_{m-1} be the generator of the stable group $\pi_{m+2}(S^{m-1})$ $(m \ge 6)$, and $\partial: \pi_{m+2}(S^{m-1}) \to \pi_{m+1}(SO(m-1))$ the boundary operator of the homotopy sequence of the fibering SO(m)/SO(m-1). We have

- (i)
- $\partial \nu_{8s-3} \neq 0, \quad 2\partial \nu_{8s-3} = 0, \text{ for } s \geq 2; \quad \partial \nu_5 = 0,$ the kernel of $\partial : \pi_{8s+1}(S^{8s-2}) \to \pi_{8s}(SO(8s 2))$ contains 0, and (ii) $12\nu_{8s-2} = \eta_{8s-2} \circ \eta_{8s-1} \circ \eta_{8s} ,$
- (iii) $\partial v_{8s-1} = 0,$
- $\partial: \pi_{8s+3}(S^{8s}) \to \pi_{8s+2}(SO(8s))$ is injective, (iv)
- $\partial \nu_{8s+1} \neq 0, \quad 2\partial \nu_{8s+1} = 0,$ (v)
- the kernel of $\partial: \pi_{8s+5}(S^{8s+2}) \to \pi_{8s+4}(SO(8s+2))$ is cyclic of order 2 (vi)generated by $12\nu_{8s+2} = \eta_{8s+2} \circ \eta_{8s+3} \circ \eta_{8s+4}$,
- (vii) $\partial \nu_{8s+3} \neq 0, \quad 2\partial \nu_{8s+3} = 0,$

(viii) the kernel of
$$\partial:\pi_{8s+7}(S^{\circ s+4}) \to \pi_{8s+6}(SO(8s+4))$$
 is at most Z_2 .

Some lemmas

The following preliminary lemma is a generalization of a lemma of B. Eckmann (compare [3]).

Let ξ be a fibre space with projection p, and let

$$\pi_{i+1}(E) \xrightarrow{p} \pi_{i+1}(X) \xrightarrow{\partial} \pi_i(F) \to \pi_i(E)$$

be the homotopy sequence of ξ .

LEMMA 1. If $\alpha \in \pi_{i+1}(X)$ has the form $\alpha = \alpha' \circ E\beta$, where $\beta \in \pi_i(S^m)$ and $\alpha' \in \pi_{m+1}(X)$, then $\partial \alpha = (\partial \alpha') \circ \beta$.

Proof. Let $f': (B^{m+1}, S^m) \to (E, F)$ be such that $p \circ f$ represents α' . Then $f' \mid S^m$ represents $\partial \alpha'$. Let $C\beta: (B^{i+1}, S^i) \to (B^{m+1}, S^m)$ be the mapping induced by β , and define $f: (B^{i+1}, S^i) \to (E, F)$ to be $f = f' \circ C\beta$. Clearly $p \circ f$ represents $\alpha = \alpha' \circ E\beta$. Hence $\partial(\alpha' \circ E\beta) = \partial(p \circ f) = f \mid S^i = (f' \mid S^m) \circ \beta = \partial \alpha' \circ \beta$.

LEMMA 2. Let ε_i be a generator of the stable group $\pi_i(SO(m))$ (whenever nonzero). We have the relations

$$\varepsilon_{8s-1} \circ \eta_{8s-1} = \varepsilon_{8s}$$
, $\varepsilon_{8s-1} \circ \Theta_{8s-1} = \varepsilon_{8s+1}$

for all $s \geq 1$.

Proof. Let $b: SO(n) \to \Omega^8 SO(16n)$ be the Bott map.¹

Since $b\varepsilon_i = \pm \varepsilon_{i+8}$, the above relations hold if they do for s = 1. Thus we have only to verify that $\varepsilon_7 \circ \eta_7 \neq 0$, $\varepsilon_7 \circ \Theta_7 \neq 0$. In fact, $J(\varepsilon_7 \circ \eta_7) \neq 0$ and $J(\varepsilon_7 \circ \Theta_7) \neq 0$.

Notice that $J(\varepsilon_7) = E^m \gamma$, where $\gamma: S^{15} \to S^8$ is the Hopf map. (See Milnor-Kervaire [7].)

Now $\gamma \circ \eta$ and $\gamma \circ \Theta$ are known to be nonzero (see Adams [1]). (Recall that $J(\alpha \circ \beta) = \pm J\alpha \circ E^m \beta$, where $\alpha \epsilon \pi_k(SO(m))$, $\beta \epsilon \pi_j(S^k)$.)

I. The unitary groups

LEMMA I.1. Let $q: U(n) \to S^{2n-1}$ be the natural projection. Then $q_*: \pi_{2n}(U(n)) \to \pi_{2n}(S^{2n-1})$ is given by

$$q_* \alpha_n = 0$$
 for n odd,
 $q_* \alpha_n = \eta_{2n-1}$ for n even,

where α_n is a generator of $\pi_{2n}(U(n))$.

Specifically, we shall take α_n to be $\alpha_n = \partial i_{2n+1}$, where ∂ is the boundary homomorphism in

$$\pi_{2n+1}(U(n+1)) \to \pi_{2n+1}(S^{2n+1}) \xrightarrow{\partial} \pi_{2n}(U(n)) \to \pi_{2n}(U(n+1)) = 0.$$

Proof. Let n = 2k. Consider the homotopy sequence of $W_{2k+1,2}/S^{4k-1} = S^{4k+1}$:

I.2.
$$\pi_{4k+1}(W_{2k+1,2}) \to \pi_{4k+1}(S^{4k+1}) \xrightarrow{\Delta} \pi_{4k}(S^{4k-1}) \to \pi_{4k}(W_{2k+1,2})$$

¹ Added in proof. See R. BOTT, The stable homotopy of the classical groups, Ann. of Math.(2), vol. 70 (1959), pp. 313-337.

Since S^{4k+1} does not admit a 3-field, $\Delta i_{4k+1} \neq 0$. Hence

I.3.
$$\Delta i_{4k+1} = \eta_{4k-1}$$

Since $\Delta = q_* \partial$, it follows that $q_* \alpha_{2k} = q_* \partial i_{4k+1} = \Delta i_{4k+1} = \eta_{4k-1}$. Let n = 2k - 1. Since $W_{2k,2}/W_{2k-1,1} = S^{4k-1}$ has a cross section, it follows that $\Delta i_{4k-1} = 0$. Hence $q_* \alpha_{2k-1} = q_* \partial i_{4k-1} = \Delta i_{4k-1} = 0$.

LEMMA I.4. $\pi_{4k-1}(U(2k-1)) = 0, \pi_{4k+1}(U(2k)) = Z_2 \ (k \ge 1), generated$ by $\partial \eta_{4k+1}$.

This is an immediate consequence of Lemma I.1, by using the exactness of the sequences

$$\pi_{4k}(U(2k)) \xrightarrow{q_*} \pi_{4k}(S^{4k-1}) \xrightarrow{\partial} \pi_{4k-1}(U(2k-1)) \to 0,$$

$$\pi_{4k+2}(U(2k+1)) \xrightarrow{q_*} \pi_{4k+2}(S^{4k+1}) \xrightarrow{\partial} \pi_{4k+1}(U(2k)) \to 0.$$

LEMMA I.5. $q_* \partial \eta_{4k+1} = \Theta_{4k-1}$, for $k \ge 1$, where

$$q_*: \pi_{4k+1}(U(2k)) \to \pi_{4k+1}(S^{4k-1})$$

Proof. $q_* \partial \eta_{4k+1} = \Delta \eta_{4k+1}$, where Δ is the boundary operator of the fibering $W_{2k+1,2}/W_{2k,1} = S^{4k+1}$. By Lemma 1, $\Delta \eta_{4k+1} = \Delta i_{4k+1} \circ \eta_{4k} = \eta_{4k-1} \circ \eta_{4k} = \Theta_{4k-1}$. (Compare I.3.)

LEMMA I.6. $\pi_{4k}(U(2k-1)) = Z_{(2k)!/2}, \pi_{4k+2}(U(2k)) = Z_2 + Z_{(2k+1)!}$ for k > 1. For $k = 1, \pi_{4k+2}(U(2k)) = \pi_6(U(2)) = \pi_6(S^1 \times S^3) = Z_{12}$, as is well known.

Proof. Consider the homotopy sequence of the fibering

$$U(2k)/U(2k-1) = S^{4k-1} \colon \pi_{4k+1}(U(2k)) \xrightarrow{q_*} \pi_{4k+1}(S^{4k-1})$$
$$\xrightarrow{\partial} \pi_{4k}(U(2k-1)) \xrightarrow{i_*} \pi_{4k}(U(2k)) \xrightarrow{q_*} \pi_{4k}(S^{4k-1}).$$

The above results show that the sequence

$$0 \to \pi_{4k} \big(U(2k-1) \big) \xrightarrow{i_*} Z_{(2k)!} \to Z_2 \to 0$$

is exact. It follows that $\pi_{4k}(U(2k-1)) \cong Z_{(2k)!/2}$.

Similarly, the homotopy sequence of $U(2k + 1)/U(2k) = S^{4k+1}$, i.e.,

 $\pi_{4k+3}(S^{4k+1}) \xrightarrow{\partial} \pi_{4k+2}(U(2k)) \xrightarrow{i_*} \pi_{4k+2}(U(2k+1)) \xrightarrow{q_*} \pi_{4k+2}(S^{4k+1})$

shows that the sequence

$$0 \to Z_2 \to \pi_{4k+2}(U(2k)) \to Z_{(2k+1)}! \to 0$$

is exact. $(\partial \Theta_{4k+1} = \partial E \Theta_{4k} = \alpha_{2k} \circ \Theta_{4k} \neq 0$, since $q_*(\alpha_{2k} \circ \Theta_{4k}) = \eta_{4k-1} \circ \Theta_{4k} = 12\nu_{4k-1} \neq 0$.) If $\pi_{4k+2}(U(2k))$ is cyclic, then $\partial \Theta_{4k+1}$ is divisible by (2k+1)!.

Hence, $12\nu_{4k-1} = q_* \partial \Theta_{4k+1}$ is also divisible by (2k + 1)!. This implies k = 1. In other words, for k > 1, $\pi_{4k+2}(U(2k))$ is the trivial extension: $Z_2 + Z_{(2k+1)!}$.

II. The rotation groups

We shall need the following information about homotopy groups of *complex* Stiefel manifolds.

The following isomorphisms hold for $n \ge 3$:

LEMMA II.1. (i) $\pi_{4n-1}(W_{2n-1,2}) = 0$, (ii) $\pi_{4n-2}(W_{2n-1,2}) = Z_{12}$, (iii) $\pi_{4n-1}(W_{2n,3}) = Z$.

Proof. The first assertion follows from the exact homotopy sequence of $W_{2n-1,2}/W_{2n-2,1} = S^{4n-3}$:

$$\pi_{4n-1}(S^{4n-5}) \to \pi_{4n-1}(W_{2n-1,2}) \to \pi_{4n-1}(S^{4n-3}) \xrightarrow{\Delta} \pi_{4n-2}(S^{4n-5}).$$

For $n \geq 3$, the groups $\pi_{4n-1}(S^{4n-5})$ are zero (compare Serre [9]); $\pi_{4n-1}(S^{4n-3})$ is cyclic of order 2, generated by $\Theta_{4n-3} = \eta_{4n-3} \circ \eta_{4n-2}$. We have

$$\Delta \Theta_{4n-3} = \Delta E \Theta_{4n-4} = \Delta i_{4n-3} \circ \Theta_{4n-4} = q_* \partial i_{4n-3} \circ \Theta_{4n-4} = q_* \alpha_{2n-2} \circ \Theta_{4n-4}.$$

By Lemma I.1, $q_* \alpha_{2n-2} = \eta_{4n-5}$. Thus $\Delta \Theta_{4n-3} = 12\nu_{4n-5} \neq 0$. Extending the above sequence

$$\pi_{4n-1}(S^{4n-3}) \xrightarrow{\Delta} \pi_{4n-2}(S^{4n-5}) \to \pi_{4n-2}(W_{2n-1,2}) \to \pi_{4n-2}(S^{4n-3}) \xrightarrow{\Delta} ,$$

and using $\Delta \eta_{4n-3} = \eta_{4n-5} \circ \eta_{4n-4} = \Theta_{4n-5} \neq 0$, we obtain $\pi_{4n-2}(W_{2n-1,2}) = Z_{12}$. Now, the last assertion of the lemma follows from exactness of the sequence

$$\pi_{4n-1}(W_{2n-1,2}) \to \pi_{4n-1}(W_{2n,3}) \xrightarrow{q''} \pi_{4n-1}(S^{4n-1}) \xrightarrow{\Delta} \pi_{4n-2}(W_{2n-1,2}) = Z_{12}.$$

Incidentally we see that q'' maps a generator onto a times a generator, where a is a divisor of 12.

Consider now the commutative diagram

where *m* is to be large (2n < m). $\pi_{4n-1}(W_{m,m-2n+3})$ is independent of *m* for $m \ge 2n$, and the projection $\pi_{4n-1}(W_{m,m-2n+3}) \to \pi_{4n-1}(W_{m,m-2n+1})$ can be identified with $q'':\pi_{4n-1}(W_{2n,3}) \to \pi_{4n-1}(S^{4n-1})$ considered above. Since $q = q'' \circ q':\pi_{4n-1}(U(m)) \to \pi_{4n-1}(W_{m,m-2n+1})$ maps a generator onto (2n-1)! times a generator, it follows that q' multiplies by (2n-1)!/a (*a*, divisor of 12).

The map β' is also imbedded in the following diagram

where b_n is equal to 1 for n odd, 2 for n even. Since $\pi_{4n-1}(V_{2m,2m-4n+2}) \cong Z_4$, and $\pi_{4n-2}(V_{4n-2,4}) \cong Z_2$ for n > 1, it follows that $\operatorname{Im} p'' = 2 \cdot \pi_{4n-1}(V_{2m,2m-4n+2})$ for n odd, and p'' is surjective for n even. It is easily seen that β'' is surjective.

Let n be odd: n = 2s + 1. We have $\pi_{8s+3}(V_{2m,2m-8s+2}) \cong Z_8$ (see [8]). $\beta'q'$ is divisible by (2n - 1)!/2. Consequently, $\beta'q'$ is zero for $n \ge 5$. By commutativity, $p'\beta = 0$ for $n \ge 5$, i.e., $s \ge 2$. Since

$$\beta:\pi_{8s+3}(U(m)) \to \pi_{8s+3}(SO(2m))$$

is surjective $(\pi_{8s+3}(SO(2m)/U(m)) = \pi_{8s+4}(SO(2m)) = 0$, by [2]), it follows that $p':\pi_{8s+3}(SO(2m)) \to \pi_{8s+3}(V_{2m,2m-8s+2})$, and hence

$$\Phi_{8s+3}^{8s-i}:\pi_{8s+3}(SO(2m)) \to \pi_{8s+3}(V_{2m,2m-8s+i})$$

is zero for $s \ge 2, i \le 2$. Therefore,

II.2.
$$\pi_{8s+2}(SO(8s-i)) \cong \pi_{8s+3}(V_{2m,2m-8s+i})$$
 for $i \le 2$ and $s \ge 2$.

Let n = 3, or s = 1. We use the diagram

$$\pi_{11}(SO(2m)) \xrightarrow{p'} \pi_{11}(V_{2m,2m-8}) \to \pi_{10}(SO(8)) \to \pi_{10}(SO(2m)) = 0$$

$$\uparrow \beta \qquad \qquad \uparrow \beta' \qquad \qquad \uparrow \beta_0$$

$$\pi_{11}(U(m)) \xrightarrow{q'} \pi_{11}(W_{m,m-4}) \to \pi_{10}(U(4)) \to \pi_{10}(U(m)) = 0.$$

By Lemma I.6, $\pi_{10}(U(4)) \cong Z_2 + Z_{120}$. Hence q' is divisible by 120. Since $\pi_{11}(V_{2m,2m-8}) \cong Z_{24} + Z_8$ (see [8]), it follows that $\beta'q' = 0$. Since β is an isomorphism, p' is zero, and a fortiori $\Phi_{11}^i:\pi_{11}(SO(2m)) \to \pi_{11}(V_{2m,2m-i})$ is zero for $i \ge 8$. This gives $\pi_{11}(V_{2m,2m-i}) = \pi_{10}(SO(i))$ for $i \ge 8$. From G. F. Paechter's table, we obtain

II.3.
$$\begin{aligned} \pi_{10}(SO(8)) &\cong Z_{24} + Z_8, \quad \pi_{10}(SO(9)) &\cong Z_8, \\ \pi_{10}(SO(10)) &\cong Z_4, \quad \pi_{10}(SO(11)) &\cong Z_2. \end{aligned}$$

Since $\pi_{11}(V_{2m,2m-7}) \to \pi_{11}(V_{2m,2m-8})$ is injective $(\pi_{11}(S^7) = 0)$, it follows that also $\pi_{11}(V_{2m,2m-7}) \cong \pi_{10}(SO(7))$. This gives

II.4.
$$\pi_{10}(SO(7)) \cong Z_8$$
.

Let n be even: n = 2s. We have $\pi_{\delta s-1}(V_{2m,2m-\delta s+\delta}) \cong Z_{16}$ for $s \ge 2$. Now $\beta'q'$ is divisible by (2n-1)!. Hence $\beta'q' = 0$ for $n \ge 4$, i.e., $s \ge 2$. Since $\beta:\pi_{\delta s-1}(U(m)) \to \pi_{\delta s-1}(SO(2m))$ maps a generator onto 2 times a generator, and $p'\beta = \beta'q' = 0$ for $s \ge 2$, it follows that in the sequence

II.5.
$$\pi_{8s-1}(SO(m)) \xrightarrow{p'} \pi_{8s-1}(V_{m,m-8s+6}) \to \pi_{8s-2}(SO(8s-6)) \to \pi_{8s-2}(SO(m)) = 0,$$

 $\begin{array}{ll} p' \text{ is divisible by 8 for } s \geq 2. & \operatorname{Now} \pi_{8s-1}(V_{2m,2m-8s+3}) \cong Z_8. & \operatorname{Therefore} \\ \Phi_{8s-1}^{8s-i}:\pi_{8s-1}(SO(2m)) \to \pi_{8s-1}(V_{2m,2m-8s+i}) \text{ is zero for } i \leq 3, s = 2. & \operatorname{Hence} \\ \operatorname{II.6.} & \pi_{8s-2}(SO(8s-i)) \cong \pi_{8s-1}(V_{2m,2m-8s+i}) & \text{ for } i \leq 3 \text{ and } s \geq 2. \end{array}$

The groups $\pi_{8s-2}(SO(8s-6))$, $\pi_{8s-2}(SO(8s-5))$, $\pi_{8s-2}(SO(8s-4))$ are either Z_8 , Z_8 , $Z_{24} + Z_4$, respectively, or Z_{16} , Z_{16} , $Z_{48} + Z_4$, respectively. I do not know whether the decision of this alternative depends on s or not.

The groups $\pi_{8s+1}(SO(8s - i))$ for $-2 \leq i \leq 3$ are obtained from the sequence

$$\pi_{8s+2}(SO(m)) \to \pi_{8s+2}(V_{m,m-8s+i}) \to \pi_{8s+1}(SO(8s-i)) \\ \to \pi_{8s+1}(SO(m)) \to \pi_{8s+1}(V_{m,m-8s+i}),$$

where $\pi_{8s+2}(SO(m)) = 0$.

Since $\pi_{8s+1}(V_{m,m-8s+4}) = 0$ for $s \ge 2$, it follows that

II.7.
$$\Phi_{8s-i}^{8s+1}:\pi_{8s+1}(SO(m)) \to \pi_{8s+1}(V_{m,m-8s+i})$$

is zero for $i \leq 4$ and $s \geq 2$, and the sequence

$$0 \to \pi_{8s+2}(V_{m,m-8s+i}) \to \pi_{8s+1}(SO(8s-i)) \to \pi_{8s+1}(SO(m)) \to 0$$

is exact for $i \leq 4, s \geq 2$. Because of commutativity in the diagram

$$\begin{array}{cccc} 0 \rightarrow \pi_{8s+2}(V_{m,m-8s+i-1}) \rightarrow \pi_{8s+1}(SO(8s-i+1)) \rightarrow \pi_{8s+1}(SO(m)) \rightarrow 0 \\ & \uparrow & \uparrow i_{*} & \uparrow id \\ 0 \rightarrow \pi_{8s+2}(V_{m,m-8s+i}) \rightarrow \pi_{8s+1}(SO(8s-i)) \rightarrow & \pi_{8s+1}(SO(m)) \rightarrow 0, \end{array}$$

it follows that the upper sequence is a split extension if the lower is. The sequence splits trivially for i = 3, since $\pi_{8s+2}(V_{m,m-8s+3}) = 0$, for $s \ge 1$. Thus

II.8.
$$\pi_{8s+1}(SO(8s-i)) \approx Z_2 + \pi_{8s+2}(V_{m,m-8s+i})$$
 for $i \leq 3, s \geq 2$.

For s = 1, we have to study $\Phi_5^9: \pi_9(SO(m)) \to \pi_9(V_{m,m-5}) = Z_2$. Φ_5^9 is an epimorphism, since $\pi_8(SO(5)) = 0$ (see Serre [10]). Therefore, $\pi_9(SO(5)) = \pi_{10}(V_{m,m-5}) = 0$. Now the sequence

$$\pi_{\mathfrak{g}}(SO(m)) \to \pi_{\mathfrak{g}}(V_{m,m-6}) \to \pi_{\mathfrak{g}}(SO(6)) \to \pi_{\mathfrak{g}}(SO(m)),$$

which reads $Z_2 \to Z_{12} \to Z_{24} \to Z_2$ (compare Serre [10]), shows that Φ_6^9 is zero. Therefore, the sequence

$$0 \to \pi_{10}(V_{m,m-8+i}) \to \pi_{9}(SO(8-i)) \to \pi_{9}(SO(m)) \to 0$$

is exact for $i \leq 2$. This sequence splits, because it splits trivially for i = 2 $(\pi_{10}(V_{m,m-6}) = 0$, according to Paechter [8]). We obtain

$$\pi_{9}(SO(6)) = Z_{2}, \qquad \pi_{9}(SO(7)) = Z_{2} + Z_{2},$$

III.9.
$$\pi_{9}(SO(8)) = Z_{2} + Z_{2} + Z_{2},$$

$$\pi_{9}(SO(9)) = Z_{2} + Z_{2}, \qquad \pi_{9}(SO(10)) = Z + Z_{2}.$$

The groups $\pi_{8s}(SO(8s - i))$ for $1 \leq i \leq 4$. Consider the sequence

$$\pi_{8s+1}(SO(m)) \to \pi_{8s+1}(V_{m,m-8s+i}) \to \pi_{8s}(SO(8s-i)) \to \pi_{8s}(SO(m)) \to \pi_{8s}(V_{m,m-8s+i}),$$

where the first homomorphism (Φ_{8s-i}^{8s+1}) is zero for $i \leq 4, s \geq 2$, bijective for i = 3, s = 1, and zero for $i \leq 2, s = 1$.

The value of the last homomorphism is obtained using Lemma 2. Since $\varepsilon_{8s} = \varepsilon_{8s-1} \circ \eta_{8s-1}$, it follows that $\Phi_{8s-i}^{8s}(\varepsilon_{8s}) = \Phi_{8s-i}^{8s-i}(\varepsilon_{8s-1}) \circ \eta_{8s-1}$. We have seen that $\Phi_{8s-i}^{8s-i}(\varepsilon_{8s-1})$ is divisible by 8 for $i \leq 6$, $s \geq 2$. It follows that $\Phi_{8s-i}^{8s}(\varepsilon_{8s}) = 0$ for $i \leq 6$, $s \geq 2$. We also have $\Phi_{8s-i}^{8s}(\varepsilon_{8s}) = 0$ for $i \leq 2$ and s = 1, for $\pi_{8s}(V_{m,m-8s+2}) = 0$ for $s \geq 1$.

This gives an exact sequence

II.10.
$$0 \to \pi_{8s+1}(V_{m,m-8s+i}) \to \pi_{8s}(SO(8s-i)) \to \pi_{8s}(SO(m)) = Z_2 \to 0,$$

valid for $i \leq 6$, $s \geq 2$ and $i \leq 2$, s = 1. Again the sequence splits for any $i \leq i_0$ if it does for $i = i_0$. We use this with $i_0 = 4$ for $s \geq 2$, a case where the splitting is obvious since $\pi_{3s+1}(V_{m,m-3s+4}) = 0$. If s = 1, the sequence is known to split for $i \leq 1$ (see Serre [10]). However it does not split for i = 2 ($\pi_8(SO(6)) = Z_{24}$).

The groups $\pi_{8s-1}(SO(8s-i))$ for $1 \leq i \leq 5$. Consider the sequence

$$\pi_{8s}(SO(2m)) \xrightarrow{\Phi_{3s-i}^{\sim}} \pi_{8s}(V_{2m,2m-8s+i}) \to \pi_{8s-1}(SO(8s-i)) \to \pi_{8s-1}(SO(2m)),$$

for $i \leq 5$. Since Φ_{8s-i}^{8s} is zero for $s \geq 2$, it follows that $\pi_{8s-1}(SO(8s-i))$ is isomorphic to the direct sum of Z and $\pi_{8s}(V_{2m,2m-8s+i})$. Thus,

II.11. For $s \ge 2$, $\pi_{8s-1}(SO(8s - i)) = Z + Z_2$ for $3 \le i \le 5$, and $\pi_{8s-1}(SO(8s - i)) = Z$ for i = 1, 2.

For s = 1, the groups are well known.

The groups $\pi_{8s+3}(SO(8s-i))$ for $i \leq 1$ are obtained from the sequence $\pi_{8s+4}(SO(m)) = 0 \rightarrow \pi_{8s+4}(V_{m,m-8s+i}) \rightarrow \pi_{8s+3}(SO(8s-i))$ $\rightarrow \pi_{8s+3}(SO(m)) \rightarrow \pi_{8s+3}(V_{m,m-8s+i}).$

We know that $\Phi_{3s-i}^{8s+3}:\pi_{8s+3}(SO(m)) \to \pi_{8s+3}(V_{m,m-8s+i})$ is zero for $s \ge 2$, $i \le 2$, and $s = 1, i \le 0$.

Consequently, $\pi_{8s+3}(SO(8s-i)) \approx \pi_{8s+4}(V_{m,m-8s+i}) + Z$ for $i \leq 2, s \geq 2$, and $s = 1, i \leq 0$.

The groups $\pi_{8s+4}(SO(8s+i))$ and $\pi_{8s+5}(SO(8s+i+1))$ for $i \ge 0$ follow from the sequences

$$0 = \pi_{8s+5}(SO(m)) \to \pi_{8s+5}(V_{m,m-8s-i})$$

$$\rightarrow \pi_{8s+4}(SO(8s+i)) \rightarrow \pi_{8s+4}(SO(m)) = 0$$

and

$$0 = \pi_{8s+6}(SO(m)) \to \pi_{8s+6}(V_{m,m-8s-i-1})$$

$$\to \pi_{8s+5}(SO(8s+i+1)) \to \pi_{8s+5}(SO(m)) = 0,$$

where m is to be large (m > 8s + 7), by using G. F. Paechter's computations [8].

References

- 1. J. F. ADAMS, On the structure and applications of the Steenrod algebra, Comment. Math. Helv., vol. 32 (1958), pp. 180-214.
- R. Borr, The stable homotopy of the classical groups, Proc. Nat. Acad. Sci. U.S.A., vol. 43 (1957), pp. 933-935.
- 3. B. ECKMANN, Espaces fibrés et homotopie, Colloque de Topologie, Bruxelles, 1950, pp. 83-99.
- 4. P. J. HILTON, A note on the P-homomorphism in homotopy groups of spheres, Proc. Cambridge Philos. Soc., vol. 51 (1955), pp. 230-233.
- P. J. HILTON AND J. H. C. WHITEHEAD, Note on the Whitehead product, Ann. of Math. (2), vol. 58 (1953), pp. 429-442.
- 6. M. KERVAIRE, Non-parallelizability of the n-sphere for n > 7, Proc. Nat. Acad. Sci. U.S.A., vol. 44 (1958), pp. 280-283.
- 7. J. MILNOR AND M. KERVAIRE, Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proceedings of the International Congress of Mathematicians, Edinburgh, 1958.
- 8. G. F. PAECHTER, The groups $\pi_r(V_{n,m})$, Quart. J. Math. Oxford Ser. (2), vol. 7 (1956), pp. 249–268.
- J-P. SERRE, Sur les groupes d'Eilenberg-Mac Lane, C. R. Acad. Sci. Paris, vol. 234 (1952), pp. 1243-1245.
- 10. ——, Quelques calculs de groupes d'homotopie, C. R. Acad. Sci. Paris, vol. 236 (1953), pp. 2475–2477.

BATTELLE MEMORIAL INSTITUTE GENEVA, SWITZERLAND