SOME NONSTABLE HOMOTOPY GROUPS OF LIE GROUPS

BY
Michel A. Kervaire

The main result of [6], stating that $S^{4 n-1}$ is not parallelizable except for $n=1$ and 2 , can be reformulated in terms of homotopy groups of the rotation group $S O(4 n-1)$ as follows: For $n \geqq 3, \pi_{4 n-2}(S O(4 n-1))$ is not zero; or equivalently, for $n \geqq 3, \pi_{4 n-2}(S O(4 n-2)$) is not zero. (Compare [6], Lemma 2.)

In the present paper, the results of R. Bott [2] on the stable homotopy of the classical groups and the isomorphism $\pi_{2 q}(U(q)) \cong Z / q!Z$ are used to derive more precise information on $\pi_{4 n-2}(S O(4 n-1))$, $\pi_{4 n-2}(S O(4 n-2))$, and further nonstable homotopy groups of the rotation group $S O(m)$ and the unitary group $U(m)$. Our results also rely essentially on the computations of G. F. Paechter [8].

As seen from the tables below, periodicity persists "for some time" in the nonstable range in the sense that $\pi_{r+m}(S O(m))$ for $r \leqq 1$ and large m depends only on the remainder class of $r+m$ modulo 8 . (Periodicity breaks down for low values of m, due to the fact that S^{1}, S^{3}, S^{7} are parallelizable.) Similarly, for m large enough and $r \leqq 2, \pi_{2 m+r}(U(m))$ depends only on the parity of r.
$\pi_{2 m+r}(U(m))$ is given for $r \leqq 2$ by the following table:

$\^{m}$	$2 k-1$	$2 k$	
1	0	Z_{2}	
2	$Z_{(9 k)!/ 2}$	$Z_{2}+Z_{(2 k+1)!}$	for $k>1$
	Z_{12}	for $k=1$	

$\pi_{m+r}(S O(m))$ is given by the following table, valid for $s \geqq 1$:

$\^{m}$	$8 s$	$8 s+1$	$8 s+2$	$8 s+3$	$8 s+4$	$8 s+5$	$8 s+6$	$8 s+7$
-1	$Z+Z$	$Z_{2}+Z_{2} Z+Z_{2}$	Z_{2}	$Z+Z$	Z_{2}	Z	Z_{2}	
0	$Z_{2}+Z_{2}+Z_{2}$	$Z_{2}+Z_{2}$	Z_{4}	Z	$Z_{2}+Z_{2}$	Z_{2}	Z_{4}	Z
1	$Z_{2}+Z_{2}+Z_{2}$	Z_{8}	Z	Z_{2}	$Z_{2}+Z_{2}$	Z_{8}	Z	$Z_{2}+Z_{2}$
2	$Z_{24}+Z_{8}$	$Z+Z_{2}$	Z_{12}	$Z_{2}+Z_{2}$	$Z_{4}+Z_{24 d} Z+Z_{2}$	$Z_{12}+Z_{2}$	$Z_{2}+Z_{2}$	
3	$Z+Z_{2}$	0	Z_{2}	$Z_{8 d}$	$Z+Z_{2}$	Z_{2}	Z_{2}	Z_{8}
4	0	Z_{2}	$Z_{8 d}$	$Z+Z_{2}$	Z_{2}	Z_{2}	Z_{8}	$Z+Z_{2}$

In this table d is ambiguously 1 or 2 .

[^0]For low values of $m, \pi_{m+r}(S O(m))$ is mostly well known. We mention for completeness the following table:

\backslash^{m}	3	4	5	6	7
-1	0	$Z+Z$	Z_{2}	Z	0
0	Z	$Z_{2}+Z_{2}$	Z_{2}	0	Z
1	Z_{2}	$Z_{2}+Z_{2}$	0	Z	$Z_{2}+Z_{2}$
2	Z_{2}	$Z_{12}+Z_{12}$	Z	Z_{24}	$Z_{2}+Z_{2}$
3	Z_{12}	$Z_{2}+Z_{2}$	0	Z_{2}	Z_{8}
4	Z_{2}	$Z_{2}+Z_{2}$	0	$Z_{120}+Z_{2}$	$Z+Z_{2}$

The knowledge of $\pi_{m+r}(S O(m))$ provides information on the homomorphisms of the homotopy exact sequence of the fibering $S O(m) / S O(m-1)=$ S^{m-1}. We obtain

Theorem 1. Let η_{m-1} be the generator of $\pi_{m}\left(S^{m-1}\right) \approx Z_{2}$. Then $\partial \eta_{4 n-2} \neq 0$ for $n \geqq 3$, where $\partial: \pi_{m}\left(S^{m-1}\right) \rightarrow \pi_{m-1}(S O(m-1))$ is the boundary homomorphism.

Remark. $\partial \eta_{2}=0, \partial \eta_{6}=0$ because S^{3} and S^{7} are parallelizable. It is well known that $\partial \eta_{4 n-1}=0, \partial \eta_{4 n} \neq 0$, and $\partial \eta_{4 n+1} \neq 0$. (Compare P. J. Hilton and J. H. C. Whitehead [4], [5].)

Similarly, we obtain
Theorem 2. Let Θ_{m-1} be the generator of the group $\pi_{m+1}\left(S^{m-1}\right) \approx Z_{2}$. $\left(\Theta_{m-1}=\eta_{m-1} \circ \eta_{m}.\right)$ Then $\partial \Theta_{4 n+1} \neq 0$ for $s \geqq 2$.

Remark. $\partial \Theta_{5}=0, \partial \Theta_{4 n-2}=0, \partial \Theta_{4 n-1}=0, \partial \Theta_{4 n} \neq 0$ are well known. (Compare [4], [5].)

Theorem 3. Let ν_{m-1} be the generator of the stable group $\pi_{m+2}\left(S^{m-1}\right)(m \geqq 6)$, and $\partial: \pi_{m+2}\left(S^{m-1}\right) \rightarrow \pi_{m+1}(S O(m-1))$ the boundary operator of the homotopy sequence of the fibering $S O(m) / S O(m-1)$. We have
(i) $\partial \nu_{8_{s-3}} \neq 0, \quad 2 \partial \nu_{8 s-3}=0$, for $s \geqq 2 ; \quad \partial \nu_{5}=0$,
(ii) the kernel of $\partial: \pi_{8 s+1}\left(S^{8 s-2}\right) \rightarrow \pi_{8 s}(S O(8 s-2))$ contains 0 , and $12 \nu_{8 \varepsilon-2}=\eta_{8 s-2} \circ \eta_{8 s-1} \circ \eta_{8 s}$,
(iii) $\partial \nu_{8_{s-1}}=0$,
(iv) $\partial: \pi_{8 s+3}\left(S^{8 s}\right) \rightarrow \pi_{8 s+2}(S O(8 s))$ is injective,
(v) $\partial \nu_{8 s+1} \neq 0, \quad 2 \partial \nu_{8 s+1}=0$,
(vi) the kernel of $\partial: \pi_{8 s+5}\left(S^{8 s+2}\right) \rightarrow \pi_{8 s+4}(S O(8 s+2))$ is cyclic of order 2 generated by $12 \nu_{8 s+2}=\eta_{8 s+2} \circ \eta_{8 s+3} \circ \eta_{8 s+4}$,
(vii) $\quad \partial \nu_{8 s+3} \neq 0, \quad 2 \partial \nu_{8 s+3}=0$,
(viii) the kernel of $\partial: \pi_{8 s+7}\left(S^{8 s+4}\right) \rightarrow \pi_{8 s+6}(S O(8 s+4))$ is at most Z_{2}.

Some lemmas

The following preliminary lemma is a generalization of a lemma of B. Eckmann (compare [3]).

Let ξ be a fibre space with projection p, and let

$$
\pi_{i+1}(E) \xrightarrow{p} \pi_{i+1}(X) \xrightarrow{\partial} \pi_{i}\left(F^{\prime}\right) \rightarrow \pi_{i}(E)
$$

be the homotopy sequence of ξ.
Lemma 1. If $\alpha \in \pi_{i+1}(X)$ has the form $\alpha=\alpha^{\prime} \circ E \beta$, where $\beta \in \pi_{i}\left(S^{m}\right)$ and $\alpha^{\prime} \epsilon \pi_{m+1}(X)$, then $\partial \alpha=\left(\partial \alpha^{\prime}\right) \circ \beta$.

Proof. Let $f^{\prime}:\left(B^{m+1}, S^{m}\right) \rightarrow(E, F)$ be such that $p \circ f$ represents α^{\prime}. Then $f^{\prime} \mid S^{m}$ represents $\partial \alpha^{\prime}$. Let $C \beta:\left(B^{i+1}, S^{i}\right) \rightarrow\left(B^{m+1}, S^{m}\right)$ be the mapping induced by β, and define $f:\left(B^{i+1}, S^{i}\right) \rightarrow(E, F)$ to be $f=f^{\prime} \circ C \beta$. Clearly $p \circ f$ represents $\alpha=\alpha^{\prime} \circ E \beta$. Hence $\partial\left(\alpha^{\prime} \circ E \beta\right)=\partial(p \circ f)=f \mid S^{i}=\left(f^{\prime} \mid S^{m}\right) \circ \beta=$ $\partial \alpha^{\prime} \circ \beta$.

Lemma 2. Let ε_{i} be a generator of the stable group $\pi_{i}(S O(m))$ (whenever nonzero). We have the relations

$$
\varepsilon_{8 s-1} \circ \eta_{8 s-1}=\varepsilon_{8 s}, \quad \varepsilon_{8 s-1} \circ \Theta_{8 s-1}=\varepsilon_{8 s+1}
$$

for all $s \geqq 1$.
Proof. Let $b: S O(n) \rightarrow \Omega^{8} S O(16 n)$ be the Bott map. ${ }^{1}$
Since $b \varepsilon_{i}= \pm \varepsilon_{i+8}$, the above relations hold if they do for $s=1$. Thus we have only to verify that $\varepsilon_{7} \circ \eta_{7} \neq 0, \varepsilon_{7} \circ \Theta_{7} \neq 0$. In fact, $J\left(\varepsilon_{7} \circ \eta_{7}\right) \neq 0$ and $J\left(\varepsilon_{7}{ }^{\circ} \Theta_{7}\right) \neq 0$.

Notice that $J\left(\varepsilon_{7}\right)=E^{m} \gamma$, where $\gamma: S^{15} \rightarrow S^{8}$ is the Hopf map. (See Milnor-Kervaire [7].)

Now $\gamma \circ \eta$ and $\gamma \circ \Theta$ are known to be nonzero (see Adams [1]). (Recall that $J(\alpha \circ \beta)= \pm J \alpha \circ E^{m} \beta$, where $\alpha \in \pi_{k}(S O(m)), \beta \in \pi_{j}\left(S^{k}\right)$.)

I. The unitary groups

Lemma I.1. Let $q: U(n) \rightarrow S^{2 n-1}$ be the natural projection. Then $q_{*}: \pi_{2 n}(U(n)) \rightarrow \pi_{2 n}\left(S^{2 n-1}\right)$ is given by

$$
\begin{array}{ll}
q_{*} \alpha_{n}=0 & \text { for } n \text { odd } \\
q_{*} \alpha_{n}=\eta_{2 n-1} & \text { for } n \text { even }
\end{array}
$$

where α_{n} is a generator of $\pi_{2 n}(U(n))$.
Specifically, we shall take α_{n} to be $\alpha_{n}=\partial i_{2_{n+1}}$, where ∂ is the boundary homomorphism in

$$
\pi_{2 n+1}(U(n+1)) \rightarrow \pi_{2 n+1}\left(S^{2 n+1}\right) \xrightarrow{\partial} \pi_{2 n}(U(n)) \rightarrow \pi_{2 n}(U(n+1))=0 .
$$

Proof. Let $n=2 k$. Consider the homotopy sequence of $W_{2 k+1,2} / S^{4 k-1}=$ $S^{4 k+1}$:
I.2. $\quad \pi_{4 k+1}\left(W_{2 k+1,2}\right) \rightarrow \pi_{4 k+1}\left(S^{4 k+1}\right) \xrightarrow{\Delta} \pi_{4 k}\left(S^{4 k-1}\right) \rightarrow \pi_{4 k}\left(W_{2 k+1,2}\right)$.

[^1]Since $S^{4 k+1}$ does not admit a 3 -field, $\Delta i_{4 k+1} \neq 0$. Hence I.3.

$$
\Delta i_{4 k+1}=\eta_{4 k-1}
$$

Since $\Delta=q_{*} \partial$, it follows that $q_{*} \alpha_{2 k}=q_{*} \partial i_{4 k+1}=\Delta i_{4 k+1}=\eta_{4 k-1}$. Let $n=2 k-1$. Since $W_{2 k, 2} / W_{2 k-1,1}=S^{4 k-1}$ has a cross section, it follows that $\Delta i_{4 k-1}=0$. Hence $q_{*} \alpha_{2 k-1}=q_{*} \partial i_{4 k-1}=\Delta i_{4 k-1}=0$.

Lemma I.4. $\quad \pi_{4 k-1}(U(2 k-1))=0, \pi_{4 k+1}(U(2 k))=Z_{2}(k \geqq 1)$, generated by $\partial \eta_{4 k+1}$.

This is an immediate consequence of Lemma I.1, by using the exactness of the sequences

$$
\begin{gathered}
\pi_{4 k}(U(2 k)) \xrightarrow{q_{*}} \pi_{4 k}\left(S^{4 k-1}\right) \xrightarrow{\partial} \pi_{4 k-1}(U(2 k-1)) \rightarrow 0, \\
\pi_{4 k+2}(U(2 k+1)) \xrightarrow{q_{*}} \pi_{4 k+2}\left(S^{4 k+1}\right) \xrightarrow{\partial} \pi_{4 k+1}(U(2 k)) \rightarrow 0 .
\end{gathered}
$$

Lemma I.5. $q_{*} \partial \eta_{4 k+1}=\Theta_{4 k-1}$, for $k \geqq 1$, where

$$
q_{*}: \pi_{4 k+1}(U(2 k)) \rightarrow \pi_{4 k+1}\left(S^{4 k-1}\right)
$$

Proof. $\quad q_{*} \partial \eta_{4 k+1}=\Delta \eta_{4 k+1}$, where Δ is the boundary operator of the fibering $W_{2 k+1,2} / W_{2 k, 1}=S^{4 k+1}$. By Lemma 1, $\Delta \eta_{4 k+1}=\Delta i_{4 k+1} \circ \eta_{4 k}=\eta_{4 k-1} \circ \eta_{4 k}=$ $\Theta_{4 k-1}$. (Compare I.3.)

Lemma I.6. $\quad \pi_{4 k}(U(2 k-1))=Z_{(2 k)!/ 2}, \pi_{4 k+2}(U(2 k))=Z_{2}+Z_{(2 k+1)!}$ for $k>1$. For $k=1, \pi_{4 k+2}(U(2 k))=\pi_{6}(U(2))=\pi_{6}\left(S^{1} \times S^{3}\right)=Z_{12}$, as is well known.

Proof. Consider the homotopy sequence of the fibering

$$
\begin{aligned}
U(2 k) / U(2 k-1) & =S^{4 k-1}: \pi_{4 k+1}(U(2 k)) \xrightarrow{q_{*}} \pi_{4 k+1}\left(S^{4 k-1}\right) \\
\xrightarrow{\partial} & \pi_{4 k}(U(2 k-1)) \xrightarrow{i_{*}} \pi_{4 k}(U(2 k)) \xrightarrow{q_{*}} \pi_{4 k}\left(S^{4 k-1}\right) .
\end{aligned}
$$

The above results show that the sequence

$$
0 \rightarrow \pi_{4 k}(U(2 k-1)) \xrightarrow{i_{*}} Z_{(2 k)!} \rightarrow Z_{2} \rightarrow 0
$$

is exact. It follows that $\pi_{4 k}(U(2 k-1)) \cong Z_{(2 k)!/ 2}$.
Similarly, the homotopy sequence of $U(2 k+1) / U(2 k)=S^{4 k+1}$, i.e., $\pi_{4 k+3}\left(S^{4 k+1}\right) \xrightarrow{\partial} \pi_{4 k+2}(U(2 k)) \xrightarrow{i_{*}} \pi_{4 k+2}(U(2 k+1)) \xrightarrow{q_{*}} \pi_{4 k+2}\left(S^{4 k+1}\right)$ shows that the sequence

$$
0 \rightarrow Z_{2} \rightarrow \pi_{4 k+2}(U(2 k)) \rightarrow Z_{(2 k+1)}!\rightarrow 0
$$

is exact. $\quad\left(\partial \Theta_{4 k+1}=\partial E \Theta_{4 k}=\alpha_{2 k} \circ \Theta_{4 k} \neq 0\right.$, since $q_{*}\left(\alpha_{2 k} \circ \Theta_{4 k}\right)=\eta_{4 k-1} \circ \Theta_{4 k}=$ $12 \nu_{4 k-1} \neq 0$.) If $\pi_{4 k+2}(U(2 k))$ is cyclic, then $\partial \Theta_{4 k+1}$ is divisible by $(2 k+1)$!.

Hence, $12 \nu_{4 k-1}=q_{*} \partial \Theta_{4 k+1}$ is also divisible by $(2 k+1)$!. This implies $k=1$. In other words, for $k>1, \pi_{4 k+2}(U(2 k))$ is the trivial extension: $Z_{2}+Z_{(2 k+1)}$.

II. The rotation groups

We shall need the following information about homotopy groups of complex Stiefel manifolds.

The following isomorphisms hold for $n \geqq 3$:
Lemma II.1. (i) $\pi_{4 n-1}\left(W_{2 n-1,2}\right)=0$, (ii) $\pi_{4 n-2}\left(W_{2 n-1,2}\right)=Z_{12}$, (iii) $\pi_{4 n-1}\left(W_{2 n, 3}\right)=Z$.

Proof. The first assertion follows from the exact homotopy sequence of $W_{2 n-1,2} / W_{2 n-2,1}=S^{4 n-3}$:

$$
\pi_{4 n-1}\left(S^{4 n-5}\right) \rightarrow \pi_{4 n-1}\left(W_{2 n-1,2}\right) \rightarrow \pi_{4 n-1}\left(S^{4 n-3}\right) \xrightarrow{\Delta} \pi_{4 n-2}\left(S^{4 n-5}\right)
$$

For $n \geqq 3$, the groups $\pi_{4 n-1}\left(S^{4 n-5}\right)$ are zero (compare Serre [9]); $\pi_{4 n-1}\left(S^{4 n-3}\right)$ is cyclic of order 2, generated by $\Theta_{4 n-3}=\eta_{4 n-3} \circ \eta_{4 n-2}$. We have
$\Delta \Theta_{4 n-3}=\Delta E \Theta_{4 n-4}=\Delta i_{4 n-3} \circ \Theta_{4 n-4}=q_{*} \partial i_{4 n-3} \circ \Theta_{4 n-4}=q_{*} \alpha_{2 n-2} \circ \Theta_{4 n-4}$.
By Lemma I.1, $q_{*} \alpha_{2 n-2}=\eta_{4 n-5}$. Thus $\Delta \Theta_{4 n-3}=12 \nu_{4 n-5} \neq 0$. Extending the above sequence

$$
\pi_{4 n-1}\left(S^{4 n-3}\right) \xrightarrow{\Delta} \pi_{4 n-2}\left(S^{4 n-5}\right) \rightarrow \pi_{4 n-2}\left(W_{2 n-1,2}\right) \rightarrow \pi_{4 n-2}\left(S^{4 n-3}\right) \xrightarrow{\Delta},
$$

and using $\Delta \eta_{4 n-3}=\eta_{4 n-5} \circ \eta_{4 n-4}=\Theta_{4 n-5} \neq 0$, we obtain $\pi_{4 n-2}\left(W_{2 n-1,2}\right)=Z_{12}$. Now, the last assertion of the lemma follows from exactness of the sequence

$$
\pi_{4 n-1}\left(W_{2 n-1,2}\right) \rightarrow \pi_{4 n-1}\left(W_{2 n, 3}\right) \xrightarrow{q^{\prime \prime}} \pi_{4 n-1}\left(S^{4 n-1}\right) \xrightarrow{\Delta} \pi_{4 n-2}\left(W_{2 n-1,2}\right)=Z_{12}
$$

Incidentally we see that $q^{\prime \prime}$ maps a generator onto a times a generator, where a is a divisor of 12 .

Consider now the commutative diagram

where m is to be large $(2 n<m) . \quad \pi_{4 n-1}\left(W_{m, m-2 n+3}\right)$ is independent of m for $m \geqq 2 n$, and the projection $\pi_{4 n-1}\left(W_{m, m-2 n+3}\right) \rightarrow \pi_{4 n-1}\left(W_{m, m-2 n+1}\right)$ can be identified with $q^{\prime \prime}: \pi_{4 n-1}\left(W_{2 n, 3}\right) \rightarrow \pi_{4 n-1}\left(S^{4 n-1}\right)$ considered above. Since $q=q^{\prime \prime} \circ q^{\prime}: \pi_{4 n-1}(U(m)) \rightarrow \pi_{4 n-1}\left(W_{m, m-2 n+1}\right)$ maps a generator onto $(2 n-1)$! times a generator, it follows that q^{\prime} multiplies by $(2 n-1)!/ a(a$, divisor of 12$)$.

The map β^{\prime} is also imbedded in the following diagram

$$
\begin{gathered}
\pi_{4 n-1}\left(V_{2 m, 2 m-4 n+6}\right) \xrightarrow{p^{\prime \prime}} \pi_{4 n-1}\left(V_{2 m, 2 m-4 n+2}\right) \rightarrow \pi_{4 n-2}\left(V_{4 n-2,4}\right) \rightarrow Z_{b_{n}} \rightarrow 0 \\
\prod_{\beta^{\prime}} \\
\pi_{4 n-1}\left(W_{m, m-2 n+3}\right) \xrightarrow{q^{\prime \prime}} \xrightarrow{\pi_{4 n-1}}\left(W_{m, m-2 n+1}\right) \rightarrow \pi_{4 n-2}\left(W_{2 n-1,2}\right) \rightarrow \cdots
\end{gathered}
$$

where b_{n} is equal to 1 for n odd, 2 for n even. Since $\pi_{4 n-1}\left(V_{2 m, 2 m-4 n+2}\right) \cong Z_{4}$, and $\pi_{4 n-2}\left(V_{4 n-2,4}\right) \cong Z_{2}$ for $n>1$, it follows that $\operatorname{Im} p^{\prime \prime}=2 \cdot \pi_{4 n-1}\left(V_{2 m, 2 m-4 n+2}\right)$ for n odd, and $p^{\prime \prime}$ is surjective for n even. It is easily seen that $\beta^{\prime \prime}$ is surjective.

Let n be odd: $n=2 s+1$. We have $\pi_{8 s+3}\left(V_{2 m, 2 m-8 s+2}\right) \cong Z_{8}$ (see [8]). $\beta^{\prime} q^{\prime}$ is divisible by $(2 n-1)!/ 2$. Consequently, $\beta^{\prime} q^{\prime}$ is zero for $n \geqq 5$. By commutativity, $p^{\prime} \beta=0$ for $n \geqq 5$, i.e., $s \geqq 2$. Since

$$
\beta: \pi_{8 s+3}(U(m)) \rightarrow \pi_{8 s+3}(S O(2 m))
$$

is surjective $\left(\pi_{8 s+3}(S O(2 m) / U(m))=\pi_{8 s+4}(S O(2 m))=0\right.$, by [2]), it fol ${ }^{-}$ lows that $p^{\prime}: \pi_{8 s+3}(S O(2 m)) \rightarrow \pi_{8 s+3}\left(V_{2 m, 2 m-8 s+2}\right)$, and hence

$$
\Phi_{8 s+3}^{8 s-i}: \pi_{8 s+3}(S O(2 m)) \rightarrow \pi_{8 s+3}\left(V_{2 m, 2 m-8 s+i}\right)
$$

is zero for $s \geqq 2, i \leqq 2$. Therefore,
II.2. $\quad \pi_{8 s+2}(S O(8 s-i)) \cong \pi_{8 s+3}\left(V_{2 m, 2 m-8 s+i}\right) \quad$ for $i \leqq 2$ and $s \geqq 2$.

Let $n=3$, or $s=1$. We use the diagram

By Lemma I.6, $\pi_{10}(U(4)) \cong Z_{2}+Z_{120}$. Hence q^{\prime} is divisible by 120 . Since $\pi_{11}\left(V_{2 m, 2 m-8}\right) \cong Z_{24}+Z_{8}$ (see [8]), it follows that $\beta^{\prime} q^{\prime}=0$. Since β is an isomorphism, p^{\prime} is zero, and a fortiori $\Phi_{11}^{i}: \pi_{11}(S O(2 m)) \rightarrow \pi_{11}\left(V_{2 m, 2 m-i}\right)$ is zero for $i \geqq 8$. This gives $\pi_{11}\left(V_{2 m, 2 m-i}\right)=\pi_{10}(S O(i))$ for $i \geqq 8$. From G. F. Paechter's table, we obtain
II.3.

$$
\begin{aligned}
\pi_{10}(S O(8)) & \cong Z_{94}+Z_{8}, & \pi_{10}(S O(9)) & \cong Z_{8} \\
\pi_{10}(S O(10)) & \cong Z_{4}, & \pi_{10}(S O(11)) & \cong Z_{2}
\end{aligned}
$$

Since $\pi_{11}\left(V_{2 m, 2 m-7}\right) \rightarrow \pi_{11}\left(V_{2 m, 2 m-8}\right)$ is injective $\left(\pi_{11}\left(S^{7}\right)=0\right)$, it follows that also $\pi_{11}\left(V_{2 m, 2 m-7}\right) \cong \pi_{10}(S O(7))$. This gives
II.4.

$$
\pi_{10}(S O(7)) \cong Z_{8}
$$

Let n be even: $n=2 s$. We have $\pi_{8 s-1}\left(V_{2 m, 2 m-8 s+6}\right) \cong Z_{16}$ for $s \geqq 2$. Now $\beta^{\prime} q^{\prime}$ is divisible by $(2 n-1)!$. Hence $\beta^{\prime} q^{\prime}=0$ for $n \geqq 4$, i.e., $s \geqq 2$. Since $\beta: \pi_{8 s-1}(U(m)) \rightarrow \pi_{8_{s-1}}(S O(2 m))$ maps a generator onto 2 times a generator, and $p^{\prime} \beta=\beta^{\prime} q^{\prime}=0$ for $s \geqq 2$, it follows that in the sequence
II.5.

$$
\pi_{8 s-1}(S O(m)) \xrightarrow{p^{\prime}} \pi_{8 s-1}\left(V_{m, m-8 s+6}\right) \rightarrow \pi_{8 s-2}(S O(8 s-6))
$$

$$
\rightarrow \pi_{8 s-2}(S O(m))=0
$$

p^{\prime} is divisible by 8 for $s \geqq 2$. Now $\pi_{8 s-1}\left(V_{2 m, 2 m-8 s+3}\right) \cong Z_{8}$. Therefore $\Phi_{8 s-1}^{8 s-i}: \pi_{8 s-1}(S O(2 m)) \rightarrow \pi_{8 s-1}\left(V_{2 m, 2 m-8 s+i}\right)$ is zero for $i \leqq 3, s=2$. Hence II.6. $\quad \pi_{8 s-2}(S O(8 s-i)) \cong \pi_{8 s-1}\left(V_{2 m, 2 m-8 s+i}\right) \quad$ for $i \leqq 3$ and $s \geqq 2$.

The groups $\pi_{8 s-2}(S O(8 s-6)), \pi_{8 s-2}(S O(8 s-5)), \pi_{8 s-2}(S O(8 s-4))$ are either $Z_{8}, Z_{8}, Z_{24}+Z_{4}$, respectively, or $Z_{16}, Z_{16}, Z_{48}+Z_{4}$, respectively. I do not know whether the decision of this alternative depends on s or not.

The groups $\pi_{8 s+1}(S O(8 s-i))$ for $-2 \leqq i \leqq 3$ are obtained from the sequence

$$
\begin{aligned}
\pi_{8 s+2}(S O(m)) \rightarrow \pi_{8 s+2}\left(V_{m, m-8 s+i}\right) \rightarrow \pi_{8 s+1} & (S O(8 s-i)) \\
& \rightarrow \pi_{8 s+1}(S O(m)) \rightarrow \pi_{8 s+1}\left(V_{m, m-8 s+i}\right)
\end{aligned}
$$

where $\pi_{8 s+2}(S O(m))=0$.
Since $\pi_{8 s+1}\left(V_{m, m-88+4}\right)=0$ for $s \geqq 2$, it follows that
II. 7.

$$
\Phi_{8 s-i}^{8 s+1}: \pi_{8 s+1}(S O(m)) \rightarrow \pi_{8 s+1}\left(V_{m, m-8 s+i}\right)
$$

is zero for $i \leqq 4$ and $s \geqq 2$, and the sequence

$$
0 \rightarrow \pi_{8 s+2}\left(V_{m, m-8 s+i}\right) \rightarrow \pi_{8 s+1}(S O(8 s-i)) \rightarrow \pi_{8 s+1}(S O(m)) \rightarrow 0
$$

is exact for $i \leqq 4, s \geqq 2$. Because of commutativity in the diagram

it follows that the upper sequence is a split extension if the lower is. The sequence splits trivially for $i=3$, since $\pi_{8 s+2}\left(V_{m, m-8 s+3}\right)=0$, for $s \geqq 1$. Thus
II.8. $\quad \pi_{8 s+1}(S O(8 s-i)) \approx Z_{2}+\pi_{8 s+2}\left(V_{m, m-8 s+i}\right) \quad$ for $i \leqq 3, s \geqq 2$.

For $s=1$, we have to study $\Phi_{5}^{9}: \pi_{9}(S O(m)) \rightarrow \pi_{9}\left(V_{m, m-5}\right)=Z_{2} . \quad \Phi_{5}^{9}$ is an epimorphism, since $\pi_{8}(S O(5))=0$ (see Serre [10]). Therefore, $\pi_{9}(S O(5))=\pi_{10}\left(V_{m, m-5}\right)=0$. Now the sequence

$$
\pi_{9}(S O(m)) \rightarrow \pi_{9}\left(V_{m, m-6}\right) \rightarrow \pi_{8}(S O(6)) \rightarrow \pi_{8}(S O(m))
$$

which reads $Z_{2} \rightarrow Z_{12} \rightarrow Z_{24} \rightarrow Z_{2}$ (compare Serre [10]), shows that Φ_{6}^{9} is zero. Therefore, the sequence

$$
0 \rightarrow \pi_{10}\left(V_{m, m-8+i}\right) \rightarrow \pi_{9}(S O(8-i)) \rightarrow \pi_{9}(S O(m)) \rightarrow 0
$$

is exact for $i \leqq 2$. This sequence splits, because it splits trivially for $i=2$ $\left(\pi_{10}\left(V_{m, m-6}\right)=0\right.$, according to Paechter [8]). We obtain

$$
\pi_{9}(S O(6))=Z_{2}, \quad \pi_{9}(S O(7))=Z_{2}+Z_{2}
$$

II.9.

$$
\pi_{9}(S O(8))=Z_{2}+Z_{2}+Z_{2}
$$

$$
\pi_{9}(\mathrm{SO}(9))=Z_{2}+Z_{2}, \quad \pi_{9}(S O(10))=Z+Z_{2}
$$

The groups $\pi_{8 s}(S O(8 s-i))$ for $1 \leqq i \leqq 4$. Consider the sequence

$$
\begin{aligned}
\pi_{8 s+1}(S O(m)) \rightarrow \pi_{8 s+1}\left(V_{m, m-8 s+i}\right) \rightarrow \pi_{8 s}(& S O(8 s-i)) \\
& \rightarrow \pi_{8 s}(S O(m)) \rightarrow \pi_{8 s}\left(V_{m, m-8 s+i}\right)
\end{aligned}
$$

where the first homomorphism $\left(\Phi_{8 s-i}^{8 s+1}\right)$ is zero for $i \leqq 4, s \geqq 2$, bijective for $i=3, s=1$, and zero for $i \leqq 2, s=1$.

The value of the last homomorphism is obtained using Lemma 2. Since $\varepsilon_{8 s}=\varepsilon_{8 s-1} \circ \eta_{8 s-1}$, it follows that $\Phi_{8 s-i}^{8 s}\left(\varepsilon_{8 s}\right)=\Phi_{8 s-i}^{8 s-1}\left(\varepsilon_{8 s-1}\right) \circ \eta_{8 s-1}$. We have seen that $\Phi_{8 s-i}^{8 s-1}\left(\varepsilon_{8 s-1}\right)$ is divisible by 8 for $i \leqq 6, s \geqq 2$. It follows that $\Phi_{8 s-i}^{8 s}\left(\varepsilon_{8 s}\right)=0$ for $i \leqq 6, s \geqq 2$. We also have $\Phi_{8 s-i}^{8 s}\left(\varepsilon_{8 s}\right)=0$ for $i \leqq 2$ and $s=1$, for $\pi_{8 s}\left(V_{m, m-8 s+2}\right)=0$ for $s \geqq 1$.

This gives an exact sequence
II.10. $\quad 0 \rightarrow \pi_{8 s+1}\left(V_{m, m-8 s+i}\right) \rightarrow \pi_{8 s}(S O(8 s-i)) \rightarrow \pi_{8 s}(S O(m))=Z_{2} \rightarrow 0$,
valid for $i \leqq 6, s \geqq 2$ and $i \leqq 2, s=1$. Again the sequence splits for any $i \leqq i_{0}$ if it does for $i=i_{0}$. We use this with $i_{0}=4$ for $s \geqq 2$, a case where the splitting is obvious since $\pi_{8 s+1}\left(V_{m, m-8 s+4}\right)=0$. If $s=1$, the sequence is known to split for $i \leqq 1$ (see Serre [10]). However it does not split for $i=2\left(\pi_{8}(S O(6))=Z_{24}\right)$.

The groups $\pi_{8 s-1}(S O(8 s-i))$ for $1 \leqq i \leqq 5$. Consider the sequence

$$
\pi_{8 s}(\mathrm{SO}(2 m)) \xrightarrow{\Phi_{8 s-i}^{8 s}} \pi_{8 s}\left(V_{2 m, 2 m-8 s+i}\right) \rightarrow \pi_{8 s-1}(\mathrm{SO}(8 s-i)) \xrightarrow{\rightarrow} \pi_{8 s-1}(\mathrm{SO}(2 m)),
$$

for $i \leqq 5$. Since $\Phi_{8 s-i}^{8 s}$ is zero for $s \geqq 2$, it follows that $\pi_{8 s-1}(S O(8 s-i))$ is isomorphic to the direct sum of Z and $\pi_{8 s}\left(V_{2 m, 2 m-8 s+i}\right)$. Thus,
II.11. For $s \geqq 2$, $\pi_{8 s-1}(S O(8 s-i))=Z+Z_{2}$ for $3 \leqq i \leqq 5$, and $\pi_{8 s-1}(S O(8 s-i))=Z$ for $i=1,2$.

For $s=1$, the groups are well known.
The groups $\pi_{8 s+3}(S O(8 s-i))$ for $i \leqq 1$ are obtained from the sequence

$$
\begin{aligned}
\pi_{8 s+4}(S O(m))=0 \rightarrow \pi_{8 s+4}\left(V_{m, m-8 s+i}\right) & \rightarrow \pi_{8 s+3}(S O(8 s-i)) \\
& \rightarrow \pi_{8 s+3}(S O(m)) \rightarrow \pi_{8 s+3}\left(V_{m, m-8 s+i}\right)
\end{aligned}
$$

We know that $\Phi_{8 s-i}^{8 s+3}: \pi_{8 s+3}(S O(m)) \rightarrow \pi_{8 s+3}\left(V_{m, m-8 s+i}\right)$ is zero for $s \geqq 2$, $i \leqq 2$, and $s=1, i \leqq 0$.

Consequently, $\pi_{8 s+3}(S O(8 s-i)) \approx \pi_{8 s+4}\left(V_{m, m-8 s+i}\right)+Z$ for $i \leqq 2, s \geqq 2$, and $s=1, i \leqq 0$.

The groups $\pi_{8 s+4}(S O(8 s+i))$ and $\pi_{8 s+5}(S O(8 s+i+1))$ for $i \geqq 0$ follow from the sequences

$$
\begin{aligned}
& 0=\pi_{8 s+5}(S O(m)) \rightarrow \pi_{8 s+5}\left(V_{m, m-8 s-i}\right) \\
& \rightarrow \pi_{8 s+4}(S O(8 s+i)) \rightarrow \pi_{8 s+4}(S O(m))=0
\end{aligned}
$$

and

$$
\begin{aligned}
0=\pi_{8 s+6}(S O(m)) \rightarrow \pi_{8 s+6} & \left(V_{m, m-8 s-i-1}\right) \\
& \rightarrow \pi_{8 s+5}(S O(8 s+i+1)) \rightarrow \pi_{8 s+5}(S O(m))=0
\end{aligned}
$$

where m is to be large ($m>8 s+7$), by using G. F. Paechter's computations [8].

References

1. J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv., vol. 32 (1958), pp. 180-214.
2. R. Вотт, The stable homotopy of the classical groups, Proc. Nat. Acad. Sci. U.S.A., vol. 43 (1957), pp. 933-935.
3. B. Eckmann, Espaces fibrés et homotopie, Colloque de Topologie, Bruxelles, 1950, pp. 83-99.
4. P. J. Hilton, A note on the P-homomorphism in homotopy groups of spheres, Proc. Cambridge Philos. Soc., vol. 51 (1955), pp. 230-233.
5. P. J. Hilton and J. H. C. Whitehead, Note on the Whitehead product, Ann. of Math. (2), vol. 58 (1953), pp. 429-442.
6. M. Kervaire, Non-parallelizability of the n-sphere for $n>7$, Proc. Nat. Acad. Sci. U.S.A., vol. 44 (1958), pp. 280-283.
7. J. Milnor and M. Kervaire, Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proceedings of the International Congress of Mathematicians, Edinburgh, 1958.
8. G. F. Paechter, The groups $\pi_{r}\left(V_{n, m}\right)$, Quart. J. Math. Oxford Ser. (2), vol. 7 (1956), pp. 249-268.
9. J-P. Serre, Sur les groupes d'Eilenberg-Mac Lane, C. R. Acad. Sci. Paris, vol. 234 (1952), pp. 1243-1245.
10. ——, Quelques calculs de groupes d'homotopie, C. R. Acad. Sci. Paris, vol. 236 (1953), pp. 2475-2477.

Battelle Memorial Institute
 Geneva, Switzerland

[^0]: Received November 10, 1958.

[^1]: ${ }^{1}$ Added in proof. See R. Bott, The stable homotopy of the classical groups, Ann. of Math.(2), vol. 70 (1959), pp. 313-337.

