LIMITING THEOREMS FOR AGE-DEPENDENT
BRANCHING PROCESSES'

BY
NorMaAN LEVINSON

1. To motivate the theorems that will be stated and proved here, consider
particles which are assumed to have a life span with cumulative probability
distribution function G(¢). At the end of its life a particle is assumed to
split into n particles with probability ¢., where each particle has the same
properties as the original. It is assumed ¢, = 0 andn = 0. The generating
function associated with {q,} is

(1.1) h(s) = 2.70q; 8,  h(1) =1

Given a particle at ¢ = 0, let the probability that there are n particles at
time ¢t = 0 be p.(t) = 0. The generating function is

(1.2) F(s,0) = 28 pi(0s,  F(L, 1) = 1.
Then the above description suggests that F (s, {) satisfies

18 R0 = [ hFGt— ) d6() + ol — G

This problem with 2(s) = s° and with mild restrictions on G(¢) has been
studied by Bellman and Harris [1]. References to the literature will be
found in [1].

In the special case where G/(¢) is a step function with one discontinuity, the
process becomes the Galton-Watson branching process. For this case the
author has shown [2] that a best possible condition on i(s) for the desired
limiting theorems to hold is just a little more stringent than the existence of
the first moment

(1.4) p=HK1) = 2Tjg < =.

It will be shown here that, with 4 > 1, essentially the same condition on
h(s) as given in [2] is sufficient to yield the basic limit theorem in the age-
dependent case subject to restrictions on G(¢).

If, following [1], the random variable representing the number of particles

at time ¢, starting with one particle at ¢ = 0, is denoted by Z(t), then for
t=0and|s| =1

F(s, 1) = Els"),

(1.5)
EIZ(0)] = m(1) = aF(1, 1)/ds.
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AGE-DEPENDENT BRANCHING PROCESSES 101
It will be shown that there is a limiting distribution of Z(t)/m(t) as t — .
In terms of F, what will be shown is that for Rl s = 0 there exists
(1.6) lim . F (e 1) = ¢(s),

so that ¢ is the Laplace Stieltjes transform of the limiting cumulative distri-
bution function.
If a is chosen so that

(17) w [ eacw) =1,
0
where u is defined in (1.4), then it will be shown that
(18) o) = [ Mole™) ), #O) =1, #0) = =1

For given G and h, the main object of this paper is to prove (1) that (1.3)
has a solution F(s, t), (2) that (1.8) has a solution ¢, and (3) that (1.6) is
valid, that is, that as t — «, Z(¢)/m(¢) has a limiting cumulative distribution
with Laplace Stieltjes transform ¢(s). These results will now be stated and
proved.

2. It will be assumed that G(0+) = 0 and that there exists a continuous
g(t) = 0Oont = 0 such that

¢
(21) 6w = [ o) ay, 6= = 1.
Tt will be assumed that
(2.2) f ¢ gh(t) dt < =,
0

where a is given by (1.7). The requirement (2.2) can be weakened consider-
ably as is indicated in [1, §3].
The equation (1.3) now becomes

(2.3) F(s,t) = fo h(F(s,t — y))g(y) dy + s[l — G(B)].

TureoreM 2.1. With (1.4) and (2.1) valid, the equation (2.3) has a solution
F(s, t), continuous in (s, t) for |s| £ 1,0 £t < . |F(s,t)| = 1, and,
for each t, F (s, t) ts analytic for | s| < 1, and

(2.4) 8°’F (0, t) /05" = 0, j=0,1,2 ---.

The solution F(s, t) is unique, and F(1,t) = 1. Hence for each t, F (s, t) is a
generating function.

Proof. Successive approximations will be used. Let Fo(s, t) = 0, and let

(2.5) Fop (s,1) = fo R(Fa(s, ¢ — y)g(y) dy + sl1 — G(B)].
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By (1.1), for complex s, | s| < 1, | h(s) | £ 1, and by (1.4)

(2.6) ()| = n
Hence Fi(s, t) = h(0)G(¢) 4+ s[1 — G(¢)], and therefore for |s| = 1
(2.7) | Fi(s, 8) | = G(¢) + [ sl — G(@¥)] = 1.

From (2.5) follows so long as | Fa(s, t) | £ 1,
| Fana(s, t) | = R(DG() + [s[[l — G@)] = L.

Hence by induction, | F.(s, ) | < 1.

Since Fy = 0, (2.7) shows that
(2.8) | Fi(s, t) — Fo(s, 8) | = L.

From (2.5) follows

| Frsa(s, ) — Fu(s, t) |

(2.9) ‘
= [ 1hEst = ) — WFaa(st = ) 1 0() do.

If ¢, > 0 is chosen, and if K, is chosen so that [ g(¢) | < Kifor0 £ ¢ = 4,
then (2.9) gives fort =

an+1(S,t) - Fﬂ(s,t) t é #Kl\/(; lF’n('g)t - y) - Fn—l(syt - '!/) ldy'

If we use (2.8), it follows by induction that
(2.10) | Frugi(s, t) — Fu(s, t) | < (W"K7i/nh)e".

Thus for | s| £ 1,0 < ¢ < &, F.(s, t) converges uniformly to a limit F (s, t)
which must be continuous since F,(s, t) is. By letting n — o« in (2.5) it
follows that F (s, t) satisfies (2.3).

Since, as is readily verified by induction, | F.(s, ¢| < 1for |s| < 1 and
is analytic in s for fixed ¢, it follows by the uniform convergence that F(s, ¢)
is analytic in s for | s| < 1 for each {. Moreover, as is readily verified by
induction,

d'F,(0,1)/8s’ = 0, j

v

0.
Using the Cauchy formula yields

d'F,
as’

o 27 . .
(0,t) = Lf Fo(e?, t)e™™ db .
27 Jo

Hence the uniform convergence of F, to F' shows that
d'F (0, t)/3s’ = 0.

If for any s;, | si| = 1, (2.3) has two continuous solutions F(s;, t) and
F(sy,t), where | F(s;,t) | < land | F(s;,t) | < 1, then
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(211) |F(sy,t) —F(syt) | < ,ufo | F(si,t — y) —F(si,t — ) | g(y) dy,

That F — F = 0 on [0, «) will follow from Lemma 2.1 given below with
K = 0. Hence uniqueness is demonstrated.

Finally, since for s = 1 a solution of (2.3) is obviously F = 1, it follows
from uniqueness that F(1,¢) = 1.

Levma 2.1.  Let A(t) be real and continuous on [0, » ), let B(t) = 0, and let
fo wB(t) dt < .
Let K = 0 be a constant. Let
AW 5 [ AU - 1B dy+ K.

Then there is a constant k such that
(2.12) A(t) £ 2Ké".
Proof. Choose k = 0 so that

f e B(y) dy < 1
o 2

Let R(t) = A(t)e ™. Then
R(t) = fotR(t — y)e™B(y) dy + K.
Let t; > 0, and let max R(¢) on [0, #] be denoted by M. Then clearly
M < Mfohe"“’B(y)dy—i—K < %M+K.

Hence M = 2K on [0, #] for any choice of t;. Hence R(¢) £ 2K on [0, =),
which proves the lemma.

TarEOREM 2.2. With (1.4), (2.1), and (2.2) valid, there exists a continuous
function m(t),0 £ t < o, suchthatin|s| <1

(2.13) oF(1,t)/ds = m(t)

and

(2.14) lim ij = m(t)
o->04 g

uniformly on any finite interval 0 < ¢ < t;. Moreover m(t) satisfies

(215) m) = u [ m— o) dy +1 - 60,
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and if a is defined by (1.7), then

(2.16) lime,, € “‘m(t) = ¢,
where the constant
(2.17) c=(n— 1)/[au2fo yg(y)e ™ dy],

Proof. Formula (2.13) is an immediate consequence of (2.14) since
F(1,t) = 1 and hence will be proved once (2.14) is proved. By (2.4)

(2.18) F(s, t) = 25 pa(t)s”,

where p,(t) = 0. (By the Cauchy formula for the coefficients, the continuity
of F(s,t) implies that the p,(¢) are continuous on [0, « ), but this will not be
required here.) Since F(1,¢) = 1,

(2.19) Do pa(t) = 1.
From (2.3) follows for o > 0

(2.20) 1— F(Ee—",t) _ ‘/0’ 1 — h(F(i",t — 1)) o(9) dy

+ 1= 0.

Since
1 —h(F(e’,t)) <
- = M,
1 —F(er,t)

it follows from (2. 20) that

1—-F 1—F(e",t) 1—-F —
CL0 < [LEEELIZD) gy ay + (- 60).

Hence by Lemma 2.1 there exists & > 0 such that
(2.21) 1—"’%-6_.9 < 2, s> 0.
From (2.18)
(2.22) S ACAFLIN SPRRS et

g 0 g

From (2.21) and (2.22)
(2.23) > 8 npa(t) < 26, t=0.

Let
(2.24) m(t) = 2.5 npa(t).
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Then from (2.22)-(2.24) follows, since 1 — ¢ ™ < no,
1—F(e”,t)

(2.25) = =m(t),
and
(2.26) fim L= FEND .
>0+ o
From (2.20)
—0 t —0
o o o
+17 - 6.
Since
7 1—F o
it follows from (2.27) that since ¢ is continuous over any interval [0, ],
1—F(e”,t)
g

is continuous in ¢ over [0, {;] and that this continuity is uniform in o,
0<o=o,aswellasin¢, 0 < ¢ < {;. This uniform continuity implies
that the convergence in (2.26) must be uniform in ¢ over any finite interval
of ¢, and that m(¢) must be continuous. Writing

1——h=1——h1—F
7 1—F o

in (2.20) and letting ¢ — 0+ yields (2.15) as a result of the uniform con-
vergence of (2.26).

It remains now to use (2.15) to obtain (2.16) and (2.17). This well known
renewal equation is treated by the Laplace transform. Here it is already
known that m(t) satisfies (2.15), and hence it is not necessary to establish
the existence of a solution. Moreover Lemma 2.1 shows the uniqueness of
m(t) as a solution of (2.15).

[Addendum to §2, October 30, 1958. The referee has remarked that it would
be desirable to show that m(t) is an increasing function since the probabilistic
origin of the problem indicates this to be the case. To show this analytically,
one takes the derivative of (2.15) formally and finds that m/, if it exists, is a
solution of

() 0 = [ Eott = 1) dy + s = Do),
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(Here use is made of m(0) = 1.) But since ¢ = 0, the usual Volterra pro-

cedure shows that (*) has a solution £ 2 0 which is unique. Settingy =
in (%) and integrating with respect to ¢ gives, if one defines

at) =1+ fots.f(y) dy,
(o) =1+ [ 4y [ 6y - Do) da + (x =~ DEW
— 144 [ o@) (f E(y—x)dy>dx+(n-1)G(t)

=14 [ @~ 2) — e+ (= DO,
or .
() = u [ Wt = 9)e(w) dy+1 = G(O).

Hence, m(t) = m(t), and thus m’(t) = £&(t) = 0.]

With a defined by (1.7), let
(2.28) f@t) = e“‘”m(t).
Then by (2.15)
220) 0 = k[ [0~ D) dy + T - GO

From (2.23), (2.24), and (2.28) it follows that the Laplace transform

®(w) =f: f()e ™ dt

exists. Let w = u -+ 4, and let

I(w) = f ()6 dt.
o
Then (2.29) yields

_ 1 —1T(a+ w)
®(w) = ul'(a + w)d(w) + et w
Since T'(w) is analytic for v > 0, the above shows that
1 —-T(a+ w

o(w) = 1 — ul'(a + w))(a + w)

is analytic for v > 0. Since ¢g(¢) = 0, it follows easily that
1 — ul(a + ) =0,
and by (1.7)
p|T(a+u+w)| <1,

t—2x

v # 0,

u > 0.
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Hence ®(w) is analytic for v = 0 except for a pole at w = 0. The residue of
this pole is

1 —T(a) —

—upal’(a) 7’
where ¢ is given by (2.17). Hence

®(w) — ¢/w

is analytic for v = 0. By the Riemann-Lebesgue theorem

. 1 —=T(a+ w)

};I»IB 1 —ul'(a+ o)
Clearly

(D(w)_c__l—c= (g — DI(a + w) _ ac
w a+w (a+w[l—ullea+w)] wle+ w)’

The right side is analytic on 4 = 0, and for large v, I'(a + @) is L*(— o, o)
by (2.2). Hence by the Schwarz inequality the right side is absolutely in-
tegrable on u = 0. Thus its Fourier transform

f(t) —¢c— (1 —e)e™ —0
ast— . Thus (2.16) and (2.17) are proved.

3. Let h(s) be defined by (1.1) for | s| = 1. Let B(¢) be a continuous,
positive, monotone decreasing function such that

*B(¢t)
(3.1) fl B0 it <
and let
(3.2) D Feniti S B(n).

(Examples of 8(t) are e, Cllog (1 + )], ete., where C and 8 > 0 are
constants. Clearly (3.1) and (3.2) are considerably weaker than the re-
quirement of the existence of the second moment which would imply (3.2)
with 8(n) = C/n.) It will also be convenient to assume that g8 is of class C”
and that

(3.3) 3p(t) +"(t) =0

for large ¢.
In [2, Lemma 2.1] it is shown that (3.1) and (3.2) imply the existence of a
continuous nondecreasing function a(s), 0 = ¢ < », a(0) = 0, such that

(3.4) folﬁ‘é”_)da<w,
(3.5) \y—L_—ZEQQ < olo), 0Ls< .
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The condition (3.3) implies that « is C” and that for small ¢
(3.6) a”(e) = 0.

In the course of proving (1.6) it will be convenient to consider
(38.7) B(s,t) = F(exp (—se *'/c), t).

(Since m(t)e™ — ¢, it will be easy torelate the above to (1.6).) From (2.14)
follows

lim 1 — B(a,t) _

a->0+4 g a->0+ [ [ [

lim 1 — F(exp (—o€ */c),t) _ m(t)e ™ f(t)

b

where f(¢) is defined in (2.28). Moreover this convergence is uniform over
any finite interval of £. It will be convenient to set

(3.8) w(t) = f(t)/c,
so that
(3.9) m(gl_"g_("’_“ — ().

As already remarked, the convergence in (3.9) is uniform over any finite in-
terval of . An important step of the proof of (1.6) is the following theorem.

TuroreM 3.1. The convergence in (3.9) is uniform in t for 0 < ¢t < o«
that s, for given € > 0 there exists 6 > 0 such that

W(t)_l__w < e

for 0 < ¢ < & independent of t.
Proof of Theorem 3.1. From (2.3) and (3.7) follows for Rls = 0

(310) Bls,0) = [ h(B(se™, 1 = 4))g(w) dy +exp (—sc™/e) 1 = G0,

and from (3.10)

(311) 1 - }Z(s, t) _ fo 1 - h(B(sz—‘”’,t — ) o(y) dy
1 1 — exp (s—se_“‘/c) 1 — GOl
Let
Qo,1) = 2(t) - L= B8,

Then Q(o, ) is continuous in (s, ¢) for ¢ = 0,¢ = 0, and by (3.9)
(3.12) Q(0,¢t) = 0.
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By (2.29) t
(313) (1) = u fo x(t — y)eg(y) dy +

Hence by (3.11) and (3.13)

e—a t
c

1 — @@l

Qo,t) = u f Qo™ t — 1) g(y) dy

(3.14) + £ [u 1= Bloe™t—y) 1= hBlee™t— y))] e g(y) dy

oe— W o.e—au
4 I:%__ 1 exp(a o€ /c)] - Gl

From (2.18) and (3.7)
(3.15) B(s, ) = 2.5 pa(t) exp (—nse™**/c).

From (3.15) and p.(¢) = 0, (3.9) implies
(3.16) w() = (1/c) 2.8 npa(t)e ™
and
G Qe =350 [1 -1 e",fai;’;;‘ﬂ/ “)]

The formula (3.17) shows that Q(s, t) is an increasing function of ¢ since
(1 — € ) /x is decreasing in z. Let

(3.18) maxi<i<s, Q(o, t) = M (o, b).

Then M is continuous since @ is. Since @ is increasing in o, M (o, &) is an
increasing function of ¢.
From (3.5) it is readily verified, since 1 — z < log (1/x), that

0<u—l-1::h-(;—)éa(log%),

_1—h(x)
’ 1 —=x

Note that since 1 — 2 < ¢ * < 1 — x + 2%/2,

and hence

(3.19)

—at

e 1 — exp (—oe™*/c) <0
(3.20) 0< e - = 92"

Let 7 be defined by
T —a 1
uf ¢(y) dy = 5.
0

Choose &, > 7, and choose t so that Q(o, 1) = M(o, &) in (3.17). If we de-
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note M (a, &) by My(a), (3.14) yields, on dividing the range of integration
in the first integral into (0, =) and (7, ¢) (or simply taking (0, t) if ¢ < 7),

My(c) £ tMo(o) + tMo(oe™) + o/2¢

! 1 — h(B(oe ™, t — y))] 1 — B(oe€™,t — y) oy
+j0‘ [u - 1B —a e g(y) dy.

Since by (3.17) @ = 0,1 — B(o,t) < w(t)o. Hence
},,M =< 7r(t) < C,
oe ay

where () is a constant. Hence by using (3.19) and taking o small,

t
Mi(o) S Moloe™) + & + 4o f a(2Cy06™") e g(y) dy,
or
My(o) £ My(oe™) + o/c + 4Co a(2C; o).

ar 20

The above with ¢ replaced by ee™™, ge ", ete. yields

Mo(oe™) < Mo(oe ™) + o™/ + 4Co a(2C; oe ™),
Mo(tre_?‘") = Mo(O’C*—MT) -+ 0'6_2‘"/02 + 4:00 0((200 0'6—2‘"),
ete. Since My(0) = 0, adding gives

Mo((f) é gél—_}—e-_—‘" + 4:00 Z a(2000'6—jar).

J=0

Denote supo<i<w @(o, {) by M(s). Then since the right side above does
not depend on f,

(3.21) M(o) £ 51—+ 4003 a(2C00e™),
£

1

(Since 9B/ds < 0, it is easily seen that 0Q/ds < 1/¢” for ¢ > 0, and hence
M (o) is continuous for ¢ > 0, but this is not required here.) Noting that
forj—1=2u=sy

a(20y ce ™) £ a(2C, oe ),

we obtain

) i % 2C 0
> a0 ™) 5 [ a(2Cooe™) dus = [ aty) .
0 ar Jo Y

j=1

Hence (3.21) shows that M (0+) = 0. This proves Theorem 3.1.

4. In proving (1.6) it will first be shown that
(4.1) lim,. B(s, t) = ¢(s).

In order to prove (4.1), it will be convenient first to define ¢(s) independent
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of any limiting process. Letting ¢ — o in (3.10) suggests that if (4.1) is
true, then

(4.2) 85 = [ Mo(s™™)g(w) dy

Moreover B(0, t) = 1 suggests that ¢(0) = 1, and since n(t) = f({)/c — 1
ast— o, (3.9) suggests

(4.3) ¢'(0) = —1.
Tueorem 4.1. With h(s) subject to (3.1), (3.2), and (3.3), the equation
(44) 8() = [ h(oe™(y) dy
o

has a continuous solution for 0 < o < o with |¢(c) | = 1, ¢(0) = 1, and
¢’'(0) = —1. Moreover this solutton is unique.

Proof. Let ¢o(c) = ¢ °, and let

(45) buale) = [ " W(gu(oe™"))g(y) dy

for n = 0. By induction, 0 < ¢,(¢) = 1. Clearly

a(o) = [ hlexp (—oe™))aw)

and
w© _ —ge W
1—éle) _ (T1=h (eXp_Ey 2¢ ) ong(y) dy.
- o ge
By using (3.5)
‘.1_;11(_"_) —-1|= f a(oe ™) "g(y) dy.
o 0

Hence since a(¢) is nondecreasing, using (1.7) shows
(4.6) | (1 = ¢u(0))/o — 1| = a(o).
It is readily verified that

| (1 — ¢o(0))/o — 1| = 0.
Hence

|$1(c) — do(0) | = olalo) + 3a].

If we denote a(¢) + 1o by ai(a), it is clear that «, has the required properties
of a, namely (3.4) and (3.6). Hence

4.7) | ¢1(0) — ¢o(0) | < oau(o).
By (4.5)

#(e) = (o) = [ " (o)) — h(u(oe™))g(y) dy.
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Since A’ = u, this and (4.7) give
(4.8) [$2(c) — ¢1(o) | = fo o “on(oe”™)g(y) dy.

With 7 defined as below (3.20), this gives
[¢2(0) — ¢1(0) | £ (6/2)eu(o) + (0/2)eu(oe™).

Since a1 < 0,
| $2(0) — 1(0) | £ oar(a(1 + €7)/2).
An easy induction now gives

(4.9) [ nsa1(o) — dn(0) | = ooulo((1 + €¢7)/2)"].
Hence denoting (1 + ¢™)/2 by ¢”°, we have

o0

=§:+ lbina(0) — o) [ S ¢ > o]

j=n+1

a'j; al(ae_“) dt = g‘/;

if w = ge*. Hence over any finite interval of ¢, 0 < ¢ < oy, ¢a(c) con-
verges uniformly. Since each ¢,(a) is continuous by induction, it follows that
the limit ¢(¢) is also continuous. By (4.5) it is clear that ¢(o) satisfies
(4.4). By induction it is clear that ¢,(0) = 1, and hence ¢(0) = 1.

From (4.10) withn = 0

\1 — ¢(a) _ 1 — go(0)

g g

IA

J

(4.10)

ge—on

lIA

() 2

1 [ du
<! f a(w) & 4 (o).

Letting ¢ — 04 and recalling that ¢o(c) = € gives ¢'(0) = —1.
Now assume that (4.4) has two solutions ¢ and ¢* satisfying the conditions
of the theorem. Then

8(0) — 6() = [ " (o ™)) — h(g*(oe™"))]g(y) dy.

Hence
(4.11) kw < ”f: ¢>(ae—aﬂ)a—;_$*(ae“wu) g(y) dy.
Let

omax (M..%_?i(_u_) = N(O’).

Then since ¢(0) = ¢*(0) = 1 and since ¢'(0) = ¢*'(0) = —1, N(0+) = 0.
Also from (4.11) simple considerations including the introduction of 7 lead to
N(o) = 3N (o) + $N(oe™).

Hence
N(c) £ N(oe™ ™).
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Since N(0+) = 0, iterations of the above lead to N(¢) = 0, which proves
the uniqueness of ¢(a) and completes the proof of Theorem 4.1.
It will now be shown that

lime B(o, t) = ¢(o), o

%

0.
This is a consequence of the following theorem since B(0, t) = ¢(0) = 1.
TueorEM 4.2. For 0 < o <
(4.12) lim,o(B(a, t) — ¢(a)) /o = 0.
Proof. From the definition of
(4.13) (B(o,t) — ¢(0))/o = Q(o,8) + [(1 — ¢(0)) /o — 1]+ [1 — =($)].

Let
p(o, t) = | B(a,t) — ¢(o) |/o.

Let

R(s) = lim Supiww p(o, t).
Theorem 3.1, ¢'(0) = —1, and 7(») = 1 used in (4.13) imply
(4.14) R(0+) = 0.

Since 0 < 9Q/ds < 1/4°, it follows readily that R(s) is continuous for ¢ > 0
and hence by (4.14) for ¢ = 0.
Using (3.10) and (4.4) yields

(4.15) (B(o, t) — ¢(0)) /o = J1 + Ja,
where

To= [ BBt — 1)) = Kool L,

0 —at
Jo = = [ h(or™)gly) W 4 TR g gy,
t [ ag
Clearly
J. = "R(B(oe™™, t — y)) —h(¢(ac™))
Pk B(oe™, t — y) — ¢(oe™)
—ay _ - —ay
.B(ae 1 12,, ¢o(oe )e'“”g(y) ay.
o€
Hence
t
[J1] = ufo ploe ™, t — y)e “g(y) dy.
Also
0 _ —ay
Jo= [ L= M) gy gy
¢ oe

_ 1 —exp (—oe™/c) [ — Q1))

a,e—ut
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Hence

[J2] = f L= ¢loe™) e g(y) dy + ¢ ftw 9(y) dy/c.

06_’“’

Thus (4.15) gives
t
oo ) S [ oloe™, t = )9y dy

+ 0 [ ) dy+ e [ gt ayse

for some constant C; since (1 — ¢(s))/s is uniformly bounded.

By recalling R(s) above (4.14) and its continuity for 0 < ¢ < o, it follows
that if R(o) # 0, then there exists some § > 0 such that for some ¢ > 0,
R(c) = 8. Let oy be the least o such that R(s1) = 6. Hence R(o) < & for
0 < o < g1. In particular if 7 is defined as below (3.20) there exists 7 < §
such that

(4.16)

(4.17) R(o) = 1, 0= ae™.
From Theorem 3.1 and ¢'(0) = —1, it follows readily that there exists K,
such that

plo,t) = K.

From (4.16) for large ¢

T t/2
ploy, t) = u fo plore ™, t —y)e “g(y) dy + n f plore™, t — y)e ™g(y) dy

t 0 00
+uko [ o) dy+ 0 [ ey ay + o [ gt aye
If we let ¢ — o, this gives by (4.17)
8 = 30+ 3,
or § < u, which is impossible. Hence R(¢) = 0, and the theorem is proved.
5. It remains now to prove (1.6) and to extend some of the results from

real o to complex s. Both are rather simple to do at this point.
It was proved in Theorem 2.1 that F(s, ¢) is a generating function so that

F(s, 1) = 2.5 pa(0)s", |s| =1
and F(1,¢) = 1for0 = ¢ < . Hence
(5.1) Bi(s, t) = F'(e—s/m(t), £) = 230 pn(t>e—ns/m(t)’

and

(5.2)  B(s,t) = Flexp(—se™/c, 1] = 2.5 pa(t)exp(—nse™*'/c).
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Thus B (s, t) is the Laplace Stieltjes transform of

(5.3) Hy(u, 1) = 2 ngumcy Pa(t)
and B(s, t) of
(5.4) H(u,t) = Zn§uc expiat) Palt);

that is, for Rl s = 0,
B(s,0) = [ ™ dH(u,1),
0—
where ¢ is held fixed in H, and
(5.5) Bi(s,0) = [ ™ at(u,).
0—
Since B(a,t) — ¢(o) as t — o, the fact that H(w, ¢) is a cumulative distribu-

tion function for each ¢ implies that ¢(¢) is the Laplace Stieltjes transform of
a cumulative distribution function ¥(u), and that at points of continuity of ¥

(5.6) limye H(u, t) = ¥(u).

Hence B(s, 1) — ¢(s) for Rls = 0ast— «. Alsoin (1.8) bothsidesare de-
fined for Rl s = 0 and are analytic for Rl s > 0. Since both sides are equal
for real s, it follows they are equal for all s, Rl s = 0.
Since m(t)e™ — ¢, (5.3), (5.4), and (5.6) imply that at all points of con-
tinuity of ¥
lim . Hi(u, t) = ¥(u).
In (5.5) this implies By (s, t) — ¢(s) as ¢ — «, Rl s = 0, which proves (1.6).

Addendum, November 3, 1958. The referee suggested weakening the re-
quirement that ¢g(¢) be continuous. By adding another stage to the proof,
it can be shown that the results of this paper are valid for G(¢) absolutely
continuous and G(0+) = 0. This will now be done.

6. It will be assumed here that G'(¢) = ¢(¢) = 0 almost everywhere.
Hence, there exists a sequence of continuous functions {g;(¢)} such that

and

(6.1) tim [ [g(t) ~ 0| dt = 0.
j»w JO
Let

60 = [ 0v) ay.

By Theorem 2.1 there exist the generating functions F;(s, t), and

62)  Fist) = j WF(s,t — 1))g:(y) dy + sll — Gi(D];
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that is, to each G; can be associated an F; satisfying the conclusion of Theorem
2.1.
The argument used in Lemma 2.1 shows that if & is chosen so that

”f eMg(t) dt < &,
0

then by virtue of (6.1) it follows that if j is large, then the inequality

t
(6.3) AW su[ A= o) dy+ K
implies that
(6.4) A(t) £ 2K,

By using (6.2) for j and ¢, where < is also a positive integer,
t
Fi(s, 1) — Fi(s, 1) = fo [R(Fi(s,t — y)) — h(Fi(s, t — y))lgi(y) dy

(6.5) ¢
+ f WF(s,t — y)gi(y) — g:)] dy + slG:(8) — G(D)].

Hence, since |h' | < pand || £ 1,
t
[Fi(s,8) — Fi(s, t) | = ufo [Fi(s,t —y) — Fi(s,t — y) | gi(y) dy

+ (5D [ 100 - 0w

Since the last term can be made as small as desired by taking 7 and j large
enough, (6.3) implies that, for any &, F;(s, t) converges uniformly for
0=t=Zth,|s|=lasj—o . If

F(s, t) = limj,o, Fy(s, t),

then the uniform convergence guarantees that F(s, ) is continuous for
|s]| = 1,0 £ ¢t £ o, and that F(s, t) is a generating function for each i.
Moreover, writing (6.2) as

Fis 1) = f R(Fy(s, t — y))g(y) dy

+ fo W(Fi(s, t — y))lgiy) — gl dy + slt — Gx(8)),

it follows on letting j — o, that F(s, t) is a solution of (2.3).
Corresponding to each g;(t) there is, by Theorem 2.2, an m;(¢) satisfying

mi(t) = f mit — )gi(y) dy + 1 — G;().

Proceeding with the aid of (6.3) much as before, it follows that m;(f) con-
verges uniformly for 0 = ¢ < 4, and hence

m(t) = limj_,w mj(t)
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is a continuous nondecreasing function for 0 < ¢ < o« and satisfies (2.15).
Also for large 7, (6.4) implies that

(6.6) m;(t) < 2.
From (6.5)
1L—Fe’,t) 1 —Fiet)

g (2

- [ (P&t — y)) — h(Fie™, t — y))g:(y) dy/o

[ D ) — g 2 e ay
0 ) g
+1 _ae_afo lg:(y) — g:(y)] dy.

If we recall that by (2.25) 1 — F,(e¢,t) = om:(¢) and let

| (1= F)/e — (1 = F)/a| = Wii(o, 1),
the above yields

t
Wiilo,1) < f Wiio,t — 9)giy) dy

+ ufo lg:(y) — gi(y) [ mi(t — y) dy + fo lg:(y) — gi(y) | dy.
By (6.6) for0 =t < &,

t
Wio,t) < u f Wiia, t — 1)g:(y) dy

+ 1+ 2 [ 100 = 0w

Since the last term can be made as small as desired by taking 7 and j large

enough, (6.3) implies that W;;(s, t) converges uniformly to zero for
0<o< wand0 =t =1t. Thus

(1 ="Fie”,t))/o — (1 = F(e", 1))/

converges uniformly to zero as 7 — o for0 < ¢ < © and0 = ¢t £ 4, and
hence as 7 — «

(6.7) my(t) — (1 — Fi(e™", t))/a
converges uniformly for 0 < ¢ < ©,0 £ ¢ £ &, to
(6.8) m(t) — (1 — F(e”’, t))/o.

Since (6.7) is continuous and converges uniformly to zero as ¢ — 04, the



118 NORMAN LEVINSON

uniform convergence of (6.7) to (6.8) implies that (6.8) is continuous on
0<o< ©,0=t= tandthat

limeo4 (1 — F(e™, 1)) /o = m(2),

with the convergence uniform for 0 < t < ¢, for any &, .
From (2.28) onward, the argument now applies to the case G(¢) absolutely
continuous by virtue of the above.
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