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This paper is a study of a particular case of the following question"
Let K be a subset of a finite group/-/. Suppose that another finite group

contains H in such a way that the centralizer in G of any element of K is con-
tained in H. Then what can we say about the structure of G? In particular
for given H and K, are there infinitely many simple groups G satisfying the
above condition?

So ar no general solution nor general method to attack this problem has
been ound. The purpose of this paper is to give an answer to this question
in the very special case that H is a cyclic group of order 4 and K consists of
its generators. The result of this investigation may be stated as follows:

Let G be a finite group containing an element r of order 4. If r commutes
only with its powers, then either G contains a normal subgroup of index 2
which does not contain r, or G contains an abelian normal subgroup Go of odd
order such that the factor group G/Go is one of the following groups: SL(2, 3),
SL(2, 5), LF(2, 7), or the alternating groups A6 or AT.

1. Throughout this paper G stands for a finite group which satisfies the
[ollowing condition (.)"

(.) G contains an element r of order 4 such that r commutes only with
its own powers.

We shall use the letter V to denote the subgroup of G generated by r, and
T stands for the subgroup of V generated by the involution r r2.

:PROPOSITION 1. Let S be a 2-Sylow subgroup of G containing V. Then S
is generated by r and another element p with one of the following five relations"

p -1 -1.(1) l, prp r
--1 --1.(2) p , pp r

(3) 2m 2)r m >__ rpr-1 -1.
P2, --1 --1(4) p =(m>-2), -p =p ;

(5) p=l.

Proof. By assumption the centralizer of V in S coincides with V. Hence
V contains the center of S. In particular T is the only normal subgroup of
order 2 in S. If S V, we have the last case (5). We now assume that
S V. The normalizer of V is therefore of order 8. If IS’e] 8, we have
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either the first or the second case. If [S:e] > 8, we may apply Lemma 4 of
[8] to the factor group SIT. This group SIT is by the lemma generated by
two cosets rT and pT such that the coset pT generates a cyclic subgroup of
index 2. Hence S contains a subgroup P of index 2 such that PIT is cyclic.
P is abelian since it is a cyclic extension of a central subgroup T. If P is not
cyclic, P must contain a characteristic subgroup of order 2, T. This is,
however, impossible since T is the only normal subgroup of order 2 in S.
Thus P is cyclic, and we can show easily that we have case (3) or (4) taking
p as a generator of P.

PROPOSITION 2. If a 2-Sylow subgroup of G is of type (3), (4), or (5), then
G contains a normal subgroup Go of index 2 which does not contain .

Proof. If G contains a normal subgroup G1 such that G1 S G andG n S
e, then it is easy to find a normal subgroup Go of G satisfying every require-
ment. In case (5), 2-Sylow subgroups are cyclic, and hence the existence of
G1 is assured by Burnside’s theorem ([5], 243). In cases (3) and (4) we
denote by P the subgroup of order 4 in {p/, the subgroup generated by p.

The centralizer of P1 in G contains p and is certainly of order > 4 by the con-
dition m >__ 2. Hence P is not conjugate to V in G. By a theorem of Griin
(cf. [10], p. 135) the intersection of S and the commutator subgroup G’ of G is
generated by the commutator subgroup S’ of S and subgroups of the form
S n S’-. In our case S’

_
P, and P is not conjugate to V in G. Hence

S aS’a- is a part of the subgroup R generated by p and pr. Therefore G
contains a normal subgroup Go of index 2, and Go S R. Since S
{, R}, Go does not contain r.

PROPOSITION 3. If the index of the commutator group of G is.even, G contains
a normal subgroup Go of index 2 which does not contain .

Proof. If the structure of 2-Sylow subgroups of G is of type (3), (4), or
(5), then this proposition follows from the previous one. So we assume that
a 2-Sylow subgroup S of G is either a dihedral group or a quaternion group.
In either case S is of order 8. From the assumption, G contains a normal
subgroup M of index 2. If M , M satisfies all the requirements. If
M r, V is a 2-Sylow subgroup of M since the order of M is divisible by 4
but not by 8. The normalizer of V in M is the intersection of M and the
normalizer of V in G, the latter being S. Hence V is in the center of its
normalizer in M. Applying a theorem of Burnside to M, we conclude that
G contains a normal subgroup G1 such that G G S and G S e. As
before we can find a normal subgroup Go of G with all the requirements of
Proposition 3.

2. In this section we shall assume that the order of the commutator factor
group GIG’ of G is odd. It follows from Proposition 2 that a 2-Sylow sub-
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group is either of type (1) or (2). We shall denote by N the normalizer of
T in G. For the structure of N we have

PROPOSITION 4. If a 2-Sylow subgroup is a dihedral group (type 1), then
N contains a normal subgroup U such that US N and U fa S. e. On the
other hand, if a 2-Sylow subgroup of G is a quaternion group (type 2), then N
is isomorphic with the special linear group SL(2, p) with p 3 or 5.

Proof. Let h7 NIT and SIT. is an abelian group of order 4 and
is a 2-Sylow subgroup of _h7. The normalizer of $ in h7 has the form HIT
where H is the normalizer of S in G. H contains a normal subgroup K which
is the centralizer of S. Since V S, K is a part of the centralizer of V. By
the assumption (.) we have V K; therefore K T. Thus H ,5, or else
HIT is isomorphic with the alternating group of four letters.
Assume that H S. Then $ coincides with its own normalizer in , and

by applying a theorem of Burnside we conclude that N contains a normal
subgroup U such that N US and U n S e. If S is a quaternion group,
S n aS’-1 T for all a e G. Hence again by a theorem of Grtin (loc. cit.)
G contains a normal subgroup of index 2. This contradicts our assumption
that GIG’ is of odd order. Hence in this case S must be of dihedral type.
Assume finally that HIT is isomorphic with the alternating group of four

letters. In this case all the maximal subgroups of S are conjugate in H.
In particular S is a quaternion group. Every involution of h7 is conjugate
to the coset rT, and the centralizer of rT is $. Hence by a theorem of Fowler
[6] we have one of two cases, namely" is a normal subgroup of _AT, or is
isomorphic with the linear fractional group over the field F of which the ad-
ditive group is isomorphic with $. Hence in our case h7 is isomorphic with
LF(2, 4)

_
LF(2, 5) or with the tetrahedral group. Since T is the only sub-

group of order 2 in S, it follows from a theorem of Schur [7] that N itself is
isomorphic with SL(2, 5) or SL(2, 3).
PROPOSITION 5. If a 2-Sylow subgroup of G is a quaternion group and if

[G’G’] is odd, then G contains a normal subgroup Go such that Go is an abelian
group of odd order and G/Go is isomorphic with SL(2, 5) or SL(2, 3).

This is a direct consequence of Theorem D of [9].

3. The rest of this paper will be devoted to the study of the structure of
G in which a 2-Sylow subgroup S is of dihedral type. The normalizer N of T
contains by Proposition 4 a subgroup U such that N US and U n S e.
From the structure of S we see the existence of two involutions rl and r. such
that {T1, T2} k. and rl T2 r. We have

PROPOSITION 6. U is an abelian group and is a direct product of two sub-
groups U and U2 such that every element of U commutes with r, (i 1, 2).

Proof. The element r induces an automorphism of order 2 in U. The
only element of U which is left invariant is the identity. Hence every ele-
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ment of U is mapped into its inverse by r, and so U is abelian. Since U is
abelian, U is a direct product of U1 and Us such that U1 is the totality of ele-
ments which commute with rl, and Us is the totality of elements satisfying

1 --1
11 Since rr-1

r r commutes with every element of
U2. Actually U2 is the totality of elements in U which commute with

4. In this section we consider a special type of groups satisfying the con-
dition (.). Let G be a group possessing the following properties:

(1) G satisfies the condition (.) of the first section;
(2) a 2-Sylow subgroup S of G is a dihedral group of order 8;
(3) S contains an involution which commutes with every element of U.
Here we have used the same notations as in the preceding section. We

may take notations so that U U (cf. Proposition 6). Then rl is an in-
volution in condition (3), and r commutes only with the identity of U. The
involution r may or may not be coniugate to r or r in G. In this section,
however, we shall make the following assumption"

(4) r is coniugate to r but not to
Denote by D the subgroup r, r} generated by r and r (i 1, 2). Then

each D is an abelian subgroup of S of order 4. The centralizer Z of D is
a part of the centralizer N of T. Therefore Z1 is U u D1 U X D1, while
Z.=D. PutZ= Z1. Let N be the normMizer ofD (i 1,2) inG. N
contains Z as a normal subgroup, and the factor group N/Z is a subgroup
of the symmetric group of three letters. By assumption (4), r is not con-
iugate to rl Hence N1/Z is of order 2; in other words N1 coincides with N.
On the other hand r is coniugate to r in G. Then r is actually coniugate to
r in N2. Hence N/Z is of order 6; i.e., N is isomorphic with the octahedral
group.

Since N N, every 2-singular class of U u V is special with respect to N
in the terminology of [9]; i.e., if is a 2-singular element of U V, then the
centralizer of a is in N, and if ’ is another element of U
in G, then they are coniugate in N. Therefore we may apply Lemm 4 of [9].
The irreducible characters of N may be determined without much difficulty.

The first 2-block B0 consists of four linear characters
character of degree 2. For the theory of blocks of characters see [1], [2], and
[4]. The remaining characters of N are distributed in (u 1)/2 blocks of
defect 2, each consisting of four characters of degree 2. Here we denote by
u the order of the subgroup U. We cll linear combinatioa of irreducible
characters of N with integral coefficients a B-character if this linear combina-
tion vanishes outside of all the 2-singular classes of U V. The first 2-block
B0 contributes two B-characters, namely
where we have taken 70 as the principal character and 7 as the one which has
U V as its kernel. If B is a 2-block of defect 2 consisting of four characters
01, 0, , and 4, the restriction of any on U is a sum of two associated
characters and ’ of U. B contributes therefore a B-character 1 W 0
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03 04 in suitable notations. We can show that any B-character of N is a
linear combination with integral coefficients of the special B-characters men-
tioned above, which we shall call the basic B-characters. The following
lemma is easily proved but quite essential in the subsequent argument.

LEMMA. If a linear combination X of characters ofN with integral coedcients
is orthogonal to all the B-characters, then X vanishes on all the 2-singular classes
of UvV.
Now if is a B-character of N, then " vanishes outside of special classes of

N. Hence we may apply Lemma 4 of [9]. The induced character ’* of G
satisfies the following properties: * vanishes on all 2-regular classes of G as
well as 2-singular classes of the rl-section, and if z e U, ’*(rz) ’(rz) and
*(r) ’(r). Therefore if " is one of the basic B-characters, then * is a
linear combination of four (with one exception in case " ’70 q- ’71 ) ir-
reducible characters of G with coefficients 1 or -1. We see that

(’70-{-’7- ’7- ’73)*= 1 -+- 1 H1- 2H2- 63H3,

(’70 q-’71- )*= 1 q- 1H1- 1 I),

where H1, H2, H3, and are all different nonprincipal characters belonging
to the first 2-block of G. We want.to show that we get all the characters of
G in 2-blocks of positive defect _>_ 2 by decomposing the induced characters
from basic B-characters of N. Suppose that an irreducible character X of G
does not appear in ’* for all B-characters " of N. Then the orthogonality
relation yields (X, ’*) 0, where (X, Y) is the summation X(r)Y(--1)
( e G) on G divided by the group order. By the reciprocity law of Frobenius
we have (X, * (X’, ) where X’ is the restriction of X on N. Since

is any basic B-character, it follows from the lemma that X vanishes on all
the 2-singular classes of U u V. Hence the degree of X must be divisible by
4. Therefore X belongs to a 2-block of defect 1.

Let B be a 2-block of defect 2 of G. The defect group of B is D. Let B
correspond to a 2-block B’ of defect 2 of N in the sense of [1]. Let X be a
character of B. Then X must appear in the decomposition of induced char-
acters *. Suppose X appears in , but not in others, and let be
the multiplicity of X in " t X .... Since X belongs to a block of
defect 2, X is not H nor . Thus each is a basic B-character of a block
B of defect 2 of N" 0 0 If X’ is the restriction of X on N,
and if Y X’ , then for any B-characters of H we have

If for j 1, 2, , then (X, *)o 0 and likewise (0, ) 0
for alli. If ,then (X,)o and (0,) . Thuswehave
proved (Y, ) 0 in any case. Hence by the lemma, Y vanishes on all
2-singular classes of U V. Hence X 0 on all the 2-singular classes
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of U u V. Let w be the central character defined by c0(a) g(a)X(a)/f where
g(a) is the number of conjugate elements in the class containing a and f is
the degree of X. For elements a 1 of U we have

o(o.-) g(a’)X(a’r)/f X(ar) 0(a) (rood 2).

if ’ is the central character of the block B’ of N,we have a congruence o()
o’(ar) (rood ) with a suitable prime divisor of 2 in an algebraic number field
(cf. [1]). If 0 is a character in B’, o’(ar) O(ar) O(a) (rood 2). Hence
we have 0() --- 0(a) (mod ) for all a e U. Since each 0 is a sum of two
linear characters of U and two different 0 and 0’ do not contain any common
characters, the orthogonality relations yield that the above congruence is a
trivial one. This means that X appears in exactly one *, and this is the
basic B-character of the block B’ corresponding to the block containing X.
The same argument may be applied to any character X of G such that X

is not 1, Hi, and appears in i’* coming from a B-character of blocks of de-
fect 2. If such a character X appears in , ..., , then X ’ ii 0 on
ar ( e U). If the degree of X is divisible by 4, X(ar) 0 (rood 2) for a 1.
Hence for all a e U we have 0(a) -= 0 (mod ) which is impossible unless
the summation is empty. Hence a character belonging to a block of de-
fect _-< 1 does not appear in any *. If X belongs to the first 2-block of G,
then the degree of X is not divisible by 4. If the degree is odd, X(r) 1
(mod2), whileX() i 0i(r) 0 (mod2), a contradiction. If thedegree
is even, then again we get X(ar) 0 (rood 2) for a 1. Hence the first
2-block consists of exactly five characters: 1, H (i 1, 2, 3), and .
Using a theorem of Griin we conclude that G contains a normal subgroup

Go of index 2 and Go n S D2. D2 is a 2-Sylow subgroup of Go. In Go every
involution is conjugate to . Hence Go has exactly one 2-block of defect 2
and (u 1)/2 blocks of defect 1. Each block of defect 1 consists of two
characters o and w’ which take the same value on all 2-regular classes. From
the orthogonality relations we see that (0 o’)* contains four characters.
This means that o* is a sum of two irreducible characters X and Y of G.
Hence both X and Y remain irreducible on Go and coincide with . It follows
that characters of G in (o o’)* are in the same 2-block of defect 2. Since
G has exactly (u 1)/2 blocks of defect 2, we conclude that each 2-block of
defect 2 of G consists of four characters of the same degree. This implies in
particular that characters of the first 2-block do not appear in any * coming
from B-character i" of defect 2. Hence by an argument similar to that used
before, we see that Hi(or) , HI(’) , H(-) -, H(’)
-ea, () 0, and ((ar) -2.
One of the nonprincipal characters in the first 2-block must be linear. This

character takes the value -1 on r and 1 on . Hence without loss of gen-
erality we may assume that Ha is linear and a 1.
Denoting the conjugate class containing p by (p), we consider the coefficient

of (ar) in the expansion of (): in the group ring. Orthogonality relations
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yield that this coefficient is

where g [G:e], n IN" e], f is the degree of X,, and the summation ranges
over all the irreducible characters of G (cf. [3], 5). On the other hand the
same coefficient is equal to the number of pairs of conjugate elements r’ and

--1 .!r" of r such that r’ r" r. Ifr’r" r, thenr’r rrpandr .
Hence the number of pairs (r’, r") satisfying r’r" r is 2u where u
[U’e]. Hence we get

The contribution to the right side from the blocks of defect _-< 2 is zero. For
each block of defect -< 1 this is clear since ’ X(zr) 0. For blocks of
defect 2 this follows from the fact that such blocks consist of four characters
of the same degree. Let f be the degree of H1. Then the degree of H is
also f, while the degree of is f e, where e el e. Hence the con-
tribution of the first 2-block is 1 -t- (s/f) (s/f) q- 1 (8e/(f - e))

e)/f(f+ e). Henceg2(f unf(f -- e)/(f e).
We apply the same consideration to the coefficient of (at} in the expansion

of (r}. In this case we get

(ginS) (_,, X,(r) X,(ar)/f,) 2 if 1,

where n is the order of the normalizer of r. Since r commutes with every
element of U, we may write nl 4uw. The contributions from blocks of
defect -< 1 vanish since X,(ar) 0. Let B be a block of defect 2 con-
sisting of X, X., Xa, and X4. These four characters have the same degree
f. Using suitable notations we may assume X(ar) X(ar) -Xa(ar)
-X4(ar) () q- (), where , are linear characters of U. We have
X(rl) -X.(rl) x and Xa(r) -X4(r) y. Thus the contribution
of B is 2(x y)(i(a) q- (o’))/fi. Consider finally the contribution of
the first2-block. Letx HI(r) andy H(r). Thenx- y q- 2e 0
since Ha(r) -1. In order to determine the value x and y, we consider
the multiplicity of (} in (r}. This coefficient is zero since (rl} contains
only elements of Go while Go. Hence

0 _,, X,(r,)X,(’)/f,.
Since X,() 0 except if X 1, H, H, Ha, we see that

0 lq- (x2e/f)- (y2e/f) 1, or x2= y.
Hence 2x - 2e 0, or x e and y e. From the equation

1 q- eH(r)- e(rt) 0

it follows now (r) 0. Hence the contribution of the first 2-block is



262 MICHIO SUZUKI

1 -t- (elf) + (elf) + 1 2(f-I- e)/f. Wehvenow

2(f + )/’f + 2(x yi)((a) -t- ())/f 2n/g or 0.

The orthogonality relation yields

(f + e)/f (z y)/f n2/gu, g 16uwf/(f + e).

Comparing the two expressions of the order g we get w(f e) 2u(f + e).
We assume thatw -<_ u. Then f- e -> 2(f-b e). Hence e -1 and

f_-< 3. Since f+ 1---0(mod4),wemusthavef= 3andu w. The de-
gree of is f + e 2. Let G1 be the kernel of the representation with the
character . Then G1 r and r.. Hence D. is a 2-Sylow subgroup of G1
since G/G is of even order. Hence G G N2, and G/G1 ._ N2/N. n G
N./D. Hence G/GI is isomorphic with the symmetric group of three letters.
At the same time we see that N2 n G D.. Hence by a theorem of Burnside
G1 contains normal subgroup H such that G HD. and H o D2 e. H is
also normal subgroup of G and G/H --- N..Let K be the centralizer of r. Then the order of K is 4u, and K contains
a normal subgroup K0 of order u2. By the isomorphism theorem HK/H .
K/K n H, and hence HK/H is a group containing a normal subgroup of odd
order and of index 4. Since G/H is the octahedral group, HK/H is of order 4.
Therefore K n H K0 ;in particular we see that K0 H.
Now we make a further assumption that K0 is abelian. Consider the cen-

tralizer Z of U in G. It is clear that the subgroup D is a 2-Sylow subgroup
of Z. Burnside’s theorem shows the existence of a normal subgroup Z0 of
Z with index 4. Since K0 -- U, K0 is a part of Z0. The conjugate subgroup

--1rKo r contains r Ur U and consists of elements commuting with
--1

r.rlr rr. HencerK0rlK0 U. The element r induces an au-
tomorphism of Zo/U which leaves only the identity invariant. Hence Zo/U

--1is belian. In particular r Ko r o Ko/U is an abelian group and so a direct
product of Ko/U and r2 Ko r/U. Since f 3 and e -1, the order of G

--I 2.is equal to 24u3. Thus [H" U] u >= [Z0 U] => [Ts K0 T2 tJ Ko U]
Hence we conclude H Z0 T2 K0 r K0 in particular U is in the center
of H. If p is an element of order 3 which maps T into r., every element of
pUp-1 commutes with r2. Hence pUp- fl Ko e. Ko is a normal subgroup
of H, and pUp-1 is in the center. This implies that H K0 X pUp- and H
is an abelian group. It follows therefore that H is a direct product of U and
another subgroup U0 consisting of elements of H which are mapped into their
inverse by r. U0 is on the other hand generated by pUp- and p2Up-. We
have proved the following proposition which was the aim of this section.

PROPOSITION 7. Let G be a group satisfying the following conditions"
(1) G satisfies the condition (.) of the first section,
(2) a 2-Sylow subgroup of G is generated by two ;nvolutions r and r. such

that r T2 " and rl " 7 r
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(3) if p 1 is an element of odd order in the centralizer of r r, then p

commutes with n but not with and
(4) is conjugate to ’ but not to n,

If the centralizer of - contains an abelian normal subgroup W of index 4 then
the order of W is not smaller than , where 8u is the order of the normalizer of -.
If we have [W:e] u, G contains an abelian normal subgroup H of order u
such that G/H is the octahedral group and H is generated by elements of odd order
conjugate to an element of the centralizer of .

5. We shall consider in this section a group satisfying the condition (.)
of Section 1 such that

(1) 2-Sylow subgroups are a dihedral group of order 8, and
(2) involutions form a single conjugate class.

The second condition is equivalent to saying that there is no normal subgroup
of index 2. The purpose of this section is to obtain a formula for the order
of such a group. Throughout we use the same notations as in the first three
sections.
The subgroup N is the centralizer of r in G. Then by Propositions 4 and 6,

N c’ontains an abelian 2-Sylow complement U such that U
For each irreducible character of U we define a linear combination of charac-
ters of N in the following way. If is an irreducible character of U, has
either one, two, or four associated characters in N. Precisely if is a non-
principal character of U/Ui (i 1, 2), has exactly two associated characters
and t/. Then N has four irreducible characters 0, 1, , 3 such that

the restriction of each i on U is ’. Under suitable notations 0()
+ 1 . a vanishes on all classes of N except the 2-singular classes of

U u V. If the kernel of the representation with character does not contain
U1 nor U:., has four associated characters , 1, , and a. This time N
has two irreducible characters and ’ whose restriction on U is

2 a. In this case 0() ’ vanishes on N except the 2-singular
classes of U u V. If v0, vl, w, and 73 are linear characters of N, 0(1)
70 + 71 72 73 vanishes in suitable notations everywhere except on the
class (}. If 7 is the nonlinear character of N/U, 0’(1) 70 + 71 7 vanishes
outside of 2-singular classes of U V. For these 0% we have a lemma similar
to the one given in Section 4, namely: if a linear combination of irreducible
characters of N with integral coefficients is orthogonal to all the 0’s, then it
vanishes on all the 2-singular classes of U V. Let indicate the induced
character of G. We can apply Lemma 4 of [9] since all the 2-singular classes
of U V are special. We see that

0"(1) 1 + 1 H1 t2H s3H and 0’*(1) 1 + 1H1 Vl Hr.
Here H are four distinct irreducible characters of G and +/-1. Take
another nonprincipal irreducible character.X:X H (i 1, 2, 3, 4). Con-
sider all the 0"() here ranges over all representatives from each associated
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family of nonprincipal characters of U. Suppose X appears in 0"(0 (i
1, 2, ,/) with multiplicity/}. There exists a character of N appearing
in () such that o(r) () for e U. The summation here ranges
over all the associated characters of . We may assume that the multiplicity
of in 0() is 1. Consider Y X /} where X’ is the restriction of
X on N. As before (cf. Section 4) Y is orthogonal to all the () and hence
vanishes on all the 2-singular classes of U V. Therefore X(r) 0 and
X(r) /}o(r). In particular the value X(r) is, as a function of , a
linear combination of nonprincipal characters of U. It follows also from the
equation that X is not in the first 2-block of G. This fact may be proved in
a way similar to that used in Section 4 by considering the central character
The same consideration can be applied to H. If H appears in *($0

with multiplicity ti, H(r) -2 -+- /(r) and H(r) 0. Since
H is in the first 2-block (cf. Theorem 6, [4]), the corresponding central char-
acter is congruent to 0 on r modulo a prime divisor of 2 in a suitable
algebraic number field. Hence o(r) 0 (mod ) for all e U. Since
(r)- (), this is possible only if the summation is empty. This
means H does not appear in any *() with nonprincipal characters and
H(r) 2. Considering the norm of 0’*(1) 4- 8"($), we see that no
*() ( 1) contains H, and H(r) H(r) . Here by a norm we
shall mean the average on G of the absolute value square.

If H is contained in some *(), we may assume +/-*() r,.H. -}- ....
Considering again the norm of *(1) 4- O*() we see that H must appear in
q-0*() with the coefficient =t=O*() eH H q- .-.. The missing
term is a difference (or sum) of two characters in a block of defect < 3.
Hence by Theorem 6 of [4], r,.H. H on all 2-regular classes. In par-
ticular r , and the degrees of H and of H are equal.

In any case we have H(r) and H(r) v -F a() for i 2 and
3, where a() is a linear combination of nonprincipal characters of U. If
a() 0, then r r, and the degrees of H and H are equal.

Let f be the degree of H and x H(r). Consider the coefficients A()
of (r) in (r). Orthogonality relations yield that

A() (g/64u u)/
where u [U "e] and f, is the degree of X,. If X 1, H, X(r) is a
sum of nonprincipal characters of U. Hence

A(,) (g/’64uu){1 -}- (/f) -+- (. x/f) -{- (xff) (8x/f) -l-
and B() is a linear combination of nonprincipal characters of U. The exact
value of A() is computed as the number of pairs of involutions (cf. [3]),
namely" A() 2(u -k u) if 1; 2u if 1 and e U ;and 0 if
U and U. Hence summing over U we get

2(ua q- u=) q- 2u(u, 1) q- 2u=(u. 1) 2(u q- u)
(g/64u U2){1 - (81/fl) -}" (72 x2/f2) - (ga (8gl/f4)
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In a similar way we compute the coefficient of (r). This time we get

(e/6 u +
Hence

2(u - u2) - 4 ul uo. 2(ul -}- u.) 2(g/64ul u){1 -t- (i/fl) (4/f4)}.

Using the fact 1 -}- e fl f4 and putting f f and e r, we conclude

g 64u u.(u -t- u.)f(f -t- s)/(f ).

6. We shall study the case u. 1 in this section. Put u ul. The
order formula is now read as g 64u(u + 1)f(f - s)/(f- ). Let 2 be
the exact power of 2 dividing f e and 2’ the similar power,for u -[- 1. Since
g is not divisible by 16, must be larger than 2. Hence f -t- is not divisible
by 4, and we have -t- 2. Put f 2%; then v is an odd integer prime
to f(f + ). Since g/u is the index of U in G, g/u 2X(u - 1)f(f + e)/v is
an integer. This means v divides u -}- 1. We may therefore Write 4(u - 1)
w(f ) with an odd integer w.
From the orthogonality relation we may write x2 (1 -}- a) and x3

3(1 a). Here a is an integer, and if a 0 we must have e sa and
f f.a, because in this case Ho. does appear in some O*(). In general we
have a degree relation 1 -t- sf sf.-t- e3f. From the formula for the
coefficient of (r} we get

256u f f f /l(f, +
We have used here the equalities f f and so. ea in case a 0. Comparing
the two expressions of g we get

64uf2fa w2(f + ’)2(f2- r2)(fa- :3) 28a2w2f(f + 8.)f2.

Supposea0. Thenf=f,v2= va= e, andf- e=2f2. Hence

16u w(f2- )2_ ea2fw..
Since 4(u-t- 1) w(f- ), w is relatively prime to u. From the above
equation it follows that w 1. Hence using the equality 4(u 1)--
w(f- ) 2w(f2- ) we see that ea2f: 4(u- 1) In particular e= 1.
At the same time we see that f 4u -t- 5 4(u- 1) - 9 is a divisor of
(u 1)2 and is a perfect square. The only prime divisor of f is 3, and hence f
is a power of 9: f= 9. Having assumeda0, we get f) 9 and hence
u- 1is not divisible by 27. Hencen- 2andu- 19. The order of Gis
then 8.19.81.41. Since U is a normal subgroup of N, the index of the
normalizer of U is a divisor of 81.41. But no divisor of 81.41 is congruent to 1
modulo 19 except 1. By a theorem of Sylow U is a normal subgroup of G.
If W is the centralizer of U, W is a normal subgroup of G with index exactly
divisible by 2. This implies that G has a normal subgroup of index 2 against
our assumption. Thus the possibility of a 0 has been ruled out.
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We have now 64uf. fa w(f d-- e)(f. e.)(f ). If

we get
(f- e)(/.- c) __< f././2,

2(A 1)(A 1) 2f.A 2f 2fa -[- 2 =< AA.
Hence (f 2)(f3 2) =< 2 which implies that f f3 3 and c c 1.
Hence we get c 1 and f 5 which contradicts the congruence f-: c
(mod 8). Hence (f- c.)(f3- ca) > f.fa/2, and 128u > w(f + c). Since
4(u+ 1) w(f- c), we obtain w(f+ c) =4(u-t- 1) +2cw, and hence
128u> [4(u-t-I) -2cw]. If c= 1, we get 128u> [4(u-l- 1) W2] or
5 >u. If c= -1, then 4(u+ 1) 2w-> 3(u+ 1) since 4(u-l- 1)
w(f- 1) and f+ 1--0 (mod8). Hence 128u>9(u+1) or 12 >__ u. In
this case if f 1 . 8, we can improve the inequality" i.e.,

4(u + 1) 2w __> 3.5(u -[- 1)

andu <-_ 8. In any case u is an odd integer <__ 12.
u= 11. Then 48=4(u+1) =w(f-l) andf-l=8. Hencew= 6,

which is impossible.
u 9. Thenf- 1 8 and w 5. In general we have64uf.fa

w(f -t c)(ffa if) wherei= cc. ca= :t:1. Inthiscasewehavethen 16ffa
25(f f3 7i) or 9f. f 7.25, impossible.
u= 7. We get 32 w(f-[- 1),w= landf= 31. Hence

64u (f- ) -452.

Thus 452f2 fa 30. 31ti, impossible.
u= 5. 24= w(f-{--1). We have two cases: w= 1, f=23; or w= 3,

f= 7. The first case can be treated as before. If w= 3 and f= 7, then
g 4.5.6.7.9 7560. U is a 5-Sylow subgroup of G. Since G does not
contain a normal subgroup of index 2, U is not a normal subgroup of G. The
index of the normalizer of U is a divisor of 27.7 and 1 (mod 5). Hence U
has 21 conjugate subgroups. If Z is the centralizer of U, the order of Z is
5.4.9. In Z/U the centralizer of any involution is in a 2-Sylow subgroup.
Hence a 2-Sylow subgroup of Z/U is a normal subgroup. This is, however,
impossible.
u= 3. If c= 1, we get 16 w(f- 1), and hence f= 17, w= 1. As

before, we get 64.3.ffa 18(ffa- 17i), 11ffa 27.17i, impossible. If
c= -1, then 16 w(fl), w= 1, and f= 15. g= 3.4.14.15=2520.
We can show that G is isomorphic with the alternating group of seven letters.
The detail of the argument is given in the final section.
u= 1. If c= 1, then 8= w(f- 1). Hence w= 1 and f= 9. Thus

g= 4.9.10= 360. In this case we getf.=f3= 5,f4= 10, andc2= ca= 1.
The remaining characters are of degree 8 and there are exactly two such
characters. We have the alternating group of six letters.

If c= -1, then 8= w(fWl). Hence w= 1, f= 7, and g=4.6.7
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168. We have fi=f3= 3, f4= 6, and 2= 3=-1. G has one more
character of degree 8. In this case G is isomorphic with LF(2, 7).

7. We return to the general case. Without loss of generality we may
assume ul [U’e] >= u2 [U’e]. Assume moreover u. > 1, since the case
u 1 has been treated. Consider the normalizer H of U: in G and consider
the factor group ( H/U2. Clearly satisfies the condition (,). SU./U.
is a 2-Sylow subgroup of and is generated by the cosets i (i 1, 2) con-
taining ri. If is the coset containing r, the centralizer of is N/U.. Since
U {r, r.} is the centralizer of {r, r2} in G, r and r are conjugate in H.
This implies that . is conjugate to in (. On the other hand is not
conjugate to in (, because rl maps every element of U: into its inverse. If
is any element 1 of U/U, " contains an element 1 of U1. If . ,

--1then a r. e U Hence U2, or U. This is impossible since
U U. e. Thus 1 of U/U does not commute with .. Let K/U.
be the centralizer of in G. Then K is the normalizer in G of the subgroup
{U, r} generated by U. and rl. Since {r} is a 2-Sylow subgroup of
{U, r}, K is a join of {U, rl} and the normalizer K0 of r in K. Hence
K-- U K0. K0 contains a normal subgroup U0 of index 4, and U0 is
conjugate to a subgroup of U since r and r are conjugate in G. By Proposi-
tion 6 U is abelian, and so is U0. From the definition of K0 we
have U K0 e, and hence K/U2 --_ Ko. Therefore Uo U:/U. --_ Uo is an
abelian subgroup of K/U with index 4. Now the order of Uo U/U is equal
to the order of U0. Since U0 is conjugate to a subgroup of U, the order of U0
is at most ul u.. Since the order of U/U is u, we conclude [U0 U "U.] __<
u u. _-< u [U" U.] because we have assumed u. __< u. The group (
satisfies all the assumptions of Proposition 7. Hence we have first of all
[UoU’U.] [U:U2], which means u= u. Set u= ul= u. The
second conclusion is that H contains a normal subgroup H0 such that
[H0 "U] u and Ho/U2 is an abelian group generated by conjugate sub-
groups of U/U.. Since U is abelian, U is in the center of H0. Consider
the normalizer of U in G. This subgroup contains a normal subgroup H of
index 8. The element r induces an automorphism of H/U which leaves only
the identity fixed. Hence H/U is an abelian group. Hence H/U is a direct
product of W/U and W’/U such that every element of W/U is fixed by T1 and
W’/U is the totality of cosets commuting with rl r. As before, we have
[W’U] -<_ u and [W"U] <-_ u. Hence [H’U] <- u= [H0"U]. Since H0
H, we must have H0 H. :Now we can apply the same consideration to
U. Since ul u. we may apply Proposition 7 to the factor group H’/UI of
the normalizer H’ of U. H’ contains a normal subgroup H of order u4. As
before H’o contains U as a normal subgroup. Hence H’o (:::: H Ho This
means H H0 and U1 is in the center of H0. H0 is generated by subgroups
conjugate to U U u U2 in H, and hence H0 is abelian. If H H’, both
U and U are normal subgroups of H. Hence U U1 u U: is a normal sub-
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group of H. We have shown that H0 is generated by the conjugate subgroups
of U. H0 coincides therefore with U. Considering the order we get u us,
which gives a contradiction u 1. Hence we see that H H’. Hence the
normalizer G1 of H0 contains both H and H’. All involutions of the factor
group G1/Ho are conjugate to each other. This may be proved as follows.
From Proposition 7 the factor group H/Ho is isomorphic with the octahedral
group. Hence the coset containing r is conjugate to the coset containing r..
Similarly in HP/Ho the coset containing is conjugate to the coset containing
1. The centralizer of any involution in G1/Ho is a 2-group. Hence the
result of the preceding section shows that GI/Ho is of order 168 or 360. On
the other hand it follows from the order formula at the end of Section 5
that g 64.4.uf(f -k- e)/(f- ). Let f e -t- 8v. Then

g 8u(8v + e)(4v + e)/v.
Since 9/8u is the index of a subgroup, (8v + e)(4v + e)/v must be an integer.
Hence v 1. This implies that the index g/u of H0 in G is either 168
(e= -1) or 360 (e 1). Hence Gmust be equal toG. Thus we have
shown the validity of the following proposition.

POeOSTON 8. Let G be a 9roup satisfying the condition (,). If a 2-Sylow
subgroup of G is a dihedral group, and if the index of the commutator subgroup is
odd, then G contains an abelian normal subgroup Go such that the factor G/Go is
either LF(2, 7) or LF(2, 9) except in the case that G is the alternating group of
seven letters.

8. This section is devoted to the determination of the structure of the
group left at the end of Section 6.
We haven 3and e -1. The order g of G is 2520. The values of

f, f, and f4 are computed by using the relations 1 + ef ef + e f3
e f and 64uf fa (f + e)(ff f). This gives f 35, e 1, fa 21,
ea 1, and f 14.
We shall return to the situation of Section 5. The subgroup U is of order 3.

Hence U has exactly one family of associated characters 1. Since we have
assumed U U, has two associators and ’. Let be the irreducible
character of N such that o(ar)= (a)+ ’(a). The induced character
0"() has four distinct irreducible components with multiplicity +/-1. Let it
be 0"() t Y1 + 6 Y +ta Ya -+- i4 Yr. In Section 6 we have shown a 0.
Hence Y are different from H.. The values of Yi have been computed
(cf. Section 5) as Y(r)= 0 and Y(ar) 6o(ar)(i 1, 2, 3, 4). The
missing characters, if any, of G vanish on all the 2-singular classes. Hence
their degrees are divisible by 8. Let y be the degree of Y. Then summing
Yover Swegety-t- 106---0 (rood8) ory-- -26 (rood8). Ify= 2,
then 6 -1 and Y(r) -2. This means that the kernel G of the repre-
sentation with character Y is of odd order, and every involution of the factor
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group G/G1 is in the center. This is impossible since 2-Sylow subgroups are
not abelian and are generated by involutions. Hence the possible values of
yiare6,10, 14, .... Now we haveg= 1-{- f+ y+ ...,andthe
missing term is a multiple of 64. Hence y 432. Suppose
y >__ 10 for all j. Then y >__ 400, and hence there is no missing term.
Thus at least one of y is greater than 10, and we get a contradiction that

y >- 496. Hence one of the yj, say y4, is 6 and i4 1.
We have a degree relation y 0. Another relation is coming from

the formula for A(a) (cf. Section 5). Using the values of fi and the facts
A(1)= 8 and (r)= 2, we get _,(/y)= 4/105. The relation
y+Y-t-Y_-< 396 implies that y-_< 18. If yl--18, then y= y3= 6.
These values however do not satisfy the second relation for degrees. HenCe
y 18. From the first degree relation we see that some of the ti must be
negative. Hence we may assume that ta -1. Then the only possible
value of y3 is 10. The first relation is now read as il y - ti. y 4. Since
y> 2, we must have tilti- -1. We may therefore assume - 1 and
ti. -1. Again the only possible value for y is 10. Hence y must be 14.
Then y 432 which implies that G has exactly nine irreducible char-
acters.
We denote by (} the class of conjugate elements containing . Sometimes

it is convenient to denote it by (n} if the order of a is exactly n. G has classes
(1}, (r), (} and one class ( of order 6. Besides we have one class
containing a e U. Since the order of G is 2520, G has at least two more
classes, (5} and (7 }. There are two classes missing.
The values of characters on (5 } have been determined except for Y and Y4.

Let the value of Y4 on an element p in the class (5} be x. Then x is rational
since Y. is the only character of degree 6. Hence the eigenvalues 1 of the
matrix corresponding to p are contained with the same multiplicity, say b. If
a is the multiplicity of the eigenvalue 1, we have a + 4b 6 and a b x.
If b 0, then x 6. The orthogonality relations yield that 3 2x 75
is the order of the centralizer of p. This is impossible. Hence b 1, a 2,
and x 1. This implies in particular that the centralizer of p is the cyclic
group generated by p. The orthogonality relation for columns (5 and (7
shows that Y takes the value -1 on elements of order 7.

Let M be the representation module of the representation with character
Y-- Y. The dimension of the submodule of M consisting of elements
which are left invariant by all the elements in a subgroup of G may be com-
puted by summing Y over this subgroup. Since Y(r) 2, the dimension of
the subspace of invariant vectors by is 4. Hence any subgroup of G gen-
erated by two involutions has a space of invariant elements with dimension
not smaller than 2. Summation of Y over a subgroup of order 7 is 0, which
implies that any element p of order 7 has no invariant vector 0 and that
is not conjugate to p-. Hence one of the missing classes is (7).

If is a generator of U, there is an involution T’ such that T’ T.



270 MICttIO SUZUKI

Hence the dimension of the subspace of invariant vectors by a is not smaller
than 2. This implies that Y(a) 0 or 3. But Y(a) --- Y(ar) 1 (mod 2),
and hence Y(a) 3. The order of a 3-Sylow subgroup $3 of G is 9. If Sa is
cyclic, G has at least three classes of elements of order 9. This is impossible
since there is only one class missing. Hence $3 contains only elements of
order_-< 3. If Y= 3 for all elements of order 3, we get 6-l- 24 30--0
(rood 9) by summing Y over Sa. Hence there is an element of order 3 on
which Y 3. This implies that the missing class is (3} and Y 0 on this
class. We have obtained all the classes and the values of Y.
The centralizer W of U is therefore of order 36, and the normalizer has

order 72. There is an involution r’ in the normalizer of U and a 2-Sylow
subgroup S’ of G such that ’ is in the center of S’ and W n S’ e. The sub-
space of invariant vectors for U, ’} is of dimension 3, and the space for S has
dimension 2. These spaces are subspaces of the space of invariant elements
of r, which is of dimension 4. There must be a vector m left invariant by
both U and S’. Let H be the totality of elements of G which leave m in-
variant. H is a proper subgroup of G with order a multiple of 24 and an
index divisible by 7. Since rr e W, U is not a normal subgroup of H. Let R
be the normalizer of U in H. If [H" e] 24, then R is of index 4, and hence H
is the octahedral group. This is not the case since a central involution r’ of
S maps U into itself. If [H" e] 72, R is again of index 4. If R is not nor-
mal, H has a normal subgroup H of order 3 such that H/H’ is the octahedral
group. This is again impossible. If R is normal, the 3-Sylow subgroup of R
is a normal subgroup of H. Since U has exactly four conjugate subgroups,
every element of order 3 in R is conjugate to each other. This is not the case.
If [H" e] 120, then H contains a 5-Sylow subgroup T such that [H" T] 6.
Hence H is the symmetric group of five letters. The symmetric group of five
letters satisfies the following property" if a is an element of order 3, then for
any element r of order 4 such that rar a 2-Sylow subgroup S con-
taining has an involution which commutes with . Hence from the condi-
tion S’ n W e we see that this case can not happen. The only possibility is
therefore [H’e] 360 and [G’H] 7. The permutation representation on
the cosets of H has degree 7. Its character is therefore the sum of Y and the
principal character. The kernel of this representation coincides with the
kernel of the representation with character Y. Hence it must be faithful. G
is therefore a subgroup of the symmetric group of seven letters. Since G has
no normal subgroup of index 2, G is a subgroup of the alternating group A7
Comparing the order we conclude that G AT.
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