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Introduction

If X is a topological space, then we denote by C(X) the set of all real-
valued continuous functions on X. For X compact, the set C(X) has been
characterized from a variety of topologico-algebraic points of view. For X
an arbitrary completely regular space, however, no such characterization of
C(X) has previously been given. The object of this paper is to obtain several
such characterizations of C(X). (For a partial result in this direction see
Shirota [10, Theorem 12].)
The first section is preliminary in nature. In 2 we represent certain

rings A as subrings of C(X), where X is a completely regular space uniquely
determined by A. Similar results are obtained in 3 for A an algebra and
X a Q-space [5] and in 4 for A an algebra and X compact.

In order to characterize C(X) for X an arbitrary completely regular space,
it suffices [5] to assume that X is a Q-space. In 5 and 6 we obtain such
characterizations of C(X), regarding C(X) as an algebra, as a lattice-ordered
algebra [2], and as a vector lattice [1]. Moreover, for X compact, we give,
in 5, new characterizations of C(X) as an algebra.

1. Some separation conditions

In this section we introduce and investigate briefly some separation proper-
ties of certain subsets of C(X).

Let A be a subset of C(X). We shall adopt the following definitions:
(1) A is weakly pseudoregular in case X has a subbase t of open sets such

that for Ut and x U there is an a > 0 in R and an feA such
that If(x) f(Y)l >-- a whenever y e U.

(2) A is pseudoregular (regular) in case (i) A contains the identity e of
C(X), and (ii) whenever x e X and U is an open neighborhood of x, there is
anf e A such thatf(x) 0 andf(y) >- 1 (f(y) 1) for all y e U.

Received November 25, 1957.
We shall assume that all compact [6] spaces are Hausdorff.
For references to results of this type see for example [3] and [7].
By an algebra we shall always mean an algebra A over the real field R. If A has

an identity, we shall denote it by e. We shall also adopt the convention that lower
case Greek letters denote elements of R, unless otherwise specified.

The most natural definitions of "pseudoregular" and "regular" would omit re-
quirement (i). Its presence, however, does not affect the generality of our results; we
include it merely as a matter of terminological convenience.
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Clearly, a regular subset of C(X) is pseudoregular, and a pseudoregular
subset of C(X) is weakly pseudoregular. However, the reverse implications
do not hold.

Remark. A space X is completely regular if and only if it is T1 and C(X)
is regular.

:LEMMA 1.1. If A is a weakly pseudoregular subalgebra of C(X) which con-
tains the identity, then A is pseudoregular.

Proof. Let F be a closed set, and let xeX not be in F. Since A is a
weakly pseudoregular subset of C(X), there exists a finite set U1, Un
of open neighborhoods of x such that gl U is disjoint from F, and there
exist an a > 0 in R and a set f, f in A such that, for each i 1, n,
[f(x)- fi(Y)! >= a whenever y e U. Since A is an algebra, g
[f- f(x)e] is inA for eachi 1,..., n. IfyeF, then g(y) >= a for

--2somei. Set g a g. Theng eA, g(x) O, and g(y) >__ 1 for
all y e F. Hence A is pseudoregular.

LEMMA 1.2. If A is a weakly pseudoregular lattice-ordered subalgebra (or
vector sublattice) of C(X) which contains the identity, then A is regular.

Proof. The case in which A is a lattice-ordered subalgebra is immediate
from Lemma 1.1. Minor modifications in the proof of Lemma 1.1 yield the
case in which A is a vector sublattice.

LEMMA 1.3. If X is a T-space and if C(X) contains a weakly pseudoregular
subset A, then X is completely regular.

Proof. Clearly C(X) is a weakly pseudoregular lattice-ordered subalgebra
of itself, and hence, by Lemma 1.2, C(X) is regular. Therefore X is com-
pletely regular.

2. Subrings of C(X)
Let A be a ring. Our object in this section is to obtain conditions sufficient

to represent A as a subring A* of C(X) for some uniquely determined com-
pletely regular space X. Theorem 2.1 shows that to insure uniqueness of X
it suffices to insist that A* be "point-determining" and weakly pseudoregular.
Theorem 2.2 provides the desired representation.

If .A is any ring, then an ideal M in A is said to be real in case AIM is
isomorphic to R. We shall denote by the set of all maximal ideals of
A and by the set of all real maximal ideals of A. For each M e a and
each f e A, we shall let M(f) be the image of f in R under the homomorphism
of A onto R with kernel M.

If X is a topological space, if A is a subring of C(X), and if x e X, then we
shall set

M { e A f(x) 0}.
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We say that A is point-determining in case M e a if and only if M M
for some unique x e X. We note that if C(X) contains a point-determining
subring, then X must be T1. Observe also that if A is pseudoregular and if
X is To, then the uniqueness requirement of this definition is automatic.
A completely regular space X is a Q-space [5, p. 85] in case C(X) is itself

point-determining; that is, M (Re(x) (if and) only if M {f C(X);f(x) 0}
for some (necessarily unique) x e X. It is known that X is a Q-space if and
only if X is homeomorphic to a closed subset of a product of real lines ([5,
Theorem 60] and [10, Theorem 1]).
The following theorem generalizes Theorem 57 of [5] to the effect that if X

is a Q-space, then X is characterized by C(X).

THEOREM 2.1. If X is a topological space and if A is a weakly pseudoregular
point-determining subring of C(X), then A characterizes X.

Proof. We shall show that 6h, with a suitable (algebraically invariant)
topology, is homeomorphic to X. Since A is point-determining, the mapping
x --. M is one-one from X onto A. For each M e (R, each s > 0, and
each f e A, set t(f, s) {M e IMp(f) i(f) < }. The
family of all M(f, ) forms an open subbase for a topology on 6h. Since
A is weakly pseudoregular, the family of all sets U(f, e)
lY X; If(x) f(Y)l < } is an open subbase for X. Now since the mapping
f -. f(x) is a homomorphism of A into R with kernel Mx, it follows that
M(f) f(x) for all x e X and all f e A. Thus the mapping x -.M is clearly
a homeomorphism.

If A is a ring such that is not empty, and if f e A, we shall define the
real-valued function f* on (R by f*(M) M(f) for all M e (Ra. Then the
mapping f -. f* is a homomorphism of A onto a subring A* of the ring of
all real-valued functions on
We observe that the topology on 6h introduced in the proof of Theorem

2.1 is the weakest topology on 6h which makes each f* A* continuous. In
the sequel we shall always assume, unless otherwise specified, that (R is en-
dowed with this topology; we shall call it the weak topology on 6h determined
by A.

If A is a ring with the property that [ A 0, then the homomorphism
f --, f* of A onto A* is, in fact, an isomorphism.

(We remark that if is endowed with its discrete topology and if I’l 0,
then A* is clearly a point-determining subring of C((RA); however, Theorem
2.1 shows that in this case A* need not be a weakly pseudoregular subring
of

THEOREM 2.2. A ring A is isomorphic to a weakly pseudoregular point-
determining subring of C(X) for some topologically unique completely regular
space X if and only if 5. O.

Cf. [8, p. 10].
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Proof. The necessity of this condition is clear. Conversely, endow
with the weak topology determined by A. Let M and N be distinct ele-
ments of (. Then there is an f e M with f e N. Since f* is continuous on

and since f*(M) 0 and f*(N) O, it follows that ( is Hausdorff. By
the choice of the topology for , it is evident that A* is a weakly pseudo-
regular subring of C(); hence, by Lemma 1.3, (R is completely regular.
Finally, since A* is a point-determining subring of C(), an application of
Theorem 2.1 completes the proof.

If X is a completely regular space, then there exists a topologically unique
space vX characterized by the following three properties [5, Theorems 56 and
58]" (1) X is (homeomorphic to) a dense subset of vX, (2) vX is a Q-space,
and (3) every f C(X) has a unique continuous extension over vX. It fol-
lows that C(X) is isomorphic to C(vX).

Let X be a completely regular space. If A C(X), then [ 0, so
that, by the preceding theorem, A is isomorphic to a weakly pseudoregular
point-determining subring of C(Y) for some topologically unique completely
regular space Y. In fact, since C(X) is also isomorphic to C(vX), it is clear
that Y vX. However, the following example shows that if A is merely a
subring of C(X) with [ 0, then the space Y need not be a Q-space;
thus, in particular, in Theorem 2.2 "completely regular" cannot be replaced
by "Q-space".

Example 1. Let 2 be the first uncountable ordinal, let Ta+l be the chain
of all ordinals i =< 2 with the interval topology, and let T T+I {2}.
We recall the following facts "6 (i) T+I T vTa (where, as usual, T
denotes the Stone-ech compactification of Ta) so that Ta is not a Q-space,
and (ii) every f C(Ta) is eventually constant. Now let A be the subring
of C(Ta+I consisting of all f such that f(2) is integral. Then for each < 2,
M belongs to 6, so that clearly gl 6 0. On the other hand, suppose
that M is a maximal ideal in A such that M M for every i < 2. Note
first that M contains an element which does not vanish at 2, since otherwise
M Ma while M is a nonmaximal ideal of A. Thus, since T+ is compact,
there is an element f e M such that f(i) 0 for all ti e Ta+. Suppose now
that n is the constant (integral-valued) function in A such that n(2) f(2).
By (ii), there exists a < 2 such that n(/) f(,) for all , > ti. Now there
is a g e A such that (gf)() 1 for all =< i and g(,) 0 for all , > t. Let
heAbesuchthath() 0forall# -< tandh(,) lforall, > i. Since
n hn - gfn hf -+- gfn, it follows that n e M. The field A/M is there-
fore of finite characteristic, and hence M e . Finally, A is isomorphic to
the ring obtained by restricting each f e A to T. Consequently, A is iso-
morphic to a point-determining subring of C(Ta).

See [5] and [6, p. 167].
We note in passing that such maximal ideals M do exist. For example, M

{f A f(2) is evenl is a maximal ideal of A such that A/M is a field of characteristic two.



CONTINUOUS FUNCTIONS ON A COMPLETELY REGULAR SPACE 125

3. Subalgebras of C(X)
We continue the investigations of the preceding section with the restric-

tion that A be an algebra with identity. In this case, if l (R 0, then A
is representable as a pseudoregular point-determining subalgebra of C(X) for
a unique Q-space X.

LEMMA 3.1. If C(X) contains a subalgebra A which is weahly pseudoregular,
point-determining, and which contains the identity, then X is a Q-space.

Proof. By Theorem 2.2 and its proof, it follows that X and (RA are homeo-
morphic. Since ( is endowed with the weak topology determined by A,
we can embed (A, and hence X, homeomorphically in the product space
Y I-IsA Rs, where R R for each f e A. Then the closure of X in Y
is a Q-space [10, Theorem 1]. For each y e Y, let y(f) be the f-component of
y. Now let y e . By standard arguments (cf. [8, p. 53]) the mapping
f y(f) is homomorphism of A onto R. Let K be the kernel of this homo-
morphism. Then K e (R, so that K M for some x e X, which clearly
implies that y x. That is, X , and hence X is a Q-space.

THEOREM 3.2. An algebra A is isomorphic to a pseudoregular point-determin-
ing subalgebra of C(X) for some topologically unique Q-space X if and only if
A has an identity and O.

Proof. This follows immediately from Theorem 2.2, Lemma 1.1, and
Lemma 3.1.
Motivated by the preceding theorem we say that an algebra A is pseudo-

regular in case A has an identity and 1 ( 0. It is of importance in later
sections to have a characterization of those pseudoregular algebras A for
which A* is a regular subalgebra of C((RA). An algebra A is said to be regu-
lar in case (i) A is pseudoregular, and (ii) for every M e and every f e M
there isagMsuchthatN,aR, and (g- e)(e-f) eNto-
gether imply a 0. This terminology is justified by the following result:

LEMMA 3.3. A pseudoregular algebra A is regular if and only if A* is a
regular subalgebra of C(().

Proof. Suppose first that A* is a regular subalgebra of C(6t). Let
Me6t,letfeM, andset {Ne(RA ;(e-f)*(N) > 0}. Thentisan
open neighborhood of M. Since A* is regular, there is a g e M such that
g*(N) 1 for all N e t. Now clearly [(g e)(e f)]* is nonnegative on

6t ;hence, if N e (R, and if (g e)(e f) -+- ae N, then a 0.
Conversely, if A is regular, if M e 6t, and if is an open neighborhood of

M, then there is anfeM such thatf*(N) > 1 for allN . Let geM
such that (g e)(e f) + ae N implies a 0. Then (g* e*)(e* f*)
is nonnegtive on 6t ;hence (g* e*)(M) 1 and (g* e*)(N) 0 for
all N . That is, A* is regular.

Remark. (Added in proof.) The notion of the S-spectrum of an element
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f e A (see definition preceding Theorem 4.2) provides a second characteriza-
tion of regular algebras. Let A be a pseudoregular algebra. Then it is easy
to see that A is regular if and only if for each $ R and for each M e t,

$ M implies inf S(f, 6) <= M(f) for all f e A.

Recall that if A is a commutative ring with identity and if $ is a set of
maximal ideals of A, then the Stone (hull-kernel) topology [11] on $ is described
as follows" For $ the closure of in $ is {M e $; D M}. We conclude
this section with the following easily proved result (cf. [8, p. 57]).

LEMMA 3.4. If A is a regular algebra, then the Stone topology on 6L coincides
with the weah topology on 6. determined by A. Conversely, if A is pseudo-
regular and if these topologies on 6 coincide, then A is regular.

4. Subalgebras of C(X) for X compact
In this section we specialize the results of the preceding section to obtain

representations of algebras as subalgebras of C(X) for X compact. Our first
result provides such a representation for regular algebras.

To 4.1. If A is a regular algebra such that 9. then A is
isomorphic to a regular point-determining subalgebra of C(X) for some topologi-
cally unique compact space X.

Proof. Since A has an identity and since :a a, it follows that is
compact in its Stone topology. But, by Lemma 3.4, the Stone and weak
topologies on coincide. The desired result therefore follows from Theorem
3.2 and Lemma 3.3.
We do not know whether or not the converse of Theorem 4.1 (as well as

that of Theorem 4.5 below) holds.
It is reasonable to inquire whether or not Theorem 4.1 remains true if

"regular" is replaced by "pseudoregular" throughout. We settle this ques-
tion in the negative by giving an example of a pseudoregular point-determin-
ing subalgebra A of C(R) such that (.

Example 2. Let A be the subalgebra of C(R) generated by the set of all
polynomial functions on R together with the inverses of those polynomials
which have no (real) zeros. Then each element of A is of the form

p + ipi q-(i

where p, p, qi (i 1,..., n) are polynomials and each q has no zeros.
We claim that A is pseudoregular, point-determining, and that N.
Since it is clear that A is pseudoregular and that for each x e R, M e (R, it
will suffice to show that for each M e 9, M M for some x e R. Suppose
on the contrary that there exists an M e 9 such that M M for every
x e R. Then for each x e R there is an element- p qi
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in M such that f (x) 0. Set

Now let x0 e R. Since g0 is a polynomial, g0 has (finitely many) zeros, say
xl,...,x. But then

is a polynomial in M with no zeros. This is a contradiction and we conclude
that each M e i) is of the form M for some x e R.

If A is a ring, if $ , and if f e A, then we define the 8-spectrum of f
to be the set

S(f, 8) {M(f); Me 8}.
For brevity we shall set S(f)

THEOREM 4.2. An algebra A is isomorphic to a pseudoregular point-deter-
mining subalgebra of C(X) for some topologically unique compact space X if and
only if (i) A is pseudoregular and (ii) S(f) is bounded for each f A.

Proof. The necessity of these conditions is obvious. To prove their
sufficiency it will suffice, in view of Theorem 3.2, to prove that is compact.
But is homeomorphic to a closed subset of the compact space II] s(f)-,
where S(f)- is the closure of S(f) in R (see the proof of Lemma 3.1).

It is clear from the preceding theorem and from the Stone-Weierstrass
theorem that conditions (i) and (ii) of Theorem 4.2 are sufficient in order
that an algebra A be isomorphic to a uniformly dense subalgebra of C(X)
for some compact space X. It is also clear, conversely, that if X is compact
and if A is a uniformly dense subalgebra of C(X) which contains the identity,
then A satisfies condition (i). However, A need not satisfy condition (ii),
as is shown by the following example of a uniformly dense subalgebra A of
C([0, 1]) which contains the identity but which has the property that S(])
is unbounded for some f e A.

Example 3. For any subset S of R, let P(S) be the algebra of all poly-
nomial functions on S. We shall show first that P(R) is a point-determining
subalgebra of C(R). To do this it will clearly suffice to prove that if
M e (Rp(R), then M M for some x e R. Suppose, on the contrary, that
M e P(R) and that M Mx for all x e R. Then clearly M contains a non-
vanishing polynomial

p= i----O Oli U

where u P(R) satisfies u(x) x for all x e R. Then

p[M(u)] ’-0 a [M(u)] M(p) O,

which is a contradiction since M(u) is real. Now let I [0, 1] so that, by
the Weierstrass theorem, P(I) is uniformly dense in C(I). If p e P(I), then
p has a unique polynomial extension / e P(R); hence P(I) and P(R) are
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isomorphic. From this and from the fact that P(R) is point-determining
we conclude that

S(p) {iS(x); x e R}

for each p e P(I). Hence S(p) is unbounded for each nonconstant p e p(i).s
Now let X be compact and let A be a dense subalgebra of C(X) which

contains the identity. As the preceding example shows, S(f) S(f,
may be unbounded for some f e A. However, there is clearly a subset of
6t namely {M e (R ;x e X}, such that S(f, ) is bounded for every
f e A. Moreover, it is clear that 0. This proves half of the following
theorem"

THEOREM 4.3. Let A be an algebra with identity. Then A is isomorphic to
a uniformly dense subalgebra of C(X) for some compact space X if and only if
there exists a subset $ of A such that (i) $ 0 and (ii) S(f, $) is bounded
for each f e A.9

Proof. In view of the above remarks, we need only prove the sufficiency
of the stated conditions. Let be the closure of $ in IIs S(f, $)-. Since
A n IIf,A s(f, $)- is closed in IXfA R (see the proof of Lemma 3.1), it
follows that is a compact subspace of (R. Moreover, since gl $ 0, the
mapping f -- f*l, where f*l denotes the restriction of f* to , is an isomor-
phism of A onto a pseudoregular subalgebra A’ of C(). But, by the Stone-
Weierstrass theorem, A’ is uniformly dense in C($), and the proof is complete.
We note next that if X is compact and if A is a uniformly dense subalgebra

of C(X) which contains the identity, then A need not be point-determining.
(For, in Example 3, P(I) is uniformly dense in C(I) but is not point-determin-
ing.) Indeed, the situation with respect to point-determination seems to be
rather pathological. For example, A can be isomorphic to a uniformly dense
subalgebra of C(Y), where Y is compact but not homeomorphic to X. In
fact, if Y is any infinite subset of R, then the polynomial algebras P(I) and
P(Y) are isomorphic; and if in addition, Y is compact, then P(Y) is uniformly
dense in C(Y).

LEMMA 4.4. IfX is a completely regular space and if C(X) contains a pseudo-
regular point-determining subalgebra A such that (i) . and (ii) S(f) is
closed for each f e A, then X is compact.

Example 3 and the example preceding Lemma 4.4 are simpler than the correspond-
ing examples included in an earlier version of this paper; these simplifications were
suggested to us by C. W. Kohls. In this earlier version we raised the question
of whether or not the condition that every maximal ideal of A be real is necessary in
order that an algebra A with identity be isomorphic to a uniformly dense subalgebra Of
C(X) for some compact space X. We are indebted to Kohls for pointing out that Ex-
ample 3 answers this question in the negative.

Theorem 4.3 includes Theorem 4.1 (1) of [7]; we remark, however, that in a foot-
note Kohls announces a substantial improvement of his Theorem 4.1. We wish to
thank Dr. Kohls for making the manuscript of [7] available to us prior to its publica-
tion.
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Proof. Each f e C(X) may be regarded as a continuous function on X to
the one-point compactification R u oo of R; as such, f has a unique con-
tinuous extension f^ fiX.1over Suppose that X is not compact so that
there exists a point y e fiX X. We note first that if f e A, then f^(y) R.
For suppose that f^(y) oo. If g f -k e, then g-1 A since 9TA A
and since g e M for every M e t. Moreover, (g-l)^(y) 0. Thus, since
S(g-) is closed, 0 e S(g-), which is contrary to g-l(x) 0 for every x e X.
It follows now that if f e A with f^(y) O, then (fg)^(y) 0 for every g e A.

f^Therefore the set M {f e A; (y) 0} is a proper ideal of A, and hence
M c M for some M e t. Since A is pseudoregular and x y, there
is an f e A such that f(x) 0 and f^(y) a O. Then f ae e M while
f ae M, a contradiction. That is, X /X.
The final result of this section now follows at once from Theorem 3.2 and

the preceding lemma.

THEOREM 4.5. If A is a pseudoregular algebra such that (i) gl 5 and
(ii) S(f) is closed for each f A, then A is isomorphic to a pseudoregular point-
determining subalgebra of C(X) for some topologically unique compact space X.

5. Characterizations of C(X)
In this section we use variants of Fan’s notion of "direct extension" [3],

together with the representation theorems of the preceding sections, to ob-
tain characterizations of all of C(X).

Let A be a pseudoregular algebra. An algebra B is an -extension of A
in case B is pseudoregular with the property that A can be embedded iso-
morphically in B in such a fashion that the mapping M --, M n A is one-one
from tB onto tx.
We note that if B is an (-extension of A, then M -- M n A is automatically

continuous in the weak topologies of t4 and B.
The following lemma is an analogue of Lemma 8.1 of [3]. The proof de-

pends upon Theorem 2.1 and Lemma 3.1; we omit the details.

LEMMA 5.1. If A is a pseudoregular point-determining subalgebra of C(X)
such that A is isomorphic to C(X), then A C(X).

LEMM/k 5.2. Let A be a pseudoregular algebra, and suppose that is a class
of -extensions of A such that (i) C( , and (ii) for each B , M M n A
is an open mapping from 5 onto 5 Then A is isomorphic to C(t) if and
only if A is isomorphic to B for every B e .

Proof. The sufficiency is obvious. Since the mapping M - M n A is one-
one and continuous, the necessity follows from Theorem 3.2 and Lemma 5.1.
By making suitable choices of 8 in the preceding lemma, and by combining

the results of 3 and 4 with Lemm 5.2, we obtain vrious characterizations
of C(X). We begin with the case where X is compact.

0 Since R u oo is compact, the existence of f^ follows from [11, Theorem 88]. For
the essential properties of f^ see [4].
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THEOREM 5.3. An algebra A is isomorphic to C(X) for some topologically
unique compact space X if and only if (i) A is regular and 9 (. and
(ii) A is isomorphic to every regular -extension B of A for which 9 .

Proof. If A satisfies (i), then, by Theorem 4.1, C(6ta is an (R-extension
of A such that 9rc() (Rc(). Hence if A also satisfies (ii), then A is
isomorphic to C(6t). Conversely, suppose that A is isomorphic to C(X)
for some compact space X and let be the class of all regular (R-extensions
B of A for which ;, qty. Clearly A satisfies (i) so that C((R) e t;. More-
over, if B e , then (R is compact so that M -. M A is a homeomorphism
of (R, onto 6t. Finally, since C(X) is isomorphic to C(6t), an application
of Lemma 5.2 shows that A satisfies (ii), and the proof is complete.
The proof of the following theorem is analogous to that of Theorem 5.3.

THEOREM 5.4. An algebra A is isomorphic to C(X) for some topologically
unique compact space X if and only if (i) A is pseudoregular and S(f, ) is
bounded for each f A, and (ii) A is isomorphic to every -extension B of A
for which S(f, ) is bounded for each f B.

We note that a variety of other characterizations of C(X), for X compact,
can be obtained in a similar way by using the results of the preceding section.
For example, two further characterizations are obtained by simply inter-
changing condition (i) of Theorem 5.3 and condition (i) of Theorem 5.4.

It appears plausible from Theorems 3.2 and 5.4 that an algebra A is iso-
morphic to C(X) for some Q-space X if and only if A is pseudoregular and A
is isomorphic to every pseudoregular (R-extension of A. On similar grounds,
Lemma 3.3 and Theorem 5.3 suggest that the above statement might hold
if "pseudoregular" were replaced throughout by "regular". However, as
the following example shows, neither of these conjectures is tenable.

Example 4. Let R. denote the set R with the discrete topology. Clearly
C(R) and C(R) are regular algebras and, since R and R are both Q-spaces
[10, Corollary 2, p. 28], C(R)) is an (R-extension of C(R). But C(R) is not
isomorphic to C(R)).

Thus, for the purpose of characterizing C(X) for X a Q-space, we strengthen
the concept of (R-extension by introducing the notions of "6t,-extension"
and "6t-extension". An 6t,-extension B of A will have the property that
6t, and 6t are homeomorphic in their Stone topologies; an 6t-extension
B of A will have the property that 6t, and 6t are homeomorphic in their
weak topologies.

If A is a pseudoregular algebra, then an algebra B is an 5,-extension of A
in case (i) B is an 6t-extension of A, and (ii) if $ 6t, and if M e 6t, with
(15) a A M, then 1 $ M (cf. [9]).

Theorem 5.4 includes [7, Theorem 4.1]. (Cf. Footnote 9.)
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:LEMMA 5.5. If A is a regular point-determining subalgebra of C(X), then
C(X) is a regular (Rs-extension of A.

Proof. Since, by Lemma 3.1, X is Q-space, it is clear that C(X) is a regu-
lar (R-extension of A. Thus let $ (Re(x) and suppose that Mr e (Re(x) with
( $) n A M. Since X is a Q-space, (Re(x), endowed with its Stone
topology, is homeomorphic to X. Hence F {y e X; $

____
M} is closed

in X. Since A is regular, if x F, then there is an f e A such that f(x) 1
and f(y) 0 for all y e F. But then f e $ so that f e M, a contradiction.
Therefore x e F. That is, gl $ M and C(X) is an (Rs-extension of A.

THEOREM 5.6. An algebra A is isomorphic to C(X) for some topologically
unique Q-space X if and only if (i) A is regular and (ii) A is isomorphic to
every regular (R,-extension of A.

Proof. Suppose that A satisfies (i) so that, by Lemma 5.5, C((RA) is a
regular (R,-extension of A. Hence if A also satisfies (ii), then A is isomorphic
to C((RA). Conversely, suppose that A is isomorphic to C(X) for Some
Q-space X and let 3, be the class of all regular (R,-extensions of A. Clearly
A satisfies (i) so that, again by Lemma 5.5, C((R) 8 Moreover, if B
then M - M n A is clearly a homeomorphism of (R, onto (R in their Stone
topologies. But, by Lemma 3.4, the Stone and weak topologies on (R, coin-
cide for every B e S,. Finally, since C(X) is isomorphic to C((RA), an
application of Lemma 5.2 shows that A satisfies (ii), and the proof is com-
plete.

If A is a pseudoregular algebra, then an algebra B is an (Rw-extension of A
in case (i) B is an (R-extension of A, and (ii) for every M e (R,, f e M, and
> 0 in R there exist a g e M A and a i > 0 such that N e (R, and

N(g) < together imply N(f) < .
The following lemma implies that if A is pseudoregular, then C((R) is an

(R-extension of A.

LEMMA 5.7. Let X be a completely regular space and let A be a weakly pseudo-
regular subalgebra of C(X) which contains the identity. If x e X, if f e C(X)
with f(x) O, and if > O, then there exist a g A and a > 0 such that
g(x) 0 and that g(y) < implies f(y) < .

Proof. Set U {y e X; f(y) < s} so that U is an open neighborhood of
x. Since, by Lemma 1.1, A is pseudoregular, there exists a g e A such that
g(x) 0 and g(y) _-> 1 for every y e U. Then any positive t < 1 satisfies
the requirements of the lemma.

THEOREM 5.8. An algebra A is isomorphic to C(X) for some topologically
unique Q-space X if and only if (i) A is pseudoregular and (ii) A is isomorphic
to eery (R-extension of A.
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Proof. In view of the remark preceding Lemma 5.7, the sufficiency of
these conditions is clear. Conversely, let A be isomorphic to C(X) for some
Q-space X, and let w be the class of all w-extensions of A. Clearly A
satisfies (i) and C(A) e w To complete the proof it will suffice, in view of
Lemma 5.2, to prove that if B e w, then M --* M n A is an open mapping
[rom B onto tA. Thus let B e , let M e B, and let be an open neigh-
borhood of M. Since B is pseudoregular, there exists an f e M such that
N(f) >= 1 for every N t; and thus there exist a g e M n A and a > 0
such that N(g) < implies N(f) < 1, which in turn implies N e t. Then
{NA;NeandN(g) < } is an open neighborhood of MaA whose
inverse image is contained in t.

6. Characterizations of C(X) as a lattice-ordered
algebra

Characterizations of C(X) as a lattice-ordered algebra (or as a vector lat-
Uce) may be obtained by using techniques similar to those used in 5. Since
the modifications required are slight, we shall, in this final section, merely
indicate how this can be done.
By an ideal of a lattice-ordered algebra (vector lattice) A we shall mean a

ring ideal (subspace) I of A with the following additional property: If g e I
nd if f e A with Ill -< Ig[, then f e I. The set of all real maximal ideals of
A (in the appropriate sense) will again be denoted by t. Suitable defini-
tions of t-extension and t-extension are then obtained by merely replacing,
in the former definitions, "algebra" by "lattice-ordered algebra" ("vector
lattice"). Moreover, Theorem 3.2 and Lemmas 3.1, 3.4, 5.2, and 5.5 hold if,
in their statements, we make these same replacements and if, in the case of a
vector lattice A, we assume, instead of an identity, the existence of an element
e e A such that e e M for every M e t . On the basis of these observations,
and in view of Lemma 1.2, we obtain the following theorems.

THEOREM 6.1. A lattice-ordered algebra A is isomorphic to the lattice-ordered
algebra C(X) for some topologically unique Q-space X if and only if (i) A is
pseudoregular and (ii) A is isomorphic o every -exension of A.

THEOREM 6.2. A ector lattice A is isomorphic to the ector lattice C(X)
for some topologically unique Q-space X if and only if (i) there is an element
e A such that e M for every M ., (ii) 0, and (iii) A is isomorphic
o every -extension of A which satisfies (i) and (ii).
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