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In this paper we determine the number of nilpotent n by n matrices over
(i) a finite field of characteristic p, and (ii) the integers modulo m. The re-
sults are most simple when expressed as probabilities by dividing by the
total number of matrices in each case.

THEOREM 1. The probability that an n by n matrix over GF(p) be nilpotent
is p-n.

Proof. Let A be an n by n nilpotent matrix over the finite field F. Then
Vn(F) has a basis IVY}, i 1, k; s 1,... r, such that

(1) vA v-li (1 =< i =< k; 1 =< s =< ri),

where it is understood that v0 0. Associated with each such A there is a
partition of n,

’n rl + r+ + r (r r_>_ r > 1),

and two matrices are similar if and only if their corresponding partitions
are identical. Let g() be the number of matrices in the similarity class
determined by 7. Then the probability of nilpotence is

P p g().

To determine g(r), we select and fix a representative A of the similarity
class belonging to r, together with a basis {v} associated with A by (1).
We then transform A by the , nonsingular matrices over F to obtain all the
elements of the class, each with multiplicity t, where t is the number of
nonsingular matrices which commute with A. Then g(r) /g. Now it
is known that

where x p- and

f(n, x) f(n) (1 x)(1 x2) (1 xn) (n 1)

f(0)

It remains to determine
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Let B be an arbitrary mtrix commuting with A. Then B is completely
determined by its action on the vectors {vil(1 _-< i =< k). For if

k
)ri B E]__IEq=I (1 < i <C(q).

then for s 0, 1, 2, r,
r C(q)_,.Vris

In particular, for s r, we find

r]0 E=l Eq=ri+l C Vq_.ri

so C(q) 0 for all q, i, j satisfying r. < q r. In other words, we must
have

B q=s+l C](q)Vq--s (1 i k, 0 8 < ri),

where m rain (r, r). Conversely, given any set of constants

C(q), 1 i k, 1 j k, q m,

the matrix B defined by (2) commutes with A. Therefore the number of
such matrices is p"’, where

M M() .=. mi.

The parts r of the partition can be grouped, so that the possible parts
n u + 1 (u 1,..., n) appear with corresponding multiplicities b,
which may be zero. With this convention, we may write

z’n bn + b(n 1) + + b,,_.2 + b.l.
Then

M rain (r,r) b bmin (n- + 1,-- v + 1)
u,v=l ri=e-- +1 ,v=l

= e(-+l),
=1

where
+ (2r= (2;C 

Thus, if we define
.% = b (u O, 1, 2, n),

we have
M := (s, ,u_)(n- u + 1)

u=l 8u

Of these p,V matrices commuting with A, we must now find what propor-
tion are nonsingular. We assert that if AB BA, then B is nonsingular
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if and only if the vectors {v[B} are linearly independent. If B is nonsingu-
lar, the linear independence is obvious. Conversely, suppose that the
{ivlB} are linearly independent. Let v Vn(F) be such that vB 0, and
write

with C 0 for some i0. Applying Ae-1, we find that

vA Q--1 ki=1 CQ Yl
But

Q-B=1 CQ(vIB) vA vBA O.

vB} and proves our assertion.This contradicts the linear independence of
If we put s r.i 1 in (2), we get

(3)  ,iB C (rdv 

For u 1, 2, n, let Vu be the subspace spanned by those Vl for which
r n u + 1. Thus Vhasdimensionb, andif

W V (R) V. (R).-. (R) V,

thenW, has dimension bt + b2+ + b s. It is clear from (3) that
W, B W, and that B is nonsingular if and only if

WuB- W (u- 1,..., n).

Let us define the linear transformation B of W, into itself by

riB _,,’=r, C,.(ri)vf (i 1, ..., k).

Clearly V a V, and/ decomposes into a direct sum

B (R) B2(R) (R) B,,
where B is defined on Vu by

Cj(r)vl (ri n- u + 1)Yl i=n--u+l

Our next ssertion is that B is nonsingulr if and only if B is also. To
see this, let wB O, w O, w Vn nd write w w’ + w", where

w" w’ # O.W’ Vu+l e Wu
Then w’B -w"B e W, so w’B 0 and B is singular. Conversely,
suppose that w/ 0, w 0, w W. Making the same decomposition of
w, we find that w’/ -w"/eW, so w’/ 0. Hence w’BeW,; the
subspace W (R) {w’} is mapped by B into the lower-dimensional W, and
B is singular.
Now the ratio of the number of nonsingular B’s commuting with A to the

total number p"" of matrices commuting with A is the same as the ratio of
the number of nonsingular B’s to the total number. Since

B B1 @ @ B,
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is nonsingular if and only if each/ is so, this latter ratio is

f(bl)f(b2) f(bn).
Hence

and
t x f( 9l)f(b2) f(bn),

x-n2f(n)
x-Mf(bl)f(b) f(bn)"

The probability of nilpotence is therefore given by

.+8+...+8
P f(n) f(bl) ::-" bn)"

The final stage in the proof is to establish the identity given in the fol-
lowing lemma "4

LEMMA.
X Xsl+s2/(4)

f n f(- ::-/-b,)’
the summation being over all partitions

(5) -:n bin -- b(n 1) + + b.l,
where b >= O, and

s bl "- b -- + b.

Proof. The left-hand side of (4) is the generating function for the num-
ber of partitions of an integer N into exactly n parts. With each such par-
tition r*, we associate a partition of n as follows. Exhibit * as a graph,
with the parts in decreasing order represented by horizontal lines of nodes,
the left-hand nodes of all the parts being arranged in a vertical line. For
example, the partition 30 5 -t- 5 -t- 4 -- 4 -t- 4 -- 3 -- 2 -t- 1 -t- 1 -- 1 of
N 30 into n 10 parts would have the graph

.I.

For bckground material on prtitions, see G. H. HARDY AND E. M. WRIGHT, An
introduction o the theory of numbers, Oxford, 1938.
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We denote by s the side of the lrgest squre in the upper left corner of *
(the Durfee squre). In the example, s0 4, nd the squre is indicated by
the lines. Removing the first s prts from r*, we hve left nother partition
(4-+-3-F2-t- 1 -F I-F 1 12). Denote by s_ the side of the Durfee
squre for this prtition (s 2). Remove the next s-i prts to get third
partition (2-F 1 -F 1 -t- 1 5) nd form its Durfee squre, of side
Sn-- (SS 1). Continuing in this wy, we obtain the nonincresing sequence
s >__ s___> s__>_ >__ s >__ 0. (In our example, s0= 4, s 2, ss=
s= s s 1, s s= s= Sl 0.) Clearly

n=s+s+... +s,.

Define b= Su- s_>= O(u= 1, 2, ...,n), with s0= 0. Then if we use
the relation

s b -F b -F -F bu,
we hve

n bn Jr- b(n 1) -t- -F b.l.

Thus with each partition r* of an integer N into exactly n parts is
associated a certain partition of n given by the process just described. In
our example, b0 2, b 1, bs b b 0, b 1, b4 b b b 0,
and r is given by

10 0.10 H- 0.9 -t- 0.8 Jr- 0.7 -F 1.6 -F 0.5 -t- 0.4 H- 0.3 -F 1.2 -F 2.1,

or, in more customary form,

10 6-F 2-t- 1 -t- 1.

For a given , it is possible to reconstruct partially the original r* by setting
down in order the Durfee squares of sides Sn, S, the total content being
M s -F s: H- -F s. To complete the reconstruction, we require the
residual partitions v ,---, which lie to the right of the corresponding
squares, with total content N M. In our example, 0 is 2 1 -t- 1, r is
3 2-F l, s is 1--1, and all the others are vacuous. These residual
partitions are restricted by the following conditions"

(n) has at most s parts,
(n 1) r,,_ hns at most s_ pnrts, of size at most s,- 8n--1 b,,
(n 2) n--: has at most s,_ parts, of size at most Sn-- S,_: b,_,

(2) has at most s parts, of size at most s s b,
(]) 71"1 has at most s parts, of size at most s_ Sl b,

and by the overnll condition that the total content is N M. If the con-
tent of . is C., then the number of partitions satisfying condition (n) is
the coefficient of xc in

1
(1 X) (1 X2) (l Xsn)
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For j < n, the number of partitions r. satisfying condition (j) is the
coefficient of xc in

f(s - b+l)
f(s)f(b+l) f(s)f(bj+l)

Since the conditions (n) to (1) are independent, the total number of sets
(rn, rl) for which C1 d- C2 d- d- Cn N M is the coefficient of
NmMx in

1 f(s) f(sn-1) f(s2) 1
f(s) f(b)f(s-l) f(b-l)f(sn-2) f(b2)f(sl) f(bn)f(bn-1) ...f(b2)f(bl)

since sl bl. This is the same as the coefficient of xN in
M

X

f(bl) f(bn)
This represents the contribution of the particular partition r to the total
number of r*. Summing over all r, we get the right side of (4). This com-
pletes the proof.

THEOREM 2. The probability that an n by n matrix over the integers mod m be
nilpotent is (pl p p)--n, where Pl, P are the distinct prime factors
Omo

Proof. Let P(m) denote the required probability. If (ml, m) 1, then
P(ml m) P(ml)P(m.), since a matrix is nilpotent mod mlm: if and only
if it is nilpotent mod m and m., und these events are independent.
Thus it is sufficient to prove the theorem for m p, where p is a prime.
By Theorem 1, we may assume that/ > 1.

Let A be an arbitrary matrix with elements satisfying 0 _<- a- < p. Then
we may write, uniquely,

A B+pC,

where 0 b. < p, 0 _-< c- < p-l. It is easily verified that A is nilpotent
rood pa if and only if B is nilpotent rood p. Hence P(p) P(p)
and the theorem is proved.

It is clear that the result can easily be extended to analogous results for
matrices over finite commutative rings and to similar situations.

UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA PENNSYLVANIA

See, for exanple, P. A. MAc MAHON, Combinatory analysis, Cambridge, 1916, vol. 2, p.5.


