PROJECTIVE TOPOLOGICAL SPACES

BY
AxprEwW M. GLEASON!

Suppose we have given a category of topological spaces and continuous
maps. Let X, YV, and Z be admissible spaces and ¢ and f admissible maps
of X into Z and Y into Z respectively. A natural question is whether or not
there exists an admissible map ¢ of X into Y such that ¢ = foy. One can
hardly expect to answer such a question without explicit knowledge of all the
data, but it may happen that, for certain spaces X, the answer is always yes
provided f satisfies the minimum condition of mapping ¥ onto Z. Discrete
spaces are examples in the category of all spaces and continuous maps. Fol-
lowing the terminology of homological algebra, we shall call such a space
projective. In this paper we will determine the projective spaces in the
category of compact spaces and continuous maps and discuss the notion of
projective resolution for these spaces.

Throughout the paper the word space will mean Hausdorff space.

1. The necessary condition

We restrict our attention to those categories of spaces and maps for which
(a) All admissible maps are continuous.
(b) If A is an admissible space and {p, ¢} is a two-element space, then
A X {p, q} and the projection map of this space onto 4 are admissible.
(¢) If A is an admissible space and B is a closed subspace of A, then B
and the inclusion map of B into A are admissible.
These conditions are not stringent and are satisfied by many of the usual
categories.

1.1. DeriNITION. A topological space is said to be extremally disconnected
if and only if the closure of every open set is again open.

1.2 TaroreEM. In any category of topological spaces and maps satisfying
conditions (a), (b), and (c) above, a projective space is extremally disconnected.

Proof. Let X be a projective space in such a category. Let G be any
open subset of X; we must prove G is open.

In X X {p, ¢} consider the closed set ¥ = (X — @) X {p})u (G X {q}),
and its inclusion map 7. Let = be the projection of X X {p, q} onto X. Our
hypothesis on the category implies that = o 7 is an admissible map of ¥ onto
X and that the identity ¢ is an admissible map of X into X. Since X is pro-
jective, there is an admissible map ¢ of X into Y such that ¢ = wodoy.
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Because 7o 7 is one-to-one on G X {q} it is clear that ¢(x) = {(x, ¢) for
¢ € G; from the continuity of ¢ follows ¢(x) = (x, ¢) for z ¢ G. Similarly,
for z ¢ G, ¢(x) = (x,p). Thus we have proved G = ¢ (G X {q}). Since
Y is continuous and G X {q} is open in Y, @ is open in X as required.

1.3 THEOREM. In an extremally disconnected space no sequence ts convergent
unless it is ulttmately constant.

Proof. Suppose that the sequence {z,} converges to p in the extremally
disconnected space X. Assuming this sequence is not ultimately constant,
we shall deduce a contradiction.

Tirst we construct inductively a disjoint sequence {U,} of open sets in X
such that each U, contains a member z,; of the given sequence, where
{n(7)} is an increasing sequence of integers. Let n(1) be an index for which
@ny # P, and choose an open set U, such that x,qy ¢ Uy but p ¢ U;.  Sup-
pose we have chosen disjoint open sets U, Us., ---, U, and increasing
integers n(1), n(2), - - - , n(k) such that 2,y e U;and p ¢ U, for¢ = 1,2, - - -,
k. Then V=X — (U;u U, u ---u Uy) is an open neighborhood of p, so
z, ¢ V for all sufficiently large ¢. By a suitable choice of n(k + 1) we shall
have n(k + 1) > n(k), Zng+1y € V but 2,041y 5 p since the original sequence
is not ultimately constant. Choose an open set W such that .41y € W but
peW,and let Upyy = W n V. This completes the inductive construction.

Let @ = U U,,. Since X is extremally disconnected, G is an open set,
and p e G being the limit of {2,0»}. Thus G is a neighborhood of p, so
2, € G for all large r; in particular, .. € G for some odd integer s. Since U,
is a neighborhood of z,¢ , Us n G is not empty, contrary to the definition
of G and disjointness of the U’s.

1.4 CoroLLARY. [n a category in which all spaces satisfy the first axiom of
countability and properties (), (b), and (¢) hold, every projective space s discrete.

2. Projective spaces in the category of compact
spaces and continuous maps

We have seen that in many categories all projective spaces are discrete.
Since it is easy to check whether, in a given category, the discrete spaces are
projective, we shall discuss sufficient conditions in a more interesting category,
that of compact spaces and continuous maps. Of course the discrete spaces
are all projective in the category, but there are other projective spaces. A
somewhat similar situation prevails in certain categories of modules and
homomorphisms; free modules are projective, but there may be other pro-
jective modules.

2.1 Lemma. Let A and E be spaces. Suppose p ts a continuous map of I
onto A such that p(Ey) % A for any proper closed subset Ky of E. Then, for
any open set G C E, p(G) € A — p(E — G).
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Proof. There is nothing to prove if G is empty. Supposing otherwise, let
a be any point of p(G), and let N be any open neighborhood of a. The lemma
will follow if we prove that N n (4 — p(E£ — @)) is not void.

Because G n p (V) is a nonempty open subset of E, p(E — (G n p '(N))) #
A. Takex ed — p(E — (Gnp '(N)));a fortiori, z e A — p(E — G). Since
p is onto, # = p(y) where evidently y eG n p '(N). Therefore z =
o) ep(p '(N)) = N, s0o xeN n (A4 — p(E — @)), and the latter set is
not void.

2.2 Lemma.  In an extremally disconnected space, if Uy and Us are disjoint
open sets, then Uy and U, are also disjoint.

Proof. First, Uy and U, are disjoint because U, is open; then U and U,
are disjoint because U; is open.

2.3 LEmmA. Let A be an extremally disconnected compact space, and let I/
be a compact space. Suppose p is a continuous map of E onto A such that
o(Ey) ## A for any proper closed subset Eq of E. Then p is a homeomorphism.

Proof. We need only show that p is one-to-one. Suppose, on the con-
trary, that 2; and 2, are distinet points of E for which p(x;) = p (x2). Let
G and G, be disjoint open neighborhoods of x; and x, respectively. Both the
sets £ — Gy and I/ — G are compact, soA — p(E — G1) and A — p(E — Gs)
are open. The latter sets are disjoint because £ = (E — Gy) u ( — G).
By the preceding lemma, A — p(F — Gy) and A — p(E — G:) are disjoint.
On the other hand, it follows from Lemma 2.1 that p(z1) = p(xe) is a point
common to these sets. This contradiction establishes Lemma 2.3.

2.4 LemMmA. Let A and D be compact spaces, and let @ map D continuously
onto A.  Then D contains a compact subset E such that 7(E) = A but w(E,) # A
for any proper closed subset Ey of E.

Proof. This is a well known consequence of Zorn’s lemma.

2.5 TuroreMm. In the category of compact spaces and continuous maps, the
projective spaces are precisely the extremally disconnected spaces.

Proof. To prove that all projective spaces in the category are extremally
disconnected, we have only to verify the conditions of Theorem 1.2. We
turn to the opposite inclusion.

Let A be an extremally disconnected compact space, let B and C' be com-
pact spaces, let f be a continuous map of B onto C, and let ¢ be a continuous
map of 4 into C. We must prove that there exists a continuous map ¢ of
A into B such that ¢ = foy.

In the space A X B consider D = { {(a, b)|¢(a) = f(b)}. This set is
clearly closed and therefore compact. Since f is onto, the projection m of
A X B onto A carries D onto A. By Lemma 2.4 there is a closed subset K
of D such that m(E) = A but m(Ho) % A for any proper closed subset F, of



PROJECTIVE TOPOLOGICAL SPACES 485

E. Let p be the restriction of m; to E. Lemma 2.3 asserts that p is a homeo-
morphism. Let ¢ = myo0p ", where m is the projection of A X B into B;
this is the required map. Say a e 4; since p '(a) e D,

fms(p (@) = ¢(m(p (@) = ¢(a).
Thus ¢ = fomop ' = foy; this completes the proof.

3. Projective resolution

In homology theory considerable use is made of the fact that every group
is the homomorphic image of a projective group. We now turn our atten-
tion to the corresponding question for topological categories. We shall prove
that every compact space is the continuous image of an extremally discon-
nected compact space; otherwise put, in the category of compact spaces and
continuous maps every space is the admissible image of a projective space.
We shall show, moreover, that this projective space can be selected in a
natural way. In the many categories for which projective and discrete are
synonymous, the existence or nonexistence of such projective resolutions is
trivial.

Since the Stone representation theory for Boolean algebras plays a central
role in what follows, it is appropriate to review the main facts of that theory.

TaEOREM (Stone [2]). Every Boolean algebra ® is tsomorphic to the set of
all open and closed subsels of a certain totally disconnected compact space S.

The space $ is determined from ®& as follows: The points of § are the maxi-
mal subsets of ® which are closed under meets but do not contain 0. For
each element B ¢ B we define a subset £(B) of $ by §(B) = {p|peS, Bep}.
The topology of § is determined by decreeing that each of the sets £(B), and
all unions of such sets, be open. It then develops that § is compact and
totally disconnected and that the open and closed subsets of § are precisely
those of the form £(B) for some B e ®; thus ¢ is the required isomorphism of
® onto the Boolean algebra of open and closed subsets of .

TurEOREM (Stone [2]). Let X be a space. A mecessary and sufficient condi-
tion that X be homeomorphic to the Stone representation space of some Boolean
algebra 1s that X be totally disconnected and compact.

In fact X is homeomorphic to the representation space for the Boolean
algebra of its own open and closed subsets. The homeomorphism is unique
and easily constructed if we require that each open and closed subset of X
be carried by the homeomorphism onto its image under the representation
isomorphism.

TaroreEM (Folk Theorem). A necessary and sufficient condition that X be
homeomorphic to the Stone representation space of some complete Boolean algebra
18 that X be extremally disconnected and compact.
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Proof. Suppose 8 is the Stone representation space for a complete Boolean
algebra &. Let G be any open set in 8. By the definition of the topology
of 8, @ has the form U{£(B,)} where {B,} is a subset of ®. It is easily
checked that G = £(V {B.}). Since the latter is both open and closed, § is
extremally disconnected.

Suppose X is an extremally disconnected and compact space. A fortiori,
X is totally disconnected and therefore homeomorphic to the representation
space for the Boolean algebra @& of its open and closed subsets; hence we need
only prove this latter algebra complete. If {B,} is any subset of ®&, then
U{B.]}, which is open and closed and therefore in ® by the hypothesis on X,
is the least upper bound for {B,} in ®&.

3.1 Lemma. Let D(X) be the set of all closed domains in a topological space
X; that is, subsets D of X satisfying D = Int D. Then D(X) is a complete
Boolean algebra when ordered by incluston.

Proof. Tirst, we note that the closure of any open set is a closed domain,
since Int ¢ © Int G = G D Int G.

Second, we show that D(X) is a complete lattice and obtain formulae for
meets and joins. Let {D,} be any collection of closed domains and put
D = U{Int D,}. Then D e®D(X) and D D Int D, = D, for all «. Sup-
pose E ¢ D(X) and E D D, for all «. Then Int £ D Int D, for all «, so
Int £ D U{Int D,} and E = Int £ D D. This proves that D is the least
upper bound of {D,}. We note also that D D U{D,} D U{Int D.} = D
and therefore V {D,} = U{D.}; in particular D; v Dy, = Dy u D, =
Int D; u Int Dy. Similarly, we find that A {D.} = Int N{D,.}, and for
finite meets D; A Dy A -+ A D, = Int(D;n D ---n D,).

Third, we show that ©(X) is complemented. Kvidently, the null set is in
D(X) and is the zero element of the lattice, while X itself is the unit element.
For any D e®(X) let D’ = X — D. Then D' ¢eD(X) and D v D' =
DuD = X. Since D nX — D contains no open set, D A D' =
Int (D n D) = 0. This proves that D’ is a complement of D.

TFinally, we check the distributive law. Let C, D, , and D, be any members
of D(X). We have seen that D; v Dy = Int (D1 v Dy) = Int Dyu Int D, .
In any topological space, if G isopen and ¥ = Z,then GnY = Gn Z. Ap-
plying this formula,

C A Dy v D) = 1Int CnlInt (D v D) =1Int Cna (Int Dyu Int Dy)

= (Int C n Int D;) u (Int C n Int Dy) = Int (C n D;y) u Int (C n Dy)
=(C AD)u(C ADy)=(CnAD)v (ChAD,.
This completes the proof that D(X) is a complete Boolean algebra.

3.2 TuroreM. Fvery compact space X 1is the continuous image of an ex-
tremally disconnected compact space. Among the pairs (S, ¢) consisting of
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an extremally disconnected compact space $ and a continuous mapping ¢ of $
onto X, there is one for which

(1) ¢(So) = X for any proper closed subset Sy of S.

This pair is uniquely determined by X in the following sense: If (S', ¢') is
another such pair satisfying (i), then there is a homeomorphism ¥ of 8’ onto $
such that ¢’ = ¢poy.

Proof. Let 8 be the Stone representation space for the Boolean algebra
D(X) defined in Lemma 3.1. We now define the map ¢. A point p of § is
a maximal collection of elements of D(X) closed under finite meets but not
containing the null set. Maximality implies that if D; ¢ p, we can choose
D ep so that Dy A Dy, = 0. From the formula for meets it follows that p
is a family of closed subsets of X having the finite intersection property.
Since X is compact, Np is not void; we shall prove that this set contains only
one point. Suppose Np contained as many as two points, say « andy. Let
G be an open set in X such that z e G but y ¢ . Now G ¢ D(X) but G ¢p
because y ¢ G and y ¢ Np. Therefore, we can find D ¢ D(X) such that D e p
and G A D = 0. Since xe Np € D = Int D we know that G n Int D is
a nonempty open set and therefore G A D = Int (G n D) D
Int (G n Int D) 5 0, a contradiction. Thus Np contains only one point, and
we may define a map ¢ from S to X by the relation ¢(p) € Np.

We remark for future reference that, if G is any open set containing ¢(p),
then G ep. This follows from arguments similar to the preceding.

Next we shall prove that ¢ is continuous. Let p be any point of 8, and
let N be any neighborhood of ¢(p). Since a compact space is regular, there
is an open set G such that ¢(p) e G and G  N. The set G defines an open
set in 8, namely U = £(G) = {q|q €S, G €q}, & being the isomorphism of the
Stone representation theory. By the remark of the preceding paragraph,
pelU. If e U, we have ¢(q) e Ng © G C N; this establishes the continuity
of ¢.

To show that ¢ maps § onto X, we choose any point z e X and consider
@ = {D|xelnt D, DeD(X)}. This set has the finite meet property but
does not contain the null set, therefore it can be extended to be a maximal
subset of D(X) having these properties; in other words, there is a point p of
$ with @ C p. Since x has arbitrarily small closed neighborhoods, we see
that {#} = N@. Therefore ¢(p) e Np CNQ@ = {z} or ¢(p) = 2.

Suppose now that 8, i1s a proper closed subset of 8. There is a nonvoid
open and closed subset U of 8 such that $gn U = 0. By the Stone theorem,
there is a nonvoid closed domain D in X such that

U=ED) = {qlqes, Deql.
Then ¢(Sp) contains no point of Int D. For if s €8y and ¢(s) e Int D, then
as remarked in the second paragraph, D = Int D es or s e U, which implies
the absurdity s e So n U. This proves that S satisfies condition (i).
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Finally, we must prove the unicity statement concerning pairs (8, ¢)
satisfying condition (i). Suppose (8, ¢’) is another such pair. Since §’
is projective, there is a map ¢ of S’ into S such that ¢’ = ¢ oy. Since ¥(8')
is a closed subset of $ and ¢(¥(8’)) = X, condition (i) for $ implies ¥(8’) = 8.
On the other hand, if 8, is a proper closed subset of §’, then ¥(8;) cannot be
all of 8 because then ¢'(85) = ¢(¥(S0)) = X, contrary to condition (i) for §'.
Now by Lemma 2.3, ¥ is a homeomorphism. This completes the proof of
Theorem 3.2.

3.3 CoroLLARY. In the category of compact spaces and continuous maps,
every space s the admissible tmage of a projective space.

4. Locally compact spaces

We consider now the category of locally compact spaces and proper maps.
(A map is said to be proper if and only if it is continuous and the inverse
image of every compact set is compact.) With minor modifications the
theorems and proofs of Sections 2 and 3 are valid in this category, but the
quickest way to obtain the results is to pass to the Stone-Cech compactifica-
tion of all the spaces involved and apply the theorems already developed.
Since the details are all straightforward, we shall give no proofs of the follow-
ing theorems.

4.1 THEOREM. _A completely regular space is extremally disconnected if and
only if its Stone-Cech compactification is extremally disconnected.

4.2 THEOREM. In the category of locally compact spaces and proper maps,
the projective spaces are precisely the extremally disconnected spaces.

4.3 TueoreM. In the category of locally compact spaces and proper maps,
every space s the admissible image of a projective space. Moreover, there is a
natural choice of this space and map which is unique within isomorphism as in
Theorem 3.2.

5. Duality

In homology theory the term injective is applied to a module which has
the property dual to projectivity. Specifically, a member X of a category
is injective if, whenever f is an admissible map of ¥ into X and ¢ is a one-to-one
admissible map of ¥ into Z, then there exists an admissible map ¢ of Z into
X such that f = go<. Generally speaking the dual of an injective object
is projective and vice versa. Since it is known that the category of compact
spaces and continuous maps is dual to the category of commutative C*
algebras, we deduce immediately

5.1 TurorEM. In the category of commutative C* algebras and *-homomor-
phisms, the injective algebras are precisely the algebras of continuous functions
on extremally disconnected compact spaces.
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If we restrict ourselves to begin with to the category of totally disconnected
compact spaces, then the appropriate dual category is that of Boolean algebras
and homomorphisms. We obtain immediately, then, the following theorem
of Sikorsky [1].

5.2 THEOREM. In the category of Boolean algebras and homomorphisms, the
injective algebras are precisely the complete algebras.
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