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Let q be a power of prime number, and denote by LF(2, q) the group of
ll one-dimensional unimodular proiectivities over the field Fq with q elements,
i.e., of all linear frctional transformations
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of determinant 1 with coefficients a, b, c, d in Fq. As is well known, LF(2, q)
is simple for q _>- 4. The order of LF(2, q) is q(q - 1)(q 1)/2 for odd q
nd q(q -+- 1 (q 1 for even q.

It is our aim to give a group-theoretical characterization of these groups
LF(2, q). We shall prove

THEOREM. Let @ be a group of finite order g which satisfies the following
conditions"

I g is even
(II) if and are two cyclic subgroups of @ of even orders, and

if n {1}, then there exists a cyclic subgroup of @ which includes both
I and

(III) @ coincides with its commutator subgroup.
Then @ ._ LF(2, q) where q >-_ 4 is a prime power.

We begin in I with an elementary discussion of groups which satisfy these
conditions. Two cases, A and B, hve to be considered. In Case A, the
2-Sylow group : of @ is dihedral, nd in Case B, : is belian of
type (2, 2, 2). These two cses are treated in II and III respectively.
The final result is obtained by applying a theorem of Zassenhus [2] con-
cerning doubly transitive permutation groups. We shll give some exten-
sions of our theorem in subsequent pper.
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I. GROUPS OF TYPE ()
We shall say that a finite group @ is of type (S), if the following two con-

ditions are satisfied"
(I) The group @ is of even order g.

(II) If .l and ! are two maximal cyclic subgroups of even orders, then
eitherI !orIn! {1}.

It follows from (II) that if two cyclic subgroups of even order of @ have
an intersection different from {1}, then both are included in the same maximal
cyclic subgroup of @. In particular, the elements of the two subgroups
commute with each other. Moreover, if the two subgroups have the same
order, they must be equal.
The following remarks are fairly obvious.

(I.A) If @ has type (S), every subgroup of even order has type (S).

Indeed, if ?10 and !0 are two maximal subgroups of even order of , and
if [0 n !0 {1}, then I0 and !0 are both subgroups of a cyclic subgroup

of @, and, because of the maximality of [0 and !0 in 3, we have ?I0 n ,
(I.B) Let @ be a group of type (S), and let G be an element of even order.

If G 1 for some exponent r, then the cyclic groups G} and {Gr} have the same
normalizer,

(I1) 9({G}) ({Gr}).

Proof. It is clear that 9({G} --- 9({Gr} ). Conversely, if X e ({ar} ),
then G e {G} n X-I{G}X. Since the cyclic groups {G} and X-I{G}X have a
nontrivial intersection, and since they have the same order, they are equal.
This means that X e 9({G} ), and hence we have (I1).
As a corollary, we have

(I.C) Let @ be a group of type S). Let G be an element of even order, and
let I be the element of order 2 which is a power of G. Then

(I2) 9({Gr}) (I)

for all r for which V 1.

(I.D) Let @ be of type (S). Let I be an involution (i.e., an element of
order 2) of @. If p is an odd prime dividing the order c(I) of the centralizer
(I) of I, then (I) includes a p-Sylow group ? of @.

Proof. Let P be an element of order p of (I). If X e(P), then
X e O({IP}) and, by (I2), X e(I). In particular, if P belongs to the
p-Sylow group of @, the center of is included in (I). If we now replace
P by an element of order p of the center of , our argument shows that

()
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(I.E) Let @ be of type (S). Let I be an involution, and let p be an odd
prime dividing c(I). Then the p-Sylow groups of @ are cyclic.

Indeed, by (I.D), a p-Sylow group 3 of @ lies in (I). If were not
cyclic, we could find two distinct subgroups {P} and {PI of 3 of order p,
and then

I IP1} r IP.}

Since {IPI} and {IP} both have the same order 2p, this implies {IP} {IP},
and hence {P} {P}. This is a contradiction.
We next study the 2-Sylow groups of @.

(I.F)
types:

(b)
(c)

If @ is qf type S), the 2-Sylow group of @ is of one of the following

is cyclic.
is abelian of type (2, 2, 2).
is dihedral" {A, B} with A’ 1, B 1, B-AB A-.

Proof. By (I.A), IZ itself is of type (S). If all elements T # 1 of have
order 2, we have case (b). Suppose that contains elements R of order
r >- 4. If I is an involution in the center of , then

and since R and IR have the same order r, and since R # 1, it follows
that {R} {IR},whenceI e {R}. Thus, I Rr/.

Let A be an element of maximal order r of IZ; r >= 4. If B is an element of
order >= 4 of , then as just shown, I e {A} and I e {B}. Since {A} is a maxi-
mal cyclic subgroup of , it follows that B e{A}. In particular, {A} is the
only maximal cyclic subgroup of IZ of order -> 4. It follows that {A} is
normal in . If {A}, we have case (a).

Suppose then that {A} # . If B {A}, B has order 2, and, as AB e{A},
AB also has order 2. Thus, B 1, ABAB 1, whence B-AB A-1.
Hence, if A has order 2m, we have

B 1, B-IAB A-1A’ 1,

If B is any element of with B {A}, then we also have B-iABt
A-1. Then BB-1 {A}, we would havee(A). If we had Bt B-1

(B B-1)-IA(B B-) A-1 A; B B-1 (A). Thus, B1 S- e {A },
B {A}B. It follows that {A, B}. Hence is dihedral.
We now study the centralizers in @ of the involutions in the center of a

2-Sylow group of @. It will not be necessary to consider the case that
is cyclic.

(I.G) Let @ be of type (S). Let be a 2-Sylow group of @, and let T be
an involution in the center of .

1 IfTE is abelian of type (2, 2, 2) and of order 2 > 4, then (T) .
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(2) If is abelian of type (2, 2), then (T) where is cyclic of
odd order v. Moreover, B-1VB V-l for B e, B 1, T V e .

(3) If {A, B} is dihedral of order 2m+l => 8, A2’= 1, B2= 1,
B-lAB A-, then (T) {A, B, } where is cyclic of odd order v,

(A), andB-VB V-lforVe.
Proof. (a) Suppose that V is an element of odd order of (T); V 1.

By (I.B), 9({V}) 9({TV}) (T). If J is an involution of (T),
we must have j-1Vj e{V}, say j-1Vj Vs. Since J has order 2, then
V V. Assume that the order of V is a prime power pS. Since j --- 1
(modpS) andpisodd, j--- d:l (modp’). Ifj 1 (modp’),J-1VJ- V,
and then V {JV} n {TV}, which implies J T. Thus, for J T, we have
J-IVJ V-1. Since this holds for all elements V of odd prime power of
(T), it holds for all elements V of (T) of odd order.

j-1Vj V- if V_ e (T), V of odd order,(I3)
e (T), J an involution, J T.

() If : is abelian of type (2, 2, 2) and order 2 > 4, then (I3)
would hold for all 2 2 elements J 1, T of . If we choose two such
elements J and J such that J J, JT, we have a contradiction.

(,) Suppose that is abelian of type (2, 2). Then is a 2-Sylow sub-
group of (T). If Je, J 1, T, then J and JTarenot coniugate in
(T). Indeed, if we had X-JX JT with X e (T), then X-JTX J.
Thus, X e (J), and then X e({T, J}) (). Since the order of
{X, ()} cannot be divisible by 8, and since X 9(), we find X e (),
a contradiction. Thus, no two distinct elements of are coniugate in (T).
It follows from Burnside’s Theorem that (T) has a normal subgroup of
index 4. Then (T) :. Since J maps every element V of !B on its
inverse, is abelian. But the Sylow groups of are cyclic by (I.E), and

itself is cyclic.
(i) Suppose now that : is dihedral and of order _>_ 8. Clearly, /A} is

a 2-Sylow subgroup of (A). Since no two distinct elements of {A} are
coniugate in (A ), Burnside’s Theorem shows that we may set (A =/A}
where is a normal subgroup of (A) of odd order v. Then

(A) {A} X .
If W is an element of odd order of (T), then T IA} TW}. It follows
that A commutes with TW and hence with W. Thus, W e (A). Thus,
every p-Sylow group of (T) lies in (A) for odd p. Since (A) (T),
it follows that ((T)’(A)) is a power of 2. But 1A, B} (T),
A e (A), B e (A), and we see that

(T) {, } {B, (A)}.
Again, (I3) implies that is abelian, and then (I.E) shows that is cyclic.
This completes the proof of (I.G).
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We shall consider the case (2), r 2 as a special case of (3) taking m 1,
A T. In this sense, the dihedral group of order 4 is the abelian group of
type (2, 2).

If we assume that @ is a group of type (S) such that @ does not have a
normal subgroup of index 2, the case (a) of (I.F) is excluded (by Burnside’s
Theorem). We then have to consider he following cases"

Case A. is dihedral of order 2re+l, m >= 1. We set VI and H AV.
Then (T) {H, B} with

Hh 1, B- 1, B-IHB H-,
where h 2my.

Case B. is abelian of type (2, 2, ...,2), (’1) >__4. Here.(T) =
forTeS, T H 1.

If m 1, v 1 in Case A, we may consider this as Case B with (" 1) 4.
Consequently, in dealing with Cse A, we may assume that h _>- 4.

II. THE CASE A
1. Assumptions

We assume that @ is a group of type (S) which does not have a normal
subgroup of index 2 and that we have Case A in the notation of I. Fully
stated our assumptions are

(I) @ is a finite group of even order g.
(II) If I and ! are two maximal cyclic subgroups of @ of even order,

then either [ ! or ?I n ! /1}.
(III) There does not exist a normal subgroup of index 2 in @.
(IV) The 2-Sylow subgroups of @ are dihedral.
Let be a 2-Sylow subgroup of @. If its order is 2+ with m _>_ 1, we can

set {A, B} where

B= 1 B-AB A-(1) Am 1,

We set

(2) T Am-1.
Then T has order 2.

2. The centralizer (T) of T
As shown by (I.G), the centralizer (T) is dihedral too. We shall denote

its order by 2h. Then

(3) ((T)’{1}) 2h 2+1v; (v, 2) 1.

If V is an element of order v in (T), and if we set

(4) H AV,

then AV VA, and (T) {H, B};
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(5) H 1, B-1HB H-.
Since is a 2-Sylow subgroup of @, 2+ is the exact power of 2 in g. By
(I.D), we can set

m-[-i 2+lV 1.(6) = 0, (0,

The number h is even, and we shall set

(7) s h/2- 1.

The case h 2 may be considered as part of Case B so that we may assume

(8) s -> 1.

(II.A) In @, every element of ( T) is conjugate to a power H" of H. Two
powers H" and H are conjugate in @ if and only if Ha H. Thus, the
elements

(9) 1, H’+1= T; H,. H, ..., H’

form a full system of representatives for those classes of conjugate elements of @
in which the order is not relatively prime to 2h 2’+1v. We have

(10) c(1) g, c(T) 2h; c(H") h for H" 1, T.

Proof. In the dihedral group (T) {H, B}, the elements (9) together
with the elements B and BH form a full system of representatives for the
classes of conjugate elements. The elements 1 and T form classes by them-
selves, while the class of H" for H" 1, T consists of H" and H-". The class
of B consists of all elements BH with even p and the class of BH of all ele-
ments BH with odd .

Since T Hh/ H8+1 is a power of H, it follows from (I.C) that
({Hr}) ({T}) (T) for H 1. Consequently, two powers H"
and He can be conjugate in @ only if they are conjugate in (T), and this
is the case if and only if He H+/-". Moreover, for H 1, we have
((Hr) --- ({Hr}) (T). This implies that the order of the centralizer
of H 1 in @ is the order of the centralizer of//r in (T). This order is
2h for H T and h for H 1, T. Since c(1) g, the equations (10) are
true.
We show next that the elements T, B, BH BA are conjugate in @.

Let * denote the subgroup of generated by all quotients XY- of ele-
ments X, Y of which are coniugate in @. If X is a power H 1, T, then
Y H+/-r, since the order of H is different from 2 and H is not conjugate to
the involutions B, BH. Thus, XY- 1, orXY- H2. ForX 1,
we have Y 1, XY- 1. If no two different ones of the elements T, B,
BH are conjugate in @, then * {A2}. If two, but not all three, elements
T, B, BH are conjugate in @, then * is one of the groups {A, BT-I},
{A, BHT-}, {A, BHVB-}. Since /{A} is abelian of type (2, 2), the
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group cannot be generated by A and one further element. Hence * .
Now, the generalization of Burnside’s Theorem shows that the 2-Sylow group
of @/@’ is isomorphic with /*. Hence @/@’ has an order divisible by 2.
Then @ has a normal subgroup of index 2. But this is a contradiction to
condition (III). Hence T, B, and BH are conjugate in @. Since v is odd,
then T, B, BH are conjugate in gO.

If X has an order divisible by a prime factor p of 2m+lv, and if P is a power
of X whose order is p, then X e (P). If p 2, the preceding argument
shows that P is conjugate to T in @. If p 2, it follows from (I.D) and
(I.E) that P is coniugate to an element of the form Hr. Then X is conjugate
to an element of (T) or even of (Ur) C7.. (V). This concludes the
proof of (II.A).

3. The restrictions of the irreducible characters of
@to, /H}

Set , {H}. If c is a fixed primitive hth root of unity, let . denote the
irreducible character of defined by

(11) i(Hr) jr (r O, 1, ..., h- 1).

Then i vj if and only if i --- j (rood h). Clearly,

(12) -., :-s+l, "’", es-i, 8s, s-I

are all the irreducible characters of .
If x() x(2) x() are the irreducible characters of @, we can set

(13) x()
z.,=- a . ( 1, 2,

with nonnegative rational integers a,-. Since X
(g) (Hr)

see that

(14) a, a,._.

It follows from (13) that

(15)

(II.B)

(16)

a, (l/h) x, x(E)(X)(X).
If u (g 2h)/h, then, for 0 <- i, j <-_ s + 1, we have

u for i j,

aia,j u+ 1 fori j; i 0, s- 1,

u+2 for/ j; i 0ori s- 1.

Since a. is rational, we have, by (15)

Here, the inner sum on the right is 0, if X and Y are not conjugate in @,
while in the other case, the value is c(X). On account of (II.A), we find
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1 1 h
,1
aa g q- 2h(T)e(T) q- x.xl.r ,(x) e(x) + e(x-’ ).

By the orthogonality relation for the characters of @, we have

0
1 ,(x) (e(x) + ;(x)

2

where we assumed 0 =< i, j =< s q- 1.

for i # j,

for i=j; iO, sq-1,

for i= j; i= 0ori= s-+- 1,

If this is subtracted from the preceding
equation, and if 2i(T) e(T) (T) (e(T) q- (T)) is taken into ac-
count, we obtain

This yields (16).
If with each of the characters x(’), there is associated complex number

z,, we arrange these k numbers z in the form of column. We define the
inner product of two such columns in the usual mnner. In particular,
let a denote the column consisting of the numbers a, with fixed i. Because
of (14), it will be sufficient to consider the columns

Now, (16) can be written in the form

aat u for i # j; 0 <- i,j <= s+ 1,

(17) a uq- 1 for i= 1,2,...,s,

a uq-2 for i= 0, and for i= sq- 1.

It follows from (15) that

x(x)((x) (x)).

If Y is either 1 or an element of @ which is not conjugate to a power H of
H, and if we multiply here by :>(Y) and add over , 1, 2, ...,/, the
orthogonality relations for the x> show that we obtain 0. Replacing Y
by Y-, we have

(II.C) Le Y be an elemen of which is not conjugate in @ to a power
H 1. If X(Y) denotes the column consisting of the numbers x> (Y), we
have

(18) (a a)’x(Y) 0 (j O, 1, ..., s + 1).
In particular,

(19) (a a).x(1) 0 (j O, 1,..., s + 1).
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4. The exceptional characters of @
Assume first that s > 1. We shall say that an irreducible character

of @ is exceptional, if not all the coefficients in a2 -al, a3 el, a.,
belonging to x(") are 0.

(II.D) Suppose that s >= 2. There exist exactly s exceptional characters
X
()of @ These can be taken for x(1) x(), in such an order that

(20) a a -+- ri. (for i, j 1, 2, s)

where a is a fixed rational integer and where r .4-1.

Proof. Let j range over 2, 3,..., s. It follows from (17) that

Since the coefficients of a a are rational integers, only two of these co-
efficients have values different from 0, and these values are 4-1. Now (19)
shows that one of the values is + 1 and the other is -1, since the coefficients
of x(1) are the degrees of the x() and hence positive.
Assume that s => 3. If j’ also is one of the values 2, 3, s, then (17)

shows that
(a" a) (a, al) 1 for j j’.

Hence a and a., must have an equal coefficient 4-1 in one and the same row,
while in all other rows at least one of them has the coefficient 0.

Choose x) such that a2 al and a3 a have the same coefficient 4-1
in the first row, and denote the value of this coefficient by -r.

We claim that we can arrange the characters xC), (), x) in such an
order that the matrix M of the columns a
has the form

--T "--T --T T

" 0 0 0
0 r 0 0

(21) M 0 0 0 r

0 0 0 0
0 0 0 0

0 0 0 0

Since the coefficient r must appear in 2 and in a3 a in different
rows, we can choose x(2), x( such that the first two columns a- a and
a- a have the form given in (21). Ifs 3, we are finished. Ifs >= 4,
then a ax must have either the coefficient -r in the first row or the co-
efficient r both in the third and fourth row. The latter case is impossible,
since the two nonvanishing coefficients of a4 a have different values.
Thus, we have -r in the first row of a4 a and if x4) is chosen suitably,
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the coefficient r appears in the fourth row. Continuing in this manner we
see that the s 1 columns a. al can be assumed to have the form given
in (21).
We see at once that this result is true for s 2 too. Here, we may take

r 1 choosing x(1) (2)x such that a2 al hs coefficient 1 in the first row
nd -1 in the second row.

It is evident from (21) that we hve exactly s exceptional characters, nd,
in our notation, they are the characters x x ,’", x Moreover, by
(17), al(a; al) -1 for i 2, 3, ..., s. Using the form (21) of
a- a, we obtain an(-r) -4- alr -1, whence al an for
i 2, 3, ...,s. Adding aland a.- al (given in (21)),j 2, 3,...,s,
we see that a axe, a. an for i j. This completes the proof of
(II.D); a an r.

(II.E) The s exceptional characters x (1) x (2), have the same degree
f. Moreover, we have

XtI)(Y) x(2)(y) x(’)(y)

for every element Y of @ which is not conjugate to a power of H.

This is an immediate consequence of (18) and (19) combined with (21).

5. The values of the characters of @ for the elements H 1

We now determine the columns a0 al and a+l al. It follows from
(17) that we have

(22) (a0- {1) 3, (a,+l- al)2= 3, (a0- al)(a,+l- aa)= 1,

(23) a0(a-- a) 0, a,+l(a-- al) 0 for j 2, 3,... s.

Then (22) shows that a0 al and a,+l al both have three nonvanishing
coefficients, and these have the values d:l. At least in one row, both columns
have an equal coefficient :t: 1. If there were another row in which both had
nonvanishing coefficients, then the three nonvanishing coefficients in both col-
umns would appear in the same three rows, and then (a0 al) (a+l {1)
would have only one nonvanishing coefficient 4-2. Then again (19) leads to
contradiction, since all xt")(1) are positive.

Thus, we have exactly one row in which a0 al and a,+l a0 have a
nonvanishing coefficient, and these two coefficients are equal and d: 1. There
are two other rows in which al a0 has a nonvanishing coefficient and two
further rows in which a,+l a0 has a nonvanishing coefficient. It follows
from (19) that the three nonvanishing coefficients of a a0 cannot all have
the same sign. The same is true for a,+l

The equations (23) combined with (21) show that the first s coefficients
of a0 all have the same value al0. By (20), the first s coefficients of
then are
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(24) a0-- a-- , a0-- a, a0-- a, ..., a0-- a.

Since these coefficients are all equal to 0, -1, or -1, we have either ao a
or a0 a W . A similar argument applies to a,+ a. The first s
coefficients here are

(25) a.+- a- , a.,+-a, .-., a.,+-a, and a.,+ aora+ .
We wish to show that ao a.,+ a. This is clear for s 4 since other-

wise in (24) or in (25), there appear three or more coefficients 1,
which has been seen to be impossible.

Before dealing with the cases s 3 and s 2, let us first observe that if
x() is the unit character, then (13) shows that a0 1, a, 0 for v 0.
Hence x() is not exceptional. We may then choose our notation such that
j s 1, that is, such that x(’+) is the unit character.
Assume now thats 3. Ifwehada0 a.,+ aW r, then (24) and

(25) show that both columns a0 a and a+ a0 would have nonzero
coefficients in rows 2 and 3, which is impossible. If one of a0, a+.o is a
and the other is a W , the first three coefficients of a0 a,+ are equal, and
their value is 1. Moreover, the coefficient in the fourth row is 1,
and as (a0 +) 4 by (17), all other coefficients vanish. By (II.E),
x(), x(), x(a) have the same degree f, while the unit character x() has degree
1. By (19), (0- a)X(1) (0- i)X(1) (a,+i- ai) X(1) 0,
and hence 3f 1 0. This is impossible. Again, we must have
a0 a,+ a for s 3.
Takes 2. Ifa0 a.,+ aW v, we simply replace a W rbya,by

-r, and we interchange x() and x(). It is seen easily that (20) remains
valid and that we have the desired case a0 a+.0 a. If a0 a ,
a+.0 a, it follows from (13) and (14) that

Since here h 6, we see that

x) (H) 2, x() (H) 0.

Now, H is an element of order 3. Since the degree f of x() is congruent to
x()(H) modulo a prime ideal divisor of 3, we have f 0 (mod 3). Then
gx(i)(H)/c(H)f 2rg/3h rg/9, und since we hve n algebraic integer,
we find g 0 (rood 9). This is inconsistent with (6).

Similarly, if ao a, a.,+ a W r, u contradiction is obtained by con-
sidering x(). We find here

--1

X()(H) -2, x()(H2) 0,

which again leads to g 0 (rood 9), in contradiction to (6). Thus we may
again assume that we have a0 a.,+ a. This is then true for s 2.
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It now follows from (24), (25) that the first coefficient in a0 a and
,+ ais -randthenexts 1 coefficients are 0. In the row s -t- 1
belonging to the unit characters, we hve the coefficients I and 0 respectively.
Our previous results show that we may choose x(’+), x(’+), x(’+) such that
a0 hs a coefficient 1 in the row s 2 and a,+ a has coefficients
1 in the rows s W 3, s W 4, while all other coefficients in the two columns
vnish. Collecting these results (cf. (13), (14), (20)) we find

+ i 1 2, s,

X 0,

s+2)x o + a.+2, =_ ’,
26)

(s+a) +1x ,+1 + a,+.l =-,

+i

where it., ti3, i4 -+-1. We set 1 1.
We note that this result remains valid for s 1. Indeed, we have here

only the columns a0, a2, 1 -1. As before, there will be exactly one
row in which a0 1 and a2 al have a nonvanishing coefficient. The
coefficient in this row will be the same in both columns and will be denoted by
T; the corresponding character is taken as x(1). The characters x(2), x Ca)

can be chosen such that a0 x has coefficients :i:l in the corresponding
rows, and the characters x), x() such that a2 a has coefficients :i:1 in
the corresponding rows. Then (26) holds again.
We write x, for x(+"), g > 0. We then have the result

(s)(II.F) The irreducible characters of ( can be denoted by x(), x(:), x
x x x with m >= 4 in such a manner that we have for H 1

X(i)(Hr) (ir + --ir), i ], 2, 8,

(27)
x.(H) ti., j 1, 2,

x’(H) ti.(- 1), j 3, 4,

x(H) 0, j => 5.

Indeed, this follows from (26), if we note that +[8 ei vanishes for all
Hrl.

6. Congruences for the degrees of the characters of @

If b is any character of (T), it follows from the orthogonality relations
that

(1) -t- (h/2)b(S) +(h/2)b(BU) + -’, (Ur) 0 (mod 2h).
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If k is the restriction of a character of @, then, by (II.A), b(B) b(BH) b(T).
Combining this with (27), we find

(II.G) If f is the degree of the exceptional characters x(i), and if f is the
degree of x j 1, 2, m, then

f 2r (mod 2h)

(28)
fi" --- (mod 2h) (j 1, 2)

f. h-t-. (mod2h) (j 3,4)

L 0 (mod 2h)

Proof. For k x(i) (T), our congruence reads

f-[- hr((-1) h/2 + (-1) h/2) + r _.,, (e(Hr) + &(Hr)) --- 0

(j_>_ 5).

(mod 2h).

The orthogonality relations for the characters of show that

2 - ZH,’I (i(Ur) 2v i(ur)) O.

This yields f --- 2r (mod 2h). Similarly, for j 1, 2

.5 + " h +/t. ,1 1 0 (mod 2h).

Here,,r11 h 1, and hencef 6 (rood 2h).
last 2 congruences (28) is analogous.

The proof of the

(II.H) We have

1 + 6 x(X) r()(X), x(X) + x(X) x()(x)
for elements X of @ which are not conjugate to element H 1. In particular,

(29) 1 + &.f= rf, af + 84f rf.
This follows from (a0- al)x(X) 0, (s-bl- OIl)X(X) 0 in conjunc-

tion with the values of the coefficients of the columns a0 a and a,+ a
obtained above (x, was the unit character, 81 1).

7. The class relation

Let 9, 2,’", denote the classes of conjugate elements where we
choose that notation such that 1 e 91, T e o2, H e o2+’ for j 1, 2, s

(cf. (II.A)), and where 1,9, 9 (t __> 2 -[- s) are the classes con-
sisting of the "real" elements G of @, i.e., the elements G which are con-
jugate to their reciprocals G-1.
We work in the group algebra I’ of @ over the field of rational numbers

or rather in the center Z of I’. If K. denotes the sum of the elements in., then K1, K, K form a basis of Z. In particular, we have an
equation

(30) K 5= c.
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Here, c- denotes the number of ordered pairs (X, Y) of elements of 2 such
that XY is equal to a fixed element G. e j. Since X, Y have order 2, the
equation XY Gj implies G- YX Y-IG X. Conversely, if X has
order 2, and if XG X- G-, then for Y XG we have XY G and
Y XGXGj G-Gj 1. Thus Yhas order 2, except when Y 1,
Gj X. This latter case arises only if G has order 2, i.e., if j 2. Thus

(II.I) If G is a representative of then for f 2 the number c in (30)
denotes the number of elements X of order 2 which satisfy the equation

X-1GI X G7.
For j 2, cj is one less than the number of X of order 2 which satisfy the corre-
sponding equation.

If j 1, cl is simply the. number of elements of order 2, i.e., the number
of elements of .. By (II.A), cl g/2h. For j 2, we may take G T,
and c2 W 1 is the number of elements of order 2 which commute with T.
It follows from (II.A) thatc2 W 1 h 1, c2 h. For3 _-<j_-< 2 s,
we may choose G H’-. Since

X-G X G- implies X e 9({H-} (T),

(cf. (I.C)), the number c denotes the number of elements of order 2 of the
dihedral group (T) which transform H-2 into its reciprocal (H’-2)-1.
Hencecj hforj 3,..., 2 - s. If2 - s < j _-< t, the elementsG-
and e-1 are conjugate in @. Hence there exist exactly c(Gj) elements X
in @ such that X-G X G-. Then X commutes with G. If the order
of X contained a prime factor of 2m+lv 2h, by (II.A), X would belong to
one of the classes , 2, .+, Moreover, for X 1, (X2) would
consist only of elements which lie in the same s W 2 classes. This is impos-
sible forj > s W 2 sinceG.e(X2). HenceX 1. Thus we have ex-
actly c(G) elements X of order 2 for which X-IG X G and c. c(Gj)
for 2 W s j =< t. Finally, for j > t, the elements G. and G7 are not con-
jugate, and c. 0.

If we count the number of elements of @ appearing as summands on both
sides of (30), we have

(g/c( T) )2

__
c(g/c(G) ).

Substituting the values of c. just found, this yields
s2

c(G) c(V).
4h 2h =3 --+3

This yields

whence

(31)

g2/4h2 g/2h + g/2 + g(t- 2),

t- 2- (g- 2h- 2h2)/4h2.
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8. The degrees of the irreducible characters of
It will be necessary to separate the cases r 1 and r -1.
The case 1. It follows from (29) that 1since rf=f> 0. As

shown by (29), the character x must be real, since :. cannot be equal to
any of the characters except x. If f 1, then @ would have a linear
character x. xl, x xl. Since the multiplicative group of linear
characters is isomorphic with @/@’, it would follow that @/@’ has even
order. This is impossible, if @ does not have a normal subgroup of index 2.
Hence f 1, and (28) shows that f _>_ 2h W 1. Now (29) shows that
f _>- 2h W 2. Interchanging x3 and x4 if necessary, we see from (29) that
we may assume 3 1. By (28),fa -> h-i- 1, f4 __> h - ,f. >_- 2hfor
j _-> 5. Thus

f>=2h+2, f= 1, f2>=2h+l, fa>__h-[-1,
(32)

f => h+, f->_ 2h for j >- 5.

Since we have s h/2 1 characters x(i) we shall have k- s-4
k h/2 3 characters x with j __> 5.
Now, the order g is the sum of the squares of the degrees of the irreducible

characters. This yields

(33)
g >= (hi2 1)(2h -[- 2) + 1 - (2h - 1) + (h - 1)

+ (h -I- )2 + ( hi2 3)4h2.

On account of (31), g can be written in the form

g 4h2(t- 2) +2h-2h2.

Substituting this in (33), we have, after simplification,

(34) 4h2t >= 4kh 2, h- 2h.

If 4 1, this yields >_- k. Since k __> t, we have k t, and we must have
the equality sign everywhere in (32). If i -1, we still can conclude
k t, and we see that the left side in (33) exceeds the right side
by 4h. Thus, we must have an inequality in (32) for some j. If we write
the inequality in (32) in the form f > f, then (28) shows that

>=f? +
Since f >- f2 _[_ 4hf + 4h, we can add 4hf -t- 4h on the right-hand side
of (33) and (34). This leads to a contradiction. Thus,

(II.J) If r 1, we haveg 4hk- 6h + 2h,. 1,

f= 2h + 2, f 1, f 2h + 1,

fa =f h-t- 1, f 2h for j >_- 5.
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The Case r -1. Here 2 -1 by (29) and, after interchanging
and x4 if necessary, we may assume that -1. Then (29) reads

(29*) f2 1 f, f3 i4f f.
We separate the cases t 1 and tt -1.

Subcase i +1. It follows from (28) that f >__ 2h 2, and hence
f_-> 2h- 1. Moreover f4->_ h- 1, and (29*) shows thatfa >- 3h 1.
Also ft._>_ 2h for j >_- 5.

Instead of (33), we find here

g >__ (hi2- 1) (2h- 2) - 1 + (2h- 1) -[- (3h- 1)
(33*) -- (h -t- 1) -- (/c- hi2 3)4h2.

Then (34) can be replaced by

(34") 4h2t >-_ 4h2k.
It follows that we must have k t, and that we must have equalities in all
estimates

f=2h-2, f= 1, f2=2h-1, fa=3h-1,

f=h+l, f=2h for j>-- 5.
Subcase 4 1. Here,

f >= 2h 2, f2 >= 2h -1, fa >__ h -1, f4 >= h -1, f >= 2h for j >__ 5.

Then

g >- (hi2- 1)(2h- 2) -- 1 -- (2h- 1) -- (h- 1)

+ (h- 1) - (/- hi2 3)4h2.
This leads to

(34"*) 4th >- 4lh 8h2.

If one of the degrees ft. has a value larger than the estimate f used here,
by (28), f >- f 2h, and we can add a term 4hf 4h on the right-hand
side of (34**). If j >- 5, this is an additional term 12h2, which is impossible
as =< k. If 1 =< j -< 4, it follows from (29) that we must have inequality
for two values of j, and again, this gives a contradiction. Finally, if f > f*,
we have an additional term (hi2 1)(4h(2h 2) 4h2). Again, we have
a contradiction. It follows that the degrees have the values used in the
estimates and that the equality sign holds in (34"*), that is, that / 2.
Thus

(II.J*) If r -1, then we can assume i /ta -1,

f= 2h- 2, fl 1, f: 2h- 1, f- 2h for j >- 5.
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Case a If 4 1, then

fa= 3h- 1, f4= h + l, k= t,

Case (b) If ( -1, then

fa= f= h- 1, t= k- 2,

and g 4kh- 6h + 2h.

g 4kh- 14h + 2h.

9. The order g

It follows easily from the basic properties of the group characters that the
coefficients c- in (30) are given by the formula

(35) cl c(T) .= (1)

where x(") ranges over all irreducible characters of @, and where G. e t..
ForG H, wehadc h,c(T) 2h. Now (27) yields x(i)(T) 2,
and we find from (27), (II.J), (II.J*), if either r 1, or r -1, ti -1,
that

(4h g
2h + 2r

(+ -) + 1 --r

= +2hWr h+
Now, ’=1 (e + e-) + 1 -[- (-1) 0, whence -_1 (e + e-i) 0, and

2h2+3hr+ 1 --hr-- 1 4hr- 2 2h4h g
(2h -t- r)(h -t- r) (2h -t- r)(h -t- r) g’

whence

(36) g 2h(2h W r)(h + r).

On the other hand, if r -1, 1, the same method yields

4h= g 1--2h_ 1 q-3h- 1 h ff- 1
whence we find mod h 1 that

4-- g(1 1 + 1/2- 1/2) --- 0.

(Note that h 1 is relatively prime to 2h 1, 3h 1, and h + 1 since
h is even.) But then h 1 divides 4, which is impossible for h 2, and
h 2 was excluded. Thus, this case is impossible; in (II.J*), the subcase
/i4 1 is excluded, and we have

(II.J**) 8 r, 8a r, 8 r.

10. The elements R and the elements S

Let R denote any element whose order contains a prime factor p’ of h + r,
and let S denote any element whose order contains a prime factor p of
2h + r. Since any two of 2h, 2h + r, h + r are relatively prime, it follows
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from (36) that f2 is divisible by the full power of p dividing g; cf. (II.J),
(II.J*). Hence

(37) x2(S) 0.

Similarly, f3, f are divisible by the full power of p’ dividing g and we have

(38) x3(R) x(R) 0.

It follows from (II.H) that x()(S) r, x()(R) 0, x2(R) -r.

Clearly, R S. Hence no element can have an order divisible by primes
p and p’. In conjunction with (II.A), this yields

(II.K) For every element R, c(R) divides h "4- r, and for every element
S, c S) divides 2h -4- r.

Apply now (35) taking G. R. We find (cf. (36))

c. 1
2h -t- r 2h

Since c 0, the class . is real, and we have

(39) c(R) h A- r

for every R.
Similarly, taking G- S in (34), we find

4( 48 )((1)(S)_. 1 )c 2h + 2r h + r
(x(S) + x4(S)) + 1

cf. (II.E), (II.J), (II.J*), (II.J**).
(II.H), and we have

c=h2(’(h-h+r2)r+r

But xa(S) -4- x(S) x(1)(S) by

-4- 1| h(1 -t- r)
2h/

Hence, if r 1, the class . is real, and

c(S) 2hA- 1 for r 1.

If r --1, the class is not real. Since there exist only two nonreal classes
(as k A- 2), we have exactly two classes containing elements S. This
implies that 2h 1 is a prime power in this case.

Actually this result holds for r 1 too. Indeed, by (II.J) and (36),
2hk- 3h A- 1 2h + 3h + 1 for r 1, whencek h-4-3. Since we
have s + 2 hi2 -4- 1 classes containing elements 1, T, and H, we have
hi2 + 2 classes containing elements R and S. The orthogonality relation

If 2h 1 were divisible by two distinct primes pl and p2, we would have elements S
of orders pl and of orders p2. For r 1, S and S-1 are not conjugate. We would have
at least four classes of elements S.
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for x., xo yields

(2h - 1) + g/2h - s(g/h) 1 O.

This shows that the number of elements R is equal to

2h - 1 -t- (2h - 1)(h - 1)(1 -2s)

(2h + 1)(1 + (h + 1)(h- 1)) (2h + 1)h.
By (39) each class o. consisting of elements R contains

g/(h - 1) (2h + 1)(2h)

such elements, and hence there are hi2 classes consisting of elements R.
Thus there are exactly two classes consisting of elements S. As already
remarked, this is only possible if 2h W r is a power p of a prime,

(40) 2h + r p.
We had shown above that c(S) 2h -t- r for r 1. We can now prove

that this holds for r -1. Indeed, since k + 2, we have two nonreal
classes in this case, and these must be the classes containing the elements S.
If S is chosen such that S occurs in the center of the p-Sylow group
then c(S) p 2h r 2h 1. Since the other class is represented
by S-1, we have c(S-1) 2h 1 for the elements of this class. Hence

(41) c(S) 2h+ r.

11. The groups and and their normalizers

(II.L) The group @ has an abelian subgroup 9 of order h - r. The
centralizer (R) of each element R can be taken for

Proof. Our previous results show that for each element R, we have

c(R) h + ,
that the elements of (R) different from 1 are of the type R again, and that
R is real. Now, Theorem (4D) of [1] hows that (R) is abelian.

It follows from Theorem (4F) of [1] that if the order of the normalizer
9(9) is w(h - r), then w divides h r 1, and we can set

g w(h - r)(1 + N(h + r))

with integral N _>- 0. Hence w(1 - N(h - r)) 2h(2h + r), whence
w 2h(2h + r) (modh - r). Hencew--- -2r(-r) -= 2 (modh - r).
Sincew -< h + r- 1, wemusthavew 2. Thus

Since the case r -1 has been settled above, we may assume r 1. Here, c (S)
2h -[- 1. If 2h + 1 were divisible by two distinct primes pl and p2, we would have classes
of elements S of each of the orders pl, p2, and pl p.
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(II.M) The normalizer of the subgroup 9 in (II.L) has the order
2(h + r).

As a consequence, we have

(II.N) If an element R is conjugate to a power R ,in @, then R R:1.
Indeed, if G-IRG R, and if we take (R), then G-G .

Hence G 9(9), and by (II.M) G , R R, 1 (modh + r).
Sinceh + risodd, then # =i=l (modh + r).

If r 1, the element S belongs to a real class, and the same argument as
used in (II.L) shows that (S) is abelian. In order to have the same
result for r -1, we have to use a more complicated procedure.

(II.O) LEMMA. Let @ be any finite group. Let p be a prime dividing
the order g of @, and make the following assumptions:

(a) If Q is an element of prime power order q" > 1, p q, the order of
9({Q}) is not divisible by p.

(b) A generalized quaternion group does not appear as a subgroup of @.
Then either the p-Sylow subgroup of @ is normal in @, or any two distinct

p-Sylow subgroups have intersection {1}.

Proof. Suppose that there exist two distinct p-Sylow subgroups and
with n ) {11. Choose and 1 so that ) has maximal order.

Then n 9()) , 1 () ), and

( n 9()) n ( n ()) .
Hence () has two distinct p-Sylow subgroups whose intersection is not

Choose a principal series of () through , and let ! be the last group
different from {1} in this series. Since ! ), f is a p-group and hence
abelian of type (p, p, p). Choose a normal subgroup [ of () such
that (1) !, (2) ?I has at least two distinct p-Sylow subgroups, and (3)

has minimal order, subject to the previous conditions.
Since ! is normal in l, the transformation of ! by an element A e ?I can

be described by a matrix [A] with coefficients in the Galois field with p ele-
ments, and the mapping A --e [A] is a homomorphism. Let q denote the
smallest prime factor p of ([’1). Since [ cannot be a p-group, such a
prime q exists. Let :5 be a q-Sylow group of [, and let Q e :, Q 1. The
assumption (a) shows that Q cannot commute with an element B 1 of
!. Hence the linear transformation belonging to [Q] does not leave a vector

0 fixed. It follows that cannot have a subgroup of type (q, q). It
follows that is cyclic, {Q0} say. Suppose that two distinct powers
Q and Q" are conjugate in [. We may then find an element A of prime
power order p such that A-QA Q" Q, A . Then p0 must be dif-
ferent from q. Since p0 must divide q 1, it follows from our choice of q
that p0 can only be p itself. But this is excluded by the assumption (a).
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Hence no two distinct elements of : re conjugate in I. Now, Burn-
side’s Theorem shows that hs normal subgroup 0 consisting of the ele-
ments of / of orders prime to q. Clearly, I0 is even normal in
9(). Moreover, ull p-Sylow subgroups of pper in [0 nd ! I0.
This shows that 0 stisfies the conditions (1), (2) imposed on t, nd s
I0 ?I, we hve coatmdiction. The lemm (II.O) hs been proved.
We use (II.O) to show that for ny element S, the group (S) is belin.

If p is s in (40), nd if is the p-Sylow subgroup of @, we hve to show
that is abelin, since we know that c(S) divides 2h - r; cf. (II.K). As
lredy remarked, we my ssume that r -1. If we choose So 1 in
the center of , we certainly hve c(S0) p. Since every element S is
coniugte to So or S- in the cse r -1, c(S) p. Hence every ele-
ment S ppers in the center of some p-Sylow subgroup. If is not ubelin,
there must exist two distinct p-Sylow subgroups whose intersection is dif-
ferent from {1}. Since the condition (b) of (II.O) is stisfied for our @, it
remains to check condition () of (II.O). Since q p, n element Q of
order q > 1 is either conjugate to n element of H or to n element R. If
we hd P-QP Q, Q Q+/-; cf. (II.A), (II.N). But since

c(P) 2h - r,

we cannot have P-QP Q. If p-1Qp Q-l, p would have even order,
which is equally impossible. Hence we have a contradiction.
Thus,

p"(II.P) The p-Sylow group of order 2h - r of @ is abelian.

Two elements of are conjugate in @ if and only if they are conjugate
in 9(). Since c(P) 2h + r forevery P 1 in (P beingof type (S)),
we see that the number of conjugates of P belonging to is equal to
(9() "). But since we have two classes of elements S, it follows that

2(()’) pn 1.

Hence () has the order

(2h+ 1)h for r 1,1/2p(p- 1) (2h- 1)(h- 1) for r- -1.

12. Proof of the main theorem
Since @ hs subgroup () of order (2h + 1)h for r 1 nd of order

(2h 1)(h 1) for -1, it follows that @ has a representation as a
transitive group of permutations in 2(h + 1) or 2h letters respectively.

The case 1. After removing the unit character from the character
of , we have a character of degree 2h + 1 which no longer contains the unit
character. It follows from (II.J) that this character must be irreducible
nd equal to x. Hence hs the character + . Since two distinct
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irreducible constituents appear, is doubly transitive. The number

x(G) + x(G)

gives the number of symbols left fixed by (G). It follows from (27) that
this is2forG H 1. ForG S, itislby (37),andsince

x,.(R) -r

as remarked in connection with (38), it is 0 for R. Hence no (G) with
G # 1 leaves three letters fixed. Because of the double transitivity, the
subgroup leaving two letters fixed has order g(2h q- 2)(2h q- 1) h, and
the subgroup leaving one letter fixed has order h(2h q- 1). The elements
of order 2 leave two letters fixed.

The case r -1. Here, the character of has the form x, q- x where
x is a character of degree 2h 1. It follows from (II.a*) that
Again, is doubly transitive. It follows here from (27) that the elements
(H) for H 1 do not leave any letter fixed. The elements (R) leave
two letters fixed, and the elements (S) leave one letter fixed. No element
(G), G 1, then leaves three letters fixed.
The subgroup for which (G) leaves two letters fixed has order

(2h- 1)(h- 1),

and the subgroup for which (G) leaves two letters fixed has order h 1.
In both cases, a is faithful. Indeed, the degree is at least 3 and only
(1) leaves three letters fixed.
We now apply Zassenhaus’ method; cf. [2]. We have a group of permuta-

tions of N -k 1 letters, doubly transitive, such that only the identity leaves
three letters fixed. The order of the group is

-}(N q- 1)N(N 1), N 2h q- r.

In the case r -1, Zassenhaus’ assumptions are not quite satisfied, since
the subgroup leaving two letters fixed does not contain elements of order 2.
However, the method still works. This yields the result:

@

_
LF(2, 2h q- r) (r 4-1).

III. THE CASE B
1. Assumptions

We assume here
(I) @ is a finite group of type (S).

(II) The 2-Sylow subgroup g of @ is abelian of type (2, 2,... 2), of
order 2 > 2.

(III) @ does not have a proper normal subgroup which includes 5, and

For a 2 assume also that (T) : for T eS, T 1; cf. (1).
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for Te,T # 1.
been treated in II.

(1)

(III.A)
elements.

As shown in I, it follows from (I) and (II) that for a ->_ 3, we have

(T) Z
The casea 2, (T) # Zforsome TeZ, T 1 has
Hence we assume that if a 2, we still have

(T) Z for TeZ, T # 1.

2. The classes of involutions

All elements of order 2 of belong to the same class of conjugate

Proof. Suppose that X and Y are two involutions which belong to dif-
ferent classes. Then by Lemma (3A) of [1], there exists an involution Z
such that Z e (X), Z e (Y). If X e , it follows from (1) that

Z e (X) Z, Y e (Z) Z.

Hence all the elements of the class of Y belong to Z. By reasons of sym-
metry, the same is true for the class of X. It follows that Z consists of full
classes of conjugate elements. Hence is normal in @, and this has been
excluded.

3. The normalizer of Z
Let 9 9(2). It is clear that two elements of are conjugate in @ if

and only if they are conjugate in 9. Hence the class of T (T e :, T 1)
in 9 consists of all elements # 1 of . Thus,

2- 1 (9l:(9l n (T))= (9l:).
It follows that

(:1) (2a- 1)2a.
Any two different 2-Sylow groups and 1 have intersection {1}. Indeed,
if To e n 1, and if we had To 1, we would find

(T0) Z and (T0) .
It is now clear that the number of 2-Sylow groups of @ is congruent to 1
(mod 2a). If we denote this number by 1 W 2aN, we have N ->_ 1, since

is not normal in @. Hence (@:) 1 + 2aN >- 1 + 2, and we have

(2) g 2"(2- 1)(1 +2N) __> (2+ 1)2(2a- 1).

4. The class relation

Let , , denote the classes of conjugate elements of @ where
we choose the notation such that 1 e, T e for T of order 2, and such
that $, , , are real. Let K. denote the sum of the elements of. taken in the group algebra of @ over the field of rational numbers. It
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follows from [1], (2A), (4B), that

(3) g (g/2a)gl -t- (2 2)K2 -[- =a c(G)g,

where Gj denotes a representative of .. Comparing the number of ele-
ments of @ appearing on both sides of (3), we find

g2/22 g/2 -+- 2a(g/2’) 2(g/2) + (t- 2)g,
whence

(4) g= (t-- 1)2"- 2".

5. The degrees of the irreducible characters of @
Let X1 X2, Xk denote the irreducible characters of @; let

fi" xj(1)

be the degree of x. Take xl as the unit character.
If we set x(T) z, then z] is a rational integer.

relations for xl yield

(5) ft. + (2- 1)z b 2a,

The orthogonality

where bj is a nonnegative rational integer, the multiplicity of the unit char-
acter in x ]. We choose our notation so that z. > 0 for j 1, 2, r;

z < 0forj r+ 1, r2,...,rW s;z 0forj r
Except for j 1, we do not have z f, since otherwise would belong to
the kernel of x, and this is excluded by the assumption (III). It, follows
from (5) that we can set

(6) ft. z + 2c
with rational integers c. Since z. < f for j 1, we have here

(6a)

For j r + 1,

(6b)

Finally

(6c)

Now g

c => 1 for j 2, 3,...,r.

r -k- s, we have c. b. z __> -z, that is,

c >__ z.l for j r+ 1,...,r + s.

c._>- 1 for j r+ s+ 1,...,/.

=f. Since/ -> t, it follows from (4) that some of the f with
j __> 2 must be smaller than 2. It follows from (6) that this can only be
so in the case of (65). Since =a x’(T)12 c(T) 2, we have

r+8 2a.(7) z- z
Thus, zi < 2a, and we must have c. 1, zj --1.
Suppose that we have b values of j for which z -1, c 1, that is,
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ft. 2 1. Since zl 1, it follows from (7) that

(8) b -< 2- 1.

The term fl 1 and the b terms 2 1 contribute

1 -}- b(2 1) b2a 2+b -t- b -[- 1

to _,=f g. Hence, for the remaining ] b 1 terms, we have, by
(4),

’’fY- g-- b2" + 2a+lb- b- 1
(9)

(t-- b- 1)2- 2-t-2+xb- b- 1.

Since k is the number of all classes of conjugate elements of q9, and the num-
ber of "real" classes, we have k _>_ t. If ]c > t, then k _>- + 2, as the non-
real classes appear in pairs. Then, there appear

It-b- 1 >- (t-b- 1)-2

terms f _>_ 2 on the left-hand side of (9), and this side is at least

(t- b 1)2" - 2.2".

By (8), 2"+b -< 2.2, and (9) leads to a contradiction. Thus, /c and
we have

(III.B) All classes of @ are real.

Suppose that some of the f. in (9) were at least 2+ 2. Then

f 2+- 2+-4 3.2 +2- 8"2+4,

and we see that the left side of (9) would be at least

(k b 1)2 -{- 3.2a 8.2 -{- 4.

Because k t, (9) yields

3.2 8.2 + 4 <- -2 zr- 2a+b b- 1.

Using (8), we obtain 2a+xb -_< 2.2 2.2, and hence

2 + 6 _-< 5.2.
This is certainly false for a _-> 3, since 2 _>- 8.2. It is also false for a 2.
Hence all f satisfy f < 2.2" 2. Now (6) shows that we must have c 1
in the case of (6a) and (6c). If Iz[ _>- 3 in the case of (6b),thenc-> 3
and f z. + 3.2" _-> 2 + 3.2, since [z. < 2" by (7). This is impossible.
If z -2, then c. _>_ 2 and f >-2.2- 2, which was also excluded. If
z. -1 and c >__ 2, we have likewise a contradiction. Hence we must have
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z= --1, c. 1.

(III.C)
values:

with z > O,

and s b,

This yields the result"

The degrees of the irreducible representations of @ have the following

f’= 1, f= zW2", j= 2, 3,...,r,

f.= 2- 1, j= r+ 1,...,r+s,

re= 2", forj>r+s-{-1.

1 1 2"--s--1 1
zj-- s2-J----= 1 2

s;1 -I 2" 1 y= i -[- 1 2"-- 1

cf. (10). Thus, (12) yields

2- 1T 2"- s2"- 2"- 2" s 1 s2"- s(2"- 2)2" g
(2"+ 1)(2"- 1)

(13) (2"-- 2)2"(2" + 1)(2"-- 1) g(22a+1- 2a+8- 2a+).
Combining this with (2), we find

2"- 2 2a+i- 28- 2, 2S 2a.
On the other hand, by 11 and (10)

E E(14) s = z < i=1 Zj 8

and the sum is at least equal to

Zi Zi >_
2" + zi (2"/z.) + 1 2" + 1’

Now,

Moreover, (cf (7)),

By the orthogonality relations, we also have

0 f x(T) 7f" z 1 + =(2" + z)z s(2" 1).

This yields 2"(’ z-- s) + 2 0, and hence

(11) z1 s- 1.

The coefficient 2 2 of K in (3) can be expressed by the characters in
the form

2 2

Because of the values obtained for thef and z x(T), the sum here is

1 + 2" s2"= + z 1
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whence 2s __< 2a. It follows that 2s 2a; moreover, in (13) and (14) the
equality sign must hold. This implies that g-- (2aW 1)2(2a- 1), that
zl z2 zr 1, and, finally, that r s. This yields the results

(III.D) @hastheorderg- 2 + 1)2 2 1).

(III.E) @ has exactly 2-1 I degrees 2 - 1, and 2-1 degrees 2 1, and
one degree 1. All other degrees are 2.

It remains to find the number of degrees 2a. Combining (4) with the value
of g, and the equation /c, we have (]c- 1)2a- 1 (2 1)(2 1),
whence k- 1= 2. Since we have 2 degrees 1, 2a 1, 2- 1, we have
exactly one degree 2a.

(III.E*) There is exactly one degree 2; ]c 2 1.

6. The main result
Since @ has a subgroup of order (2 1)2", that is, of index 2 -t- 1, it

follows that @ has a transitive representation by permutations of 2 - 1
objects. If the character of is xl x, then x is a character of @ of degree
2 which no longer contains xl. Comparison with (III.E), (III.E*) shows
that x x. Since xk is irreducible, is doubly transitive.

If R is an element of @ whose order is divisible by a prime factor p of 2 - 1,
then all characters x of degree 2 1 vanish for R. Likewise, if S is an
element of @ whose order is divisible by a prime factor p’ of 2a- 1, then
x(S) 0 for all x of degree 2- 1. Thus x(R)x(S) =0 for
1 < j < ]c. Now the orthogonality relations for group characters yield
xk(R) x(S) - 1 0. Since x is the only irreducible character of its
degree, its values are rational integers. It follows that x(R) +/-1,
xk(S) :f:l. Thus x(X) for X 1 is 0, +1, or -1, and the character
of for X 1 has only the values 1, 2, 0. In particular, the representation

is faithful. Moreover, no (X) with X 1 leaves three objects fixed. It
follows that is triply transitive: The subgroup leaving one letter fixed has
order 2 (2 1 the subgroup leaving two letters fixed has order 2 1 the
subgroup leaving three letters fixed has order 1.
Now, Zassenhaus’ results apply. It follows that @ LF(2, 2").

7. Groups @ which satisfy the assumptions (I), (11), but not
the assumption 111)

If @ satisfies the assumptions (I) and (II), but not the assumption (III),
let @0 be a seminormal subgroup of @ of minimal order which includes the
2-Sylow subgroup . Then @0 @. Again @0 satisfies the assumptions (I)
and (II). If @0 , then @0 will satisfy the assumptions (I), (II), (III).
Hence @0 LF(2, 2).

Let @1 be a group which precedes @0 in a composition series from @ to @0.
Then @0 is normal in (1 If T e , T 1, and if X e @1, then X-1TX is an
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involution of @0 and hence conjugate to T in @0. Thus X-1TX Y-ITY
with Y @0 It follows that XY- e(T). Sincec(T) 2, (T) ,
and we find X e :Y _. @0 Hence @1 @0, a contradiction.

Thus, @0 :. Suppose

is a composition series from @ to :. Suppose we know already that : is
normal in z for some 1. Then : is characteristic in @z and hence normal in
@,-1 This shows that : is normal in @,

().

Since 9(:)/(:) is isomorphic with a subgroup of LH(a, 2) in the usual
manner, we have here @/: .. ). In our case, no element M 1 of Ft has
a fixed point. Also, ) has odd order. It follows that all Sylow subgroups of
Yt are cyclic, and this implies that Ft is soluble. Hence @ is soluble too.
Thus, we have

(III.F) Let @ satisfy the assumptions" (I) @ is of type (S). (II) The
2-Sylow subgroup . of @ is abelian of type (2, 2, 2), order 2 .>__ 4. For
a= 2 assume also that ( T) for T e, T 1.

If @ does not satisfy the assumption (III), then is normal in @, and @ is
soluble.
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