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If r is set of primes, then we term r-group It-element] every finite group
[every group element] whose order is divisible by primes in r only. A group
is termed r-closed, if its set of r-elements is characteristic r-sUbgroup;
nd this is equivalent to requiring that products of r-elements re gin r-
elements. Several well known theorems in finite group theory my be in-
terpreted s criteri for r-closure; nd our principal concern in this investiga-
tion will be with such criteria.

If r is set of primes, then we denote by Pr the complementary set of
primes (-- set of primes prime to r); nd we sy that group is Pr-homoge-
neous if its elements induce Pr-utomorphisms in its Pr-subgroups. It is
esy to see that r-closed groups re Pr-homogeneous; but there exist Pr-
homogeneous groups which re not r-closed. The clarification of this rela-
tion is our min problem. The most comprehensive criterion obtained in
this direction is Theorem 5.3: The finite group G is r-closed if, nd only if,
it is Pr-homogeneous nd {R, P} is n r-p-group whenever R is mximl
r-subgroup of G, P p-Sylow subgroup of G, nd p prime, not in r.
On our wy we hve to focus ttention on Pp-closure (nd dually on p-

closure); nd the nlysis of Pp-closure is closely related to n investigation
of groups with the property that ll epimorphic images of subgroups of index
prime to p re p-normal. The uxiliry results obtained here pper to be of
independent interest [4].
By its very definition dispersion is concatenation of n involved army

of closure requirements. We shll, however, show in 1 that dispersion my
be reduced essentially to p-closure nd Pp-closure. Combining this reduction
theorem with the closure criteri obtained in 2 to 5 we obtain number of
interesting dispersion criteri in 6.

Notations

o(G) order of group G.
o(g) order of group element g.
G’ commutator subgroup of G.
G i derivative of group G (inductively defined by

G= G(), G(+) [G()]’).
ZG center of G.
Z G iTM term in ascending central series of G (inductively defined by

Zo G 1, Z+ G/Z G Z[G/Z G]).
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G Frattini subgroup of G intersection of all maximal subgroups of G.
NS normalizer of subgroup S of G in G.
CS centralizer of subgroup S of G in G.
r-group group whose order is divisible by primes in the set r only.
r-element group element whose order is divisible by primes in r only.
Gr set of r-elements in group G.
Pr set of primes, not in r.

All groups considered are finite.

1. The reduction theorems

We begin by explaining some of the relevant terms. The group G is e-closed
if products of e-elements in G are e-elements. This latter property is equiva-
lent to the requirement that the set Gs of all e-elements in G is a characteristic
e-subgroup of G. If the set consists of one prime p only, then we speak of
p-closure; nd this property amounts to requiring the existence of one and
only one p-Sylow subgroup.
Next we consider partial ordering z of the set of primes. Then p z p

is false for every prime p in 3; and a z b, b z c implies a z c. A z-segment
is subset a of with the following property: if p belongs to a and q z p,
then q too belongs to a.

DEFINITION. The group G is z-dispersed if G is a-closed for every z-segment
aof.

If (G) is the totality of prime divisors of o(G) belonging to 6, then z defines
partial ordering of (G); and G is clearly z-dispersed for the partial ordering

z of if, and only if, G is z-dispersed for the prtial ordering z of (G). This
shows that all relevant sets of primes will be finite. For a more detailed dis-
cussion of closure and dispersion see Baer [1; 4 and 9].

THEOREM 1.1. The group G is z-dispersed if, and only if, every subgroup
S of G is p-closed for every z-minimal prime p in 6(S).

Proof. The necessity of our condition is n immediate consequence of the
fact that subgroups of z-dispersed groups are z-dispersed and that z-minimal
prime divisors of o(S) form z-segments of (S).

If conversely the condition of our theorem is satisfied by G, then we are
going to show that every subgroup S of G is a-closed for every z-segment
a of 6(S). This we are going to do by complete induction with respect to the
number of primes in a. It is clear that S is a-closed whenever a is the empty
set; nd thus we may assume that a is not vacuous and that subgroup T is
b-closed whenever the z-segment b of (T) contains fewer primes thn a.
Since a is not vacuous, there exists a z-minimal prime p in a; and since a
is z-segment of (S), p is a z-minimal prime divisor of o(S). Application
of our condition shows that S is p-closed. Hence there exists a chracteris-
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tic p-subgroup P ST of S whose index [S:P] is prime to p. From Schur’s
Theorem we deduce the existence of a complement T of P in S; see Zassen-
haus[1;p. 125, Satz25]. Noting that S PT, 1 P n T and T S/P
we see that 6(T) arises from
a a-segment b of 6(T) is obtained which contains fewer primes than a. Appli-
cation of the inductive hypothesis shows that T is -closed. The totality B
of b-elements in T is consequently a characteristic b-subgroup of T. Now
one verifies without difficulty that PB is the totality of a-elements in S. Hence
S is a-closed; and this completes the inductive argument and the proof of
our theorem.

THEOREM 1.2. Assume that eery prime divisor of o(G) belongs to 6. Then
G is a-dispersed if, and only if, every suSgroup S of G is Pp-closed for evera
maximal prime divisor p of o( S).

Remark 1.1. The hypothesis that every prime divisor of o(G) be in 6 is
clearly indispensable for the validity of our theorem. Assume, for instance,
that 6(G) consists of one and only one prime p. Then p is certainly
maximal prime divisor of o(G). Furthermore a-dispersion of G is clearly
equivalent to p-closure of G. But p-closure and Pp-closure of G are inde-
pendent properties. Thus without our general hypothesis our condition is
neither necessary nor sufficient for a-dispersion.

Remarlc 1.2. It is fairly easy to derive our present result from a former
result; see Baer [1; p. 165-166, 9, Theorem 1, (xiii) to (xvi)]. We prefer
to give a direct derivation which is quite analogous to the proof of Theorem
1.1.

Proof. The necessity of our condition is an immediate consequence of the
facts that subgroups of a-dispersed groups are a-dispersed and that for every
a-maximal prime divisor p of o(S) the totality of primes, not p, dividing o(S)
is a a-segment of

If conversely our condition is satisfied by G, then we are going to show by
complete induction with respect to the number of different prime divisors
of o(S) that the subgroup S of G is a-dispersed. This is clearly true for S 1
and thus we may assume that S
dispersed whose order is divisible by fewer primes than o(S). Consider
segment a of o(S). If a is the set of all prime divisors of o(S), then S is cer-
tainly a-closed. Thus we may assume that a does not contain every prime
divisor of o(S). Among the prime divisors of o(S) which do not belong to
there exists a a-maximal one, say p; and p is a a-maximal prime divisor of
o(S), since every prime divisor of o(S) is in 6, and since a is a a-segment of
the set 6(S) of all prime divisors of o(S). Our condition shows that S is Pp-
closed. Consequently there exists a characteristic Pp-subgroup T of S
whose index IS: T] is a power of p. It follows that T contains every a-ele-
ment in S and that o(T) is divisible by fewer primes than o(S). Application
of the inductive hypothesis shows that T is a-closed; and this implies the
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-closure of S. Hence S is -dispersed; and this completes the inductive
argument and the proof of our theorem.

2. Homogeneity and closure
In order to apply the theorems of 1, characterizations of p-closed and of

Pp-closed groups are needed. It is the objective of 3 and 5 to supply
such characterizations. For a convenient enunciation of these criteria a
concept is needed which may be of independent interest.

DEFINITION 2.1. The group G is r-homogeneous, for r a set of primes, if
elements in G induce r-automorphisms in v-subgroups of G.

More elaborately stated: Whenever g belongs to the normalizer NS of the
r-subgroup S of G, then g induces an r-automorphism in S. This is equiva-
lent to the assertion that NS/CS is an r-group whenever S is an r-subgroup of
G, since NS/CS is essentially the same as the group of automorphisms in-
duced in S by elements in NS.

LEMMA 2.1. r-closed groups are Pr-homogeneous.

Proof. If r is a set of primes, and if the group G is r-closed, then the total-
ity R of r-elements in G is a characteristic r-subgroup of G, and [G:R] is prime
to every prime in r. Suppose now that S is a Pr-subgroup of G and that the
element g belongs to R n NS. Then every commutator g-ls-lgs with s
in S belongs to RnS 1, so that RnNS <- CS. Since
[NS:R n NS] [R.NS:R], it follows that [NS:R n NS] and its divisor
[NS:CS] are prime to every prime in r. Consequently NS/CS is a Pr-
group, proving the Pr-homogeneity of G.

LEMMA_ 2.2. If G is not r-homogeneous, though every proper subgroup of G
is r-homogeneous, then there exist a prime p in r and a prime q, not in r, such
that G is an extension of a p-group by a cyclic q-group and G is not q-closed.

Proof. Since G is not r-homogeneous, there exists an r-subgroup R of G
such that elements in G induce automorphisms in R which are not r-auto-
morphisms. Among these automorphisms there is necessarily one whose
order is a prime q, not in r. It is easily verified that such an automorphism
of order q may be induced by a suitable q-element g in G. It is clear that the
subgroup {R, g} of G is not r-homogeneous. Since every proper subgroup of
G is r-homogeneous, we have G {R, g}. Since g belongs to the normalizer
of R, the r-subgroup R of G is a normal subgroup of G; and G/R

_
{g} is a

cyclic q-group. Since g induces an automorphism of order q in the Pq-group
R, the group G is not q-closed.
R 1, since an automorphism of order q is induced in R. Thus there

exists at least one prime divisor p of o(R). Assume now by way of contradic-
tion that R is not a p-group. Every prime divisor x of o(R) belongs to r.
Consider an x-Sy]ow subgroup X of R. Since R is a normal subgroup of G,
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and since any two x-Sylow subgroups of R are conjugate in R, the Frattini
argument shows that G RY where Y is the normalizer of X in G; see, for
instance, Baer [1; p. 117, Lemma 1]. Since G/R is a cyclic q-group, and since
q is not in r and consequently not a divisor of o(R), it follows that Y con-
tains some q-Sylow subgroup Q of G. Since {g} is also a q-Sylow subgroup
of G, there exists an element in G such that t-lQt /g}. Thus g belongs to
the normalizer of the xoSylow subgroup t-iXt Xo of R. Since R is not
primary, R X0 and Xo{gl is a proper subgroup of G. Hence X0{g} is
r-homogeneous. Since the x-group X0 is an v-group, and since g is not an
r-element, but a q-element, g induces the identity aatomorphism in X0, i.e., g
commutes with every element in the x-Sylow subgroup X0 of R. The cen-
tralizer of g contains therefore g and, for every prime divisor x of o(R), an
x-Sylow subgroup of R. Hence g belongs to the center of G. But g induces
an automorphism of order q in R, an impossibility. Hence R is a p-group,
completing the proof.

LEMMA 2.3. Subgroups,. direct products, and epimorphic images of r-homo-
geneous groups are v-homogeneous.

Proof. It is obvious that subgroups of r-homogeneous groups are r-
homogeneous. Consider next the direct product G A (R) B of the r-
homogeneous groups A and B. Suppose that S is an v-subgroup of G. Then
S(A) BS n A, and S(B) AS B are r-subgroups of A and B respec-
tively; and S <- S(A) (R) S(B). If the element g ab for a in A and b
in B belongs to NS, then a belongs to NS(A) and b belongs to NS(B). The
r-homogeneity of A and B implies that a induces an r-automorphism in
S(A) and that b induces an r-automorphism in S(B). Consequently g
induces an r-automorphism in S(A) (R) S(B) and in its subgroup S. Thus
G is r-homogeneous too.
Assume next the r-homogeneity of the group G, and consider a normal sub-

group K such that G/K is not r-homogeneous. Then there exists among the
subgroups of G/K which are not r-homogeneous a minimal one, say H/K.
Then every proper subgroup of H/K is r-homogeneous. Thus we may
apply Lemma 2.2. Consequently there exist a prime p in r and a prime q
not in r such that H/K is an extension of a p-group by a cyclic q-group with-
out being q-closed. Accordingly there exists a characteristic p-subgroup P/K
of H/K such that HIP is a cyclic q-group. Denote by S a p-Sylow subgroup
of the normal subgroup P of H. If T is the normalizer of S in H, then we
deduce H PT from the well known Frattini argument; see, for instance,
Baer [1; p. 117, Lemma 1]. The isomorphy HIP T/(T P) shows that
T/(T P) is a cyclic q-group. Consequently there exists a q-element
in T such that T (T P){t}. Since G is r-homogeneous, since S is a p-
subgroup of G and p is in r, and since is a q-element in NS and q is not in
r, the element belongs to CS. Consequently Kt commutes with every ele-
ment in KS/K P/K. But H PT P(TP){t} P{t} KS{t};
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and thus we see that H/K is the direct product of the p-group P/K and the
q-group {Kt}. Hence H/K is in particular q-closed, a contradiction showing
the r-homogeneity of G/K.

Clearly every r-group is r-homogeneous. This simple remark will providea
counterexample to many a coniecture. We shall, however, be mainly in-
terested in two special cases of r-homogeneity, namely p-homogeneity and
Pp-homogeneity for p a prime.

LEMMA 2.4. If K is a normal subgroup of the Pr-homogeneous group G,
and if K and G/K are r-closed, then G is r-closed.

Proof. Since K is r-closed, there exists a characteristic r-subgroup R of
K such that K/R is a Pr-group. A characteristic subgroup of a normal sub-
group is normal. Hence R is a normal subgroup of G; and we may form
G* G/R and K* K/R. Then K* is a normal Pr-subgroup of G*, and
G*/K* . G/K is r-closed. Since G is Pr-homogeneous, so is G* by Lemma
2.3. The v-closure of G*/K* implies the existence of a normal subgroup T*
of G* which contains K* such that T*/K* is an r-group and G*/T* is a Pr-
group. Since K* is a Pr-group and T*/K* is an r-group, there exists by
Schur’s Theorem a complement S* of K* in T*, so that T* K’S*,
1 K* n S*, T*/K* S*; see Zassenhaus [1; p. 125, Satz 25]. Since K*
is a Pr-group aad G* is Pr-homogeneous, only Pr-automorphisms are in-
duced in K* by elements in G*. Since S* is an r-group, it follows that every
element in S* commutes with every element in K*. Hence T* K* (R) S*
is the direct product of the Pr-group K* and the r-group S*. This implies
in particular that S* is a characteristic v-subgroup of the normal subgroup
T*; and so S* is a normal subgroup of G*. Since T*/S* K* and G*/T*
are both Pr-groups, so is G*/S*. Hence G* is r-closed; and G is consequently
an extension of the v-group R by the r-closed group G* G/R. This im-
plies the v-closure of G.
The group G shall be termed v-separated, if its composition factors are

either v-groups or Pr-groups. Thus v-separation and Pr-separation are
equivalent properties. This concept has also been named r-solubility; see
Baer [1; p. 145].

THEOREM 2.5.
Pr-homogeneous.

The group G is r-closed if, and only if, G is v-separated and

Proof. If G is r-closed, then G is Pr-homogeneous by Lemma 2.1; and its
composition factors are simple r-closed groups. But simple r-closed groups
are either v-groups or Pr-groups. If conversely G is v-separated and Pr-
homogeneous, then there exist subgroups S(i) of G such that S(0) 1, S(i)
is a normal subgroup of S(i + 1) and S(i -t- 1)IS(i) is an r-group or a Pr-
group, S(n) G. Since every S(i 1)/S(i) is in particular v-closed, the
v-closure of S(i) and the Pr-homogeneity of S(i + 1) imply, by Lemma 2.4,
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the r-closure of S(i - 1). Hence it follows by complete induction that
every S(i), and in particular G, is v-closed.
Remark 2.6. There exist many examples of simple groups showing the

indispensability of the separation requirement in Theorem 2.5. The
ternating group of degree 5, for instance, is not 5-closed, but P5-homogene-
ous. On the other hand, soluble groups are r-separated; and thus for solu-
ble groups r-closure and Pr-homogeneity are equivalent properties,

3. p-closure
Every p-closed group is Pp-homogeneous [Lemma 2.1], and there exist

Pp-homogeneous groups which are not p-closed [Remark 2.6]. Conse-
quently we are interested in groups which are Pp-homogeneous without
being p-closed; and we propose in this section to investigate those members
of this class of groups which are, in a sense, minimal. More precisely we are
going to investigate groups G with the following properties"

( .p) G is not p-closed; every proper subgroup and every proper epimorphic
image of G is p-closed; G is Pp-homogeneous.

Throughout this section we shall assume that the group G under investiga-
tion has property (.p), and we shall refrain from explicit restatement of
this hypothesis.

(3.1) o(G) is a multiple of p, but not a power of p; and G is simple.

Proof. p-groups and Pp-groups are p-closed which G is not. This proves
our first claim. Assume by way of contradiction the existence of a normal
subgroup K of G such that 1 < K < G. Then K is a proper subgroup and
G/K a proper epimorphic image of G. Hence K and G/K are both p-closed.
Since G is Pp-homogeneous, application of Lemma 2.4 shows the p-closure
of G. This is impossible; and hence G is simple.

(3.2) The subgroup S of G is the normalizer of a (necessarily uniquely de-
termined) p-Sylow subgroup of G if, and only if, S is a maximal subgroup of
G and o(S) is a multiple of p.

Proof. Assume first that S NP is the normalizer of the p-Sylow sub-
group P of G. Since P 1 (by (3.1)) and P

_
NP S, o(S) is a multiple

of p; and P is not a normal subgroup of G (by (3.1)) so that NP G. Con-
sequently there exists a maximal subgroup T of G which contains S NP.
Since T G is p-closed, its p-Sylow subgroup P is a normal subgroup of T.
Hence T <= NP <- T, so that S T is a maximal subgroup of G.
Assume conversely that S is a maximal subgroup of G and that o(S) is a

multiple of p. Since S G is p-closed, its p-Sylow subgroup P is a charac-
teristic subgroup of S. Hence S <= NP. If S NP, then we would de-
duce NP G from the maximality of S so that P would be a proper normal
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subgroup of G, contradicting (3.1). Hence S NP. If P were not a p-
Sylow subgroup of G, then there would exist a p-Sylow subgroup Q of G
such that P < Q. Clearly P S n Q < NP Q by the fundamental
properties of p-groups; and this would imply S < NP, an impossibility.
Hence P is a p-Sylow subgroup of G, completing the proof of (3.2).

(3.3) There exists a pair of different p-Sylow subgroups A, B of G such
that NA NB 1.

Proof. Since the p-Sylow subgroups P of G form a complete class of con-
jugate subgroups of G, the same is true of their normalizers NP. They are
maximal subgroups of G by (3.2), but not normal ones by (3.1). Hence
NP NNP for every p-Sylow subgroup P of G. If NA NB 1 for every
pair of different p-Sylow subgroups A, B, then we could apply a celebrated
Theorem of Frobenius asserting the existence of a normal subgroup W of G
complementary to the subgroups NP. This would contradict the simplicity
of G (see (3.1)); and consequently there exists a least one pair of p-Sylow
subgroups A, B of G such that NA NB 1.

(3.4) If A and B are two different p-Sylow subgroups of G, then
CZA n CZB 1.

Proof. Assume first by way of contradiction the existence of a pair of
different p-Sylow subgroups with nontrivial intersection. Among these
pairs there would exist one A, B with maximal intersection J A n B 1.
It is clear that J < A and J < B, since otherwise A B. By using the
well known properties of p-groups it follows that J < A NJ and
J < B n NJ. Since 1 < J < G, it is not a normal subgroup of G (by (3.1)).
Hence NJ G, implying the existence of a maximal subgroup S of G which
contains NJ. From J =< S we deduce that o(S) is a multiple of p. Appli-
cation of (3.2) shows the existence of a uniquely determined p-Sylow sub-
group R of G such that S NR. Clearly {A n NJ, B n NJ} <= R. Hence
J < A n NJ =< A n R; and we deduce A R from the maximality of J.
Likewise we see that R B, contradicting A B. This contradiction
shows that A n B 1 for any two different p-Sylow subgroups A, B of G.

Consider again a pair of two different p-Sylow subgroups A, B of G, and
let J CZA n CZB. Then ZA and ZB are both contained in CJ and a
fortiori in NJ. If NJ were different from G, then NJ would be p-closed, so
that {ZA, ZB} would be a p-subgroup of NJ and consequently part of a
p-Sylow subgroup R of G. Hence 1 < ZA <= A n R, proving A R, since
we have shown already that different p-Sylow subgroups of G have trivial
intersection. Likewise we see that R B, so that A B, a contradiction.
Hence NJ G; and this implies J 1, since G is, by (3.1), simple.

(3.5) P <= (NP)’ for every p-Sylow subgroup P of G.

Proof. Different p-Sylow subgroups of G have by (3.4) rivial intersec-
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tion. This implies (much more than) p-normality of G. Application of
Grtin’s Second Theorem shows that the p-component of GIG is isomorphic
to the p-component of j/jr where J NZP for some p-Sylow subgroup
P of G; see Zassenhaus [1; p. 135, Satz 6]. The simplicity of G implies there-
fore that [J:J’] is prime to p. Since ZP is a characteristic subgroup of P,
we have NP <-_ NZP. Since NP is a maximal subgroup of G (by (3.2)),
and since ZP 1 is not a normal subgroup of G (by (3.1)), we find that
J NP. Since [J :J] is prime to p, and since P is the p-Sylow subgroup
of J NP, it follows that P <- jr (Np)r.

(3.6) If U is a proper subgroup of G, and if A, B are p-Sylow subgroups
of G such that A n NU 1 B n NU, then A B.

Proof Since U is a proper subgroup of G, we deduce NU G from (3.1);
and this implies p-closure of NU. Consequently there exists a p-Sylow
subgroup P of G containing the p-subgroup {A a NU, B NU} of the p-
closed groupNU. It follows that 1 < A aNU <= P. HenceA P 1;
and this implies A P by (3.4). Likewise we see that P B. Hence
A-B.

(3.7) The Pp-subgroup U of G is part of NP for P a p-Sylow subgroup of
G if, and only if, UP PU and U is not a maximal subgroup of G.

Proof. If the Pp-subgroup U of G is part of NP for P a p-Sylow subgroup
of G, then we recall that NP is a maximal subgroup of G by (3.2). But
U < NP, since P n U 1; and so U is not a maximal subgroup of G. That
U < NP implies UP PU, is obvious.
Assume conversely that the Pp-subgroup U of G is not a maximal sub-

group of G and that UP PU for P a p-Sylow subgroup of G. Then UP
is a subgroup of (7; and we have o(UP) o(U)o(P), since U a P 1. It
is clear that U < G; and since U is not inaximal, there exists a maximal
subgroup V of G such that U < V. If V is not a Pp-group, then
V NQ for some p-Sylow subgroup Q of G (by (3.2)) so that
o(U)o(Q) o(U)o(P) o(UP) is a divisor of o(V). If V is a Pp-group,
then V P 1 so that o(V)o(P) is a divisor of o(G); and thus we see in
either case that o(UP) is a proper divisor of o(G). Hence UP < G; and as
a proper subgroup of G the subgroup UP is p-closed. But P is u p-Sylow
subgroup of (G and) UP. Hence U <-_ UP <= NP, as we wanted to show

(3.8) If P is a p-Sylow subgroup of G, then there exists a common prime
divisor of the sequence [Zi P’Zi-1 P] 1 for 0 < i.

Proof. It is a consequence of (3.3) that there exists a p-Sylow subgroup
Q P of G satisfying NP NQ I. If q is a prime divisor of o(NP NQ),
then q p by (3.4); and there exists an element w of order q in NP NQ.
If i were a positive integer such that q is not a divisor of [Z P"Z_ P] 1,
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then we deduce from p q and the fact that o(Z_l P) is a power of p that
q is not a divisor of

o(Z P) o(Z_ P) o(Z_ P)([Z P:Z_ P] 1)
either. This number is just the number of elements in the set Z P Z_ P
of elements in Z P which do not belong to Z_ P. Since w belongs to NP,
w belongs likewise to the normalizer of everyZ P. The inner automorphism
induced by w effects therefore a permutation of the elements inZ P Z_ P.
Since w is of order q, we find for every element x in G thut the set
x, x x which is invariant under w is either a one-element set or a set
consisting of exactly q elements. Since q is prime to o(Z P) o(Z_ P), the
permutation effected by w cannot divide the set ZP Z_ P into
cycles of q elements each. Hence there exists an element a in Z P Z_ P
such that a a; and this is equivalent to saying that aw wa. It fol-
lows in prticular that Cw n P 1. Since P and Q are isomorphic groups,
we have o(Zy P) o(Zy Q); and it follows from the preceding discus-
sion that Cw Q 1. ConsequentlyPN{w} 1 Q n N w and an
immediate application of (3.6) gives P Q, contradicting our choice of Q.
Thus we huve shown that every prime divisor q of o(NP NQ) is a com-
mon divisor of the sequence [Z P:Z_ P] for 0 < i.

zt. Complete p-normolit),
We recall that the group G is termed p-normal if ZP ZQ for every pair

of p-Sylow subgroups P, Q of G such that ZP <__ Q. We need in the sequel
a considerably stronger concept which may be characterized by a number of
equivalent properties.

LEMMA 4.1. The following properties of the group G (and the prime p) are
equivalent"

(i) If S is a subgroup of G whose index [G:S] is prime to p, and if K is a
normal subgroup of S, then S/K is p-normal.

(ii) If S is a subgroup of G whose index [G:S] is prime to p, if K is a nor-
mal p-subgroup of S, if P and Q are p-Sylow subgroups of S/K, and if is an
element of order p in Q r ZP, then belongs to ZQ.

(iii) If P and Q are p-Sylow subgroups of G, and if the normal subgroup
J of P is contained in Q, then J is a normal subgroup of Q.

(iv) J n P J n P for every p-Sylow subgroup P of G, every element x
in G, and every normal subgroup J of NP with J <= P.

(v) If TX is, for every p-group X, a characteristic subgroup of X such that
T(X) (TX) for every isomorphism of X, then

TP Q TQ P for every pair of p-Sylow subgroups P, Q of G.

(vi) Z P Zi Q for every pair of p-Sylow subgroups P, Q such that
Z P <- Q (for every positive i).
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Proof. Assume the validity of (i), and consider a subgroup S of G whose
index [G" S] is prime to p, a normal p-subgroup K of S, a pair of p-Sylow
subgroups P, Q of S/K, and an element of order p in Q n ZP. Denote by
C the centralizer of in S/K. Since belongs to Q n ZP, we find
that {ZQ, P} <- C; and we note that belongs to ZC. Clearly ZQ is part
of a p-Sylow subgroup R of C. Since P __< C, the index [S/K’C] is prime
to p, and R is a p-Sylow subgroup of S/K. Since S/K is p-normal (by (i)),
ZQ <- R implies ZQ ZR. Since belongs to ZC, since o(t) p, and since
R is a p-Sylow subgroup of C, belongs to ZR ZQ. Thus (ii)--and more--
is a consequence of (i).
Assume next the validity of (ii), and consider a pair of p-Sylow subgroups

P, Q of G and a normal subgroup J of P which is part of Q. Let S {P, Q}
and note that [G’S] is prime to p. Since J is a normal subgroup
of the p-group P, there exist normal subgroups J(i) of P such that J(0) 1,
J(i) < J(i -- 1), and [J(i - 1)’J(i)] p, J(n) J. We are going to
prove by complete induction with respect to i that every J(i) is normal in
Q. This is certainly true for i 0; and thus we may assume that 0 < i
and that J(i 1) isanormal subgroup of Q. ThenK J(i 1) is a
normal p-subgroup of S, P/K and Q/K are p-Sylow subgroups of S/K, and
J(i)/K has order p and is a normal subgroup of P/K and also part of Q/K.
Normal subgroups of order p of p-groups are contained in the center. Hence
J(i)/K <- Z(P/K). We may apply condition (ii) to show that
J(i)/K <__ Z(Q/K). In particular therefore J(i)/K is a normal subgroup of
Q/K so that J(i) is a normal subgroup of Q. This completes the inductive
argument proving that J J(n) is a normal subgroup of Q and that (iii)
is a consequence of (ii).
Next we are going to deduce (i) from (iii). Consider a subgroup S of G

whose index [G" S] is prime to p and a normal subgroup K of S. Consider
furthermore a pair P, Q of p-Sylow subgroups of S/K such that ZP <-_ Q.
Let D be the uniquely determined subgroup which contains K and satisfies
D/K P n Q. If E is a p-Sylow subgroup of D, then D KE, since D/K
is a p-group. Denote by P* and Q* the uniquely determined subgroups
which contain K and satisfy P P*/K and Q Q*/K respectively. Then
D <- P* Q*, and the p-subgroup E of D is contained in a p-Sylow subgroup
P** of P* and a p-Sylow subgroup Q** of Q*. Since P is a p-Sylow subgroup
of S/K, the index [S’P*] is prime to p. Hence [G’P*] is likewise prime to
p, so that the p-Sylow subgroup P** of P* is a p-Sylow subgroup of G. Like-
wise Q** is a p-Sylow subgroup of G. Next denote by F the uniquely de-
termined subgroup which contains K and satisfies F/K ZP. From
ZP <= P Q we deduce F __< D KE, so that F K(E F) by Dedekind’s
Law. From F/K ZP and P P*/K we deduce that F is a normal sub-
group of P*. Hence F P** is a normal subgroup of P**. Since K P**
and K E are both p-Sylow subgroups of K, we deduce P** K K E
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from E =< P**. Application of Dedekind’s Law shows now that

F n P** K(E [ F) P** (E F)(K n P**) <= E <= Q**,

since the p-Sylow subgroup E of D/K is part of P** and Q**. We apply
condition (iii) to see that F n P** is a normal subgroup of Q**. Hence

ZP P ZP (P* F)/K (KP** F)/K K(F P**)/g

is a normal subgroup of KQ**/K Q*/K Q. Thus ZP is a normal sub-
group of T {P, Q}; and the centralizer C of ZP in T is a normal subgroup
of T which contains P. Thus TIC is a group of order prime to p. Hence
CQ/C 1 so that Q -< C. Consequently ZP <= ZQ. But all centers of p-
Sylow subgroups of S/K have the same order. Hence ZP ZQ. Thus
S/K is p-normal; and we have verified that (i) is a consequence of (iii).

If (iv) were not a consequence of the equivalent properties (i) to (iii),
then there would exist a group G of minimal order, satisfying (i) to (iii) with-
out satisfying (iv). There would then exist a p-Sylow subgroup P of G,
an element x in G, and a normal subgroup J of NP with J =< P such that
J P J P. It is impossible that at the same time J P -< J and
J P -< J, since this would imply

JnP <= JJ <= PJ <= JJ <= JP,
so that

JP-- JJ- jp.

Thus we may assume without loss in generality that P n J $ J. It will be
convenient to term P, J, x a critical triplet, if P is a p-Sylow subgroup of G,
x an element in G, J a normal subgroup of NP with J

_
P, and P J $ J.

If P, J, x is a critical triplet, then we term P, x a critical pair; and we note
that we have shown the existence of critical triplets and critical pairs.

Consider a critical triplet P, J, x. Then P and P are both p-Sylow sub-
groups of T {P, P}. Consequently there exists an element in T such
that P pt. Since xt-1 belongs to NP, and since the member J of a
critical triplet is a normal subgroup of NP, we have J jt-1, and there-
fore J jr. Since T contains a p-Sylow subgroup of G, it meets require-
ment (i). Since P is a p-Sylow subgroup of T, since J is a normal sub-
group of the normalizer of P in T, and since is an element in T such that

pjt p J P is not part of J, we deduce G T {P, from the
minimality of G. Thus we have shown that

(1) G {P, P} for every critical pair P, x.

Consider a critical triplet P, J, x, and let D P J. The normalizer
N ND of D in G naturally contains the centers ZP and ZP of P and P
respectively. Then ZP is part of a p-Sylow subgroup A of N, and ZP is
part of a p-Sylow subgroup B of N. There exists an element in N such
that A B. Furthermore B is contained in a p-Sylow s.bgroup R of G.
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Then
Z(P’) (ZP)’ <- A’ B =< R and Z(P") <= B <= R.

Since G is p-normal by (i),

Z(P’) ZR Z(P’), Z(P’t-1) Z(P)’-1 Z(pt)t- ZP.

Since belongs to the normalizer of D, so does U1. Consequently

P n J" D Dt- pt- j,t- < p ,-, j,t-.

Since P, J, x is a critical triplet, P a J is not part of J; and this implies a
fortiori that P j,,t- is not part of J. Hence P, J, xt- is likewise a critical
triplet. Consequently G [P, Pt-} by (1). Since ZP ZP"-, it fol-
lows that ZP ZP"t- <= ZG. But the centers of p-Sylow subgroups of
G form a complete class of coniugate subgroups of G; and inner automor-
phisms leave invariant every center element. Thus we have shown that

(2) ZP ZP <= ZG for every critical pair P,.x.

Consider again a critical triplet P, J, x. Since P a J is not part of J,
we conclude that J, and hence J, is different from 1. Since J is a normal
subgroup of the p-Sylow subgroup P, we have

1 J ZP <- ZG

by (2). We let W J ZP, and deduce from (2) that

W- W" J" c Z(P)’ J" ,’, Z(P") J" ZP.

Thus W is a normal subgroup, not 1, of G which is part of J n J. Since
G satisfies (i), so does its quotient group G/W. Since W 1, the order of
G/W is smaller than the order of G. Because of the minimality of G, condi-
tion (iv) holds in G/W. Clearly P/W is a p-Sylow subgroup of
G/W, N(P/W) NP/W, J/W is a normal subgroup of N(P/W) since
J is a normal subgroup of NP and N(P/W) (NP)/W. Hence

(P J’)/W (P/W) c, (J"/W) (P/W) n (J/W)

(J/W) (P/W)" <- J/W;

and this implies P J <- J. This is impossible, since P, J, x is a critical
triplet; and this contradiction shows that (iv) is a consequence of (i) to (iii).
Assume next the validity of (iv), and consider a "characteristic functor"

T as described in (v). If P is a p-Sylow subgroup of G, then TP is a char-
acteristic subgroup of P; and this implies that TP is a normal subgroup of
NP. Application of (iv) shows that

TP P" (TP) P T(P") P for every element x in G;

and this shows the validity of (v), since p-Sylow subgroups are conjugate.
Assume next the validity of (v), and consider a characteristic functor T
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(in the sense of (v)) and a pair of p-Sylow subgroups P, Q of G such that
TP <= Q. Application of (v) shows that

TP TP n Q TQ n P <- TQ.

But the isomorphy of P and Q implies the isomorphy of TP and TQ. Hence
TP TQ; and we have shown that

(v*) TP TQ, if T is a characteristic functor (in the sense of (v)) and if
P, Q are p-Sylow subgroups of G such that TP <-_ Q.

Since Z is a characteristic functor, as used in (v), condition (vi) is a special
case of (v*).
Next we note that the conditions (i) to (iii) whose equivalence has al-

ready been verified are equivalent to the following condition"

(i*) If S is a subgroup of G whose index [G" S] is prime to p, and if K is a
normal p-subgroup of S, then S/K is p-normal.

Assume now by way of contradiction that (i*) is not a consequence of
(vi). Then there would exist a group G of minimal order which satisfies
(vi) without satisfying (i*). Consequently there exist a subgroup S of G
whose index [G" S] is prime to p and a normal p-subgroup K of S such that
S/K is not p-normal. Since S/K is not p-normal, there exists a pair of
p-Sylow subgroups P*, Q* of S/K such that ZQ* ZP* <= Q*. Since K
is a normal p-subgroup of S, every p-Sylow subgroup of S contains K, and
there exist uniquely determined p-Sylow subgroups P, Q of S such that
P* P/K, Q* Q/K. Since [G" S] is prime to p, the p-Sylow subgroups of
S are p-Sylow subgroups of G. Thus (vi) is satisfied by {P, Q}, since (vi)
is satisfied by G. But (i*) is patently not satisfied by {P, Q}. Hence
G {P, Q} is a consequence of the minimality of G. Next denote by U
the uniquely determined subgroup of G which contains K and satis-
fies U/K ZP*. FromZP* <- P* Q* we deduce U -< P Q. It is
clear that K. ZP/K <= ZP* U/K. Hence ZP <= U <- Q; and application
of (vi) shows ZP ZQ. Since G {P, Q}, it follows even that

W ZP- ZQ <= ZG.

Thus W is a normal p-subgroup of G; and W 1 is a consequence of P
which in turn is a consequence of ZQ* ZP*. Since the centers of p-Sylow
subgroups form a complete class of conjugate subgroups of G, we deduce

ZP ZX for every p-Sylow subgroup X of G

from ZP <- ZG. It follows that G/W likewise meets requirement (vi).
But the order of G/W is smaller than the order of G. Hence (i*) is satisfied
by G/W; and this implies that (i*) and all its consequences are satisfied by
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G/W. Since U/KW is a normal subgroup of the p-Sylow subgroup P/KW
of G/KW, and since U/KW is part of the p-Sylow subgroup Q/KW
of G/KW, application of the consequence (iii) of (i*) to G/KW shows that
U/KW is a normal subgroup of Q/KW. Hence U is a normal subgroup of
P and Q. Since G {P, Q}, we see that U is a normal subgroup
of G. Consequently U/K ZP* is a normal subgroup of G/K. Since
the inner automorphism transforming P into Q also transforms P* into Q*
and ZP* into ZQ*, and since it leaves invariant the normal subgroup ZP*
of G/K, we find that ZP* ZQ*, a contradiction which shows that (i*) is
a consequence of (vi), and that therefore the conditions (i) to (vi) are equiv-
alent.

DEFINITION 4.1. The group G is completely p-normal, if it meets the equiva-
lent requirements (i) to (vi) of Lemma 4.1.

By using the defining property (iii) of complete p-normality it is readily
seen that the following result is iust a restatement of

BURNSIDE’S THEOREM. p-homogeneous groups are completely p-normal.

See Burnside [1; p. 156] or Zassenhaus [1; p. 103, Satz 8].
It is quite easy to see that a group is completely p-normal, if it is p-closed

or Pp-closed or if its p-Sylow subgroups are abelian or hamiltonian.
Remark. If the p-Sylow subgroup P of G is normal and abelian, then G

is certainly completely p-normal, and every subgroup J of P is a normal
subgroup of P. But in general subgroups of P are not going to be normal
subgroups of G NP. Thus it is impossible to prove (iv) in the stricter
form where J is required only to be a normal subgroup of P.

5. Pp-closure
We begin with a short discussion of the commutator subgroups of p-Sylow

subgroups.

LEMMA 5.1. Assume that P is a p-Sylow subgroup of the group G.
(a) P’ P n G’ if, and only if, P’ P n (NP)’ and P n Q’ Q n P’

for every p-Sylow subgroup Q of G.
(b) If P’ P n G’, then p-automorphisms are induced in P by elements

in NP.

Proof. Assume first the validity of P’ P n G’. If the element s in NP
induces in P an automorphism a of order prime to p, then x- xs-lx-s
belongs to P n G’ P’ for every x in P. Hence a induces the identity auto-
morphism in PIP’; and this implies that a induces the identity automorphism
in PLOP, since P’ __<_ P as P is a p-group. Application of a result due to
Ph. Hall [1, p. 38] proves a 1, showing (b). Since Sylow subgroups are
conjugate, we deduce Q’ Q n G’ for every p-Sylow subgroup Q of G from
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P’ P n G’. It follows that

PoQ’ PG’ nQ P’ Q
and

P (NP)’ P G’ (NP)’ P’ (NP)’ P’.

Thus the conditions stated in (a) are necessary.
Assume conversely the validity of the conditions of (a). Denote by t

the transfer of G into PIP’, and let K be the kernel of this homomorphism t.
As a consequence of our conditions we find that

P’ {P n (YP)’, P n Q’},

where Q ranges over all the p-Sylow subgroups of G. This implies
PIP’

_
G/K by Grtin’s First Theorem; see Zassenhaus [1; p. 134, Satz 5].

Hence G/K is an abelian p-group so that G’ <- K and G KP. Conse-
quently

P’ <- PoG’ <- PK,

PIP’ G/K KP/K P/(P K) [P/P’]/[(P o K)/P’].

Hence P’ P n K P G’, as we wanted to show.

THEOREM 5.1. The following properties of the group G (and of the prime p)
are equivalent"

(i) G is Pp-closed.
(ii) G is p-homogeneous.
(iii) G is completely p-normal; and if P is a p-Sylow subgroup of G, 0 <- i,

then only p-automorphisms are induced in p(O by elements in G.
(iv) If P, Q are p-Sylow subgroups of G, 0 <- i, then P

and only p-automorphisms are induced in P() by elements in G.
(v) p(O G(O p for every positive i and every p-Sylow subgroup P of G.
(vi) P’ S’ P for every subgroup S of G and every p-Sylow subgroup

PofS.
Proof’. It is a consequence of Lemma 2.1 that (i) implies (ii). That

every p-homogeneous group is completely p-normal is the content of Burn-
side’s Theorem (as stated in 4). The second condition (iii) is an immediate
special case of p-homogeneity. Hence (iii) is a consequence of (ii). Forma-
tion of the i derivative is a characteristic functor in the sense of Lemma
4.1 (v). Complete p-normality of G implies therefore P
for every pair of p-Sylow subgroups P, Q. Hence (iv) is a consequence of
(iii).
Assume next the validity of (iv). We are going to prove by complete

induction with respect to j the validity of

(v.j) P() G() P for every p-Sylow subgroup P of G.

It is clear that (v.0) is true; and thus we may assume that 0 < j, and
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that the validity of (v.j- 1) is already verified. Let H G(i-1). If A
is a p-Sylow subgroup of H, then A is part of a p-Sylow subgroup B of G.
Application of (v.j- 1) shows that

B(-1) G(’-) B H B A.

It follows that every p-Sylow subgroup of H has the form P(-) for P a
suitable p-Sylow subgroup of G, and that every P(-) is a p-Sylow subgroup
of H.

Consider now a pair of p-Sylow subgroups A, B of H. Then there exist
p-Sylow subgroups P, Q of G such that A P(’-) and B Q(-). Appli-
cation of (iv) shows that

B A’ Q H P(i) P H Q() A B’.

If furthermore A is any p-Sylow subgroup of H, then A is the (j- 1)t
derivative of a p-Sylow subgroup of G. By (iv), p-automorphisms only are
induced in A by elements in H. If E is the normalizer of A in H, then the
normal p-subgroup A of E is likewise a p-Sylow subgroup of E. Applica-
tion of Schur’s Theorem shows the existence of a complement D of A in E
so that E AD and 1 A D; see Zassenhaus [1; p. 125, Satz 25]. Then
o(D) [E:A] is prime to p, so that elements in D induce the identity auto-
morphism in A. Hence elements in A and in D commute, so that E is the
direct product of A and D. Then E’ is the direct product of A’ and D’;
and this implies A’ A ,’, E’.
Thus we have verified that the conditions of Lemma 5.1 (a), are satisfied

by H. Hence A’ A n H’ for every p-Sylow subgroup A of H. If P is a
p-Sylow subgroup of G, then P(-I) is a p-Sylow subgroup of H G(-).
Consequently

P() [P(-)]’ P(’-)n H’ P H’ P G();
and this completes the inductive proof of (v.j). Accordingly (v) is a con-
sequence of (iv).

If it were not true that (i) is a consequence of (v), then there would exist
a group G of minimal order which satisfies (v) without being Pp-closed.
Hence G is in particular not a Pp-group nor a p-group. If P is a p-Sylow
subgroup ofG, thenP 1. HenceP < P. ButP’ PGby(v),so
that P’ is p-Sylow subgroup of G’. It follows in particular that the order
of G’ is smaller than the order of G. Noting that P’ is a p-Sylow subgroup
of G’ and that (X’) () X(+), one sees that condition (v) is satisfied by G
too. Because of the minimality of G it follows that G’ is Pp-closed. Hence
there exists a characteristic Pp-subgroup W of G’ such that G’/W is a p-
group. As a characteristic subgroup of a characteristic subgroup, W is a
characteristic subgroup of G.

Let H G/W. Then H G’/W is a p-group. Since subgroups con-
taining the commutator subgroup are normal, and since every p-Sylow sub-
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group of H contains the characteristic p-subgroup H’ of H, the p-Sylow sub-
group K of H is normal and hence characteristic (H is p-closed). If P is a
p-Sylow subgroup of G, then K WP/W; and now we deduce from W =<
condition (v), and Dedekind’s Law that

K’ WP’/W W(P n G’)/W (WP G’)/W K

Application of Lemma 5.1 (b) shows that elements in H induce p-automor-
phisms in K.

Since K is the p-Sylow subgroup of H, we deduce from Schur’s Theorem
the existence of a complement D of K in H so that H KD, 1 K n D,
D

___
H/K; see Zassenhaus [1; p. 125, Satz 25]. Since every element in D

has order prime to p and induces a p-automorphism in K, elements in D and
in K commute. Hence H is the direct product of K and D. Thus D is a
characteristic Pp-subgroup with p-quotient group HID K. Consequently
H is Pp-closed. Hence G is an extension of the Pp-group W by the Pp-
closed group H G/W. Such a group is likewise Pp-closed. Thus we
have arrived at a contradiction by assuming that (i) is not a consequence
of (v); and this completes the proof of the equivalence of conditions (i) to
(v).

If G is Pp-closed, then every subgroup S of G is Pp-closed. If P is a
p-Sylow subgroup of S, then Pp-closure of S and (v) imply P’ S’ P,
showing that (vi) is a consequence of the equivalent conditions (i) to (v).
Assume now that (vi) is satisfied by G, that P is a p-Sylow subgroup of G,

and that P P n G is verified for some i. Since P is a p-Sylow sub-
group of G, application of (vi) shows that

P+ [P]’ Pn [G]’= P n Gn G+ P n G+.
Hence (v) follows from (vi) by complete induction; and this completes the
proof of our theorem.
Remar 5.1. The equivalence of conditions (i) and (ii) is a theorem due

to Frobenius [1, p. 1324, I]. For another proof of this equivalence, com-
pare a forthcoming book by Marshall Hall, Jr.
Remark 5.2. Assume that the p-Sylow subgroups of G are abelian. Then

the first half of condition (iv) is trivially satisfied; and its second half holds
if, and only if, normalizers and centralizers of p-Sylow subgroups coincide.
This shows that the equivalence of conditions (i) and (iv) contains as a
special case a well known Theorem of Burnside; see for instance, Zassenhaus
[1; p. 133, Satz 4]. One notes that Burnside’s Theorem is likewise a special
case of the equivalence of conditions (i) and (iii). It is a consequence of
these remarks that the second half of conditions (iii) and (iv) cannot be
omitted without invalidating the theorem.
Remark 5.3. If the group G is Pp-closed, so are all its subgroups and their

quotient groups. Accordingly all the conditions of Theorem 5.1 are satisfied
by these too. For instance, if G is Pp-closed and Q is a quotient group of a
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subgroup of G, then Q is p-normal. This is considerably stronger than the
requirement of complete p-normality appearing in (iii).

COROLLARY 5.2. The group G is the direct product of a p-group and a Pp-
group if, and only if, G is both p-homogeneous and Pp-homogeneous.

Proof. G is clearly a direct product of a p-group and a Pp-group if, and
only if, G is both p-closed and Pp-closed. Thus the necessity of our condi-
tions is an immediate consequence of Lemma 2.1.

If conversely G is both p-homogeneous and Pp-homogeneous, then G is
Pp-closed by Theorem 5.1. Accordingly there exists a characteristic Pp-
subgroup F of G whose index [G:F] is a power of p. If P is a p-Sylow sub-
group of G, then G FP and 1 F n P. Because of Pp-homogeneity,
elements in P commute with elements in the characteristic Pp-subgroup F
ofG, sothatG F(R)P.
As another application of Theorem 5.1 we offer the following characteriza-

tion of r-closure. It will contain the equivalence of Pp-closure and p-homo-
geneity as a special case.

THEOREM 5.3. The group G is v-closed if, and only if, G is Pr-homogeneous
and {R, P} is an r-p-group whenever R is a (maximal) r-subgroup of G and
P a p-Sylow subgroup of G for p a prime, not in r.

Proof. If G is r-closed, then G is Pr-homogeneous by Lemma 2.1; and
there exists one and only one maximal r-subgroup R of G which naturally is
a characteristic subgroup of G. This shows the necessity of our conditions.
Assume conversely the validity of our conditions. Suppose that R is

some maximal r-subgroup of G. Consider a prime divisor p of o(G) which
does not belong to r. If P is any p-Sylow subgroup of G, then P 1, and
Q {R, P} is by hypothesis an r-p-subgroup of G. Thus p is the one and
only one prime divisor of o(Q) which does not belong to r; and the Pr-homo-
geneity of G implies consequently the p-homogeneity of Q. Application of
Theorem 5.1 shows the Pp-closure of Q which--as has been noted--is equiva-
lent to the r-closure of Q. The totality Q of r-elements in Q is consequently
a characteristic r-subgroup of Q with index [Q :Q] a power of p. In particu-
lar R -< Q and the maximality of R shows that R Q is a characteristic
subgroup of Q. In particular P <- NR.
Denote next by H the subgroup of G which is generated by all the

elements in G. It is clear that H is a characteristic subgroup of G and that
G/H is an r-group. From the result verified in the preceding paragraph of
the proof, we deduce H <= NR for the maximal r-subgroup R of G, since H
is generated by all the p-Sylow subgroups of G with p not in r. In particu-
lar R is a normal subgroup of RH. If U is an r-subgroup of RH, then RU
is an r-subgroup, since the r-group R is normalized by the r-subgroup U of
RH. But R is a maximal r-subgroup of G. Hence R RU so that U -_<- R,
proving that R is the totality of r-elements in RH. Consequently
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K R n H is the totality of r-elements in H. Since R is a subgroup, K is
a characteristic subgroup of the characteristic subgroup H of G. Thus we
see that K is a characteristic r-subgroup of G and that H/K is a Pr-group.
Since G/H is an r-group, we have shown that G is r-separated. Since G is
Pr-homogeneous by hypothesis, we deduce the r-closure of G from Theorem
2.5, Q.E.D.
Remark 5.4. Every r-closed group G has the following property:

(*) If R is a maximal r-subgroup of G, if the prime p is not in r, and if
P is a p-Sylow subgroup of G, then RP PR.

It is furthermore clear that the last condition of Theorem 5.3 is a conse-
quence of (*) and that we may consequently substitute (*) for the last con-
dition of Theorem 5.3. If on the other hand p is some fixed prime and
r Pp, then every group satisfies trivially the last condition of Theorem
5.3, though it need not satisfy (*).

6. Dispersion
In the present section we shall obtain dispersion criteria by combination

of the results obtained so far. Accordingly throughout this section (as in
1) we shall denote by

THEOREM 6.1. The following properties of the group G are equivalent:
(i) G is (r-dispersed.
(ii) G is a-separated and Pa-homogeneous for every (r-segment
(iii) Every subgroup S of G is p-separated and Pp-homogeneous for every

(r-minimal prime p in

The equivalence of (i) and (ii) is an immediate consequence of Theorem
2.5; and the equivalence of (i) and (iii) may be deduced from Theorem 1.1
and Theorem 2.5.

THEOREM 6.2. If every prime divisor of o(G) belongs to 8, then the following
properties of the group G are equivalent:

(i) G is (r-dispersed.
(ii) Every subgroup S of G is p-homogeneous for every (r-maximal prime

divisor p of o(S).
(iii) If S is a subgroup of G and p a (r-maximal prime divisor of o(S), then

S is completely p-normal and NP(i)/CP() is, for P a p-Sylow subgroup of G
and every i, a p-group.

This is easily deduced from Theorems 1.2 and 5.1.
Remark. These results make it possible to obtain simplified proofs of

some of the theorems of Baer [2] and [3]. In particular, Baer [3, p. 243,
Erginzungssatz] is an immediate consequence of Theorem 6.2.

LEMMA 6.3. Assume that every prime divisor of o(G) belongs to 8, or else
that G is p-separated for every prime p in 8. If G is not (r-dispersed, though
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every proper subgroup of G is a-dispersed, then there exists a a-minimal prime
p in 8(G) such that G is not p-closed and such that G is an extension of a q-group
with q p by a cyclic p-group.

Proof. Assume first that every prime divisor of o(G) belongs to 8. Since
G is not a-dispersed, we deduce from Theorem 1.2 the existence of a subgroup
H of G which is not Pp-closed, though p is a a-maximal prime in 8(H). Appli-
cation of Theorem 1.2 shows that H is not a-dispersed. Since every proper
subgroup of G is supposed to be a-dispersed, we find that G H. If J is a
proper subgroup of G, then either p is no divisor of o(J), in which case J is
certainly Pp-closed; or else p is a-maximal in 8(J), in which case Pp-closure
of J is a consequence of Theorem 1.2. Noting that Pp-closure is equivalent
to p-homogeneity by Theorem 5.1, we have verified the following fact:

There exists a a-maximal prime divisor p of o(G) such that G is not p-homo-
geneous, though every proper subgroup of G is p-homogeneous.

We apply Lemma 2.2 and find that G is an extension of a p-group by a cyclic
q-group (p q) and that G is not q-closed. Since every prime divisor of
o(G) belongs to 8, and since q is certainly a prime divisor of o(G), q is in 8.
Since 8(G) consists of p and q only, and since p is a-maximal, q is, of neces-
sity, a-minimal; and thus we have shown in the present case that G has all
the properties claimed.
Assume next that G is p-separated for every prime p in 8. Since G is not

a-dispersed, we deduce from Theorem 1.1 the existence of a subgroup H of G
which is not p-closed, though p is a a-minimal prime in 8(H). Application of
Theorem 1.1 shows that H is certainly not a-dispersed. Since every proper
subgroup of G is a-dispersed, we find G H. If J is a proper subgroup of G,
then either p is no divisor of o(J), in which case J is certainly p-closed; or
else p is a-minimal in 8(J). In the latter case we recall that J as a proper
subgroup of G is a-dispersed, and Theorem 1.1 implies p-closure of J. Since
by hypothesis G is p-separated, every subgroup of G is p-separated too. It
is a consequence of Theorem 2.5 that for p-separated groups p-closure and
Pp-homogeneity are equivalent properties. Thus we have verified the
following fact"

There exists a a-minimal prime p in 8(G) such that G is not Pp-homoge-
neous, though every proper subgroup of G is Pp-homogeneous.

We apply Lemma 2.2 and find that G is an extension of a q-group with q p
by a cyclic p-group and that G is not p-closed; and thus we have shown in the
present case too that G has all the properties claimed.
Remar]. It is noteworthy that all the groups appearing in Lemma 6.3

are soluble. Considering that a a-dispersed group G is certainly soluble, if
every prime divisor of o(G) belongs to 8, we obtain the generalized Theorem
of Iwasawa-Schmidt which asserts that the group G is soluble if all its proper
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subgroups are a-dispersed and if every prime divisor of o(G) belongs to 6;
see Baer [1;p. 172, Corollary 1].

COROLLARY 6.4. If every prime divisor of o(G) belongs to or else G is p-
separated for every prime p in 6, and if every soluble subgroup of G is a-dispersed,
then G is (r-dispersed.

Proof. If G were not a-dispersed, then there would exist a subgroup W
of G which is not a-dispersed, though every proper subgroup of W is a-dis-
persed. Since p-separation is inherited by subgroups, W meets all the re-
quirements of Lemma 6.3. Hence W is soluble. But soluble subgroups of G
are supposed to be a-dispersed. This is a contradiction proving the a-dis-
persion of G.
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