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A STURM-TYPE COMPARISON THEOREM BY A
GEOMETRIC STUDY OF PLANE MULTIHEDGEHOGS

YVES MARTINEZ-MAURE

Abstract. We prove a Sturm-type comparison theorem by a
geometric study of plane (multi)hedgehogs. This theorem implies

that for every 2π-periodic smooth real function h, the number of

zeros of h in [0,2π[ is not bigger than the number of zeros of

h + h′′ plus 2. In terms of N -hedgehogs, it can be interpreted

as a comparison theorem between number of singularities and

maximal number of support lines through a point. The rest of
the paper is devoted to a series of geometric consequences.

1. Introduction and statement of results

The main result of this paper may be stated as follows.

Theorem. Let h be a real 2Nπ-periodic function of class C2 on R (N ∈
N

∗). The number S ∈ N ∪ { ∞} of zeros of h + h′ ′ in [0,2Nπ[ satisfies

nh ≤ S + 4N − 2,

where nh ∈ N ∪ { ∞} is the number of zeros of h in [0,2Nπ[.

In particular, this Sturm-type comparison theorem ensures that:

If h is a real 2π-periodic function of class C2 on R then, on the circle
R/2πZ, the number of zeros of h is not bigger than the number of zeros of
h + h′ ′ plus 2 (of course, these numbers may be infinite).

Sturm theory and geometry of curves. Sturm theory is closely related
to the geometry of curves. In particular, Sturm-type oscillation theorems
enable us to minorate the number of certain special points or concurrent lines
for different types of closed curves. Although our results do not fall in the
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category of oscillation theorems, let us digress for a moment to recall a central
result of Sturm oscillation theory.

Sturm–Hurwitz theorem. Every continuous real function of the form
h(θ) =

∑
n≥N (an cosnθ + bn sinnθ) has at least as many zeros on the circle

S1 = R/2πZ as its first nonvanishing harmonics:

#
(

{θ(mod2π) ∈ S
1 | h(θ) = 0}

)
≥ 2N.

This result was rediscovered by Tabachnikov [13] who applied it to the four
vertex theorem, which claims that every smooth convex curve C ⊂ R

2 has
at least 4 vertices (i.e., 4 critical points of its curvature). Let us recall the
relationship between these two theorems. This will give us the opportunity of
introducing some basic notations and properties that will be essential in the
sequel.

Preliminaries and relation to the four vertex theorem. In the Euclid-
ean vector plane R

2 oriented by its canonical basis, let us consider a convex
curve C of class C2

+. Let us recall that:

(i) C is determined by its support function h, which is defined on the
unit circle S

1 by h(u) = maxx∈C 〈x,u〉, where 〈·, · 〉 denotes the standard scalar
product on R

2; indeed, h is of class C2 on S
1 and C can be regarded as the

envelope of the family of lines (Dh(u))u∈S1 with equation 〈x,u〉 = h(u).
(ii) The curve C can be parametrized by

xh : S
1 ⊂ R

2 −→ R
2,

u(θ) �−→ xh(θ) := h(θ)u(θ) + h′(θ)u′(θ),

where u(θ) is the point with coordinates (cosθ, sinθ) in the canonical basis
of R

2 and where h is regarded as a function of θ.
(iii) The algebraic curvature k(θ) of C at xh(θ) is given by

1
k(θ)

= (h + h′ ′)(θ).

From now on, C is assumed to be of class C3
+, which implies that h is

of class C3 on S
1. Vertices of C correspond to the values of θ for which

(h′ +h′ ′ ′)(θ) = 0. In the Hilbert space of square integrable functions on [0,2π],
h′ + h′ ′ ′ = (h + h′ ′)′ is orthogonal to constants (as a derivative) and to cos(θ)
and sin(θ) (because the operator ∂2/∂θ2 +1 kills these harmonics). Since the
first nonvanishing harmonics of h′ +h′ ′ ′ is of order N ≥ 2, the Sturm–Hurwitz
theorem ensures that C has at least 4 vertices. For more details on geometric
applications of the Sturm–Hurwitz theorem, the reader may refer for instance
to [2] and [13].
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Comparison theorems. Hedgehogs and multihedgehogs. The results
of this paper are of different nature since they fall in the category of compari-
son theorems: they do not enable us to minorate the number of certain special
points or concurrent lines for different types of closed curves but to compare
such numbers. For instance, Theorem 1 will enable us to compare number of
vertices and maximal number of concurrent normal lines for a convex curve
of class C3

+ in R
2.

The proof of these results is based on the notions of hedgehogs and multi-
hedgehogs, which were already used by the author to give a geometric proof
of the Sturm–Hurwitz theorem for C2 functions [9]. Let us recall briefly these
notions. We know that the support function of a convex curve of class C2

+ is
C2 on S

1. Of course, a function h ∈ C2(S1;R) is not necessarily the support
function of a convex curve of class C2

+. However, we can always associate to h
the envelope of the family of lines (Dh(u))u∈S1 with equation

〈x,u〉 = h(u).

This envelope is denoted by Hh and called hedgehog with support function h. It
can always be parametrized by the map xh : S

1 → R
2, u(θ) = (cosθ, sinθ) �−→

xh(θ), where xh(θ) = (x1
h(θ), x2

h(θ)) is the unique solution to the system{
x1 = h(θ) cosθ − h′(θ) sinθ,

x2 = h(θ) sinθ + h′(θ) cosθ,

that is xh(θ) := h(θ)u(θ) + h′(θ)u′(θ), h being regarded as a function of θ.
For every u ∈ S

1, the line Dh(u) is called the support line cooriented by u and
h(u) can be interpreted as the signed distance from the origin to Dh(u). Note
that xh : S

1 → Hh can be regarded as the inverse of the Gauss map of Hh, in
the sense that at each regular point xh(u), u is normal to Hh. Differentiation
of xh gives

x′
h(θ) = (h + h′ ′)(θ)u′(θ)

for all θ ∈ R. Therefore, the hedgehog Hh is regular at xh(θ) if and only if
(h + h′ ′)(θ) �= 0. Its algebraic curvature k(θ) at this point is then given by

1
k(θ)

= |(h + h′ ′)(θ)|.

The function Rh(θ) := (h + h′ ′)(θ) is called curvature function of Hh. Note
that Rh(θ) is well-defined for all θ ∈ R and that Rh(θ) = 0 if and only if xh(θ)
is a singular point of Hh.

A regular (i.e., singularity-free) hedgehog Hh ⊂ R
2 is a convex curve of class

C2
+ (Figure 1(a)). A hedgehog Hh ⊂ R

2 is said to be not too singular if it
has a well-defined (geometric) tangent line at every point. A not too singular
hedgehog Hh ⊂ R2 is a curve that has exactly one oriented tangent line in each
direction (Figure 1(b)). For every u ∈ S

1, the signed distance h(u) + h(−u)
between the cooriented support lines Dh(u) and Dh(−u) is called the width
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(a) (b) (c)

Figure 1. (a) A regular hedgehog. (b) A hedgehog.
(c) A projective hedgehog.

of Hh in direction u. A hedgehog Hh ⊂ R
2 is said to be projective if it is

of constant width 0 that is, if: ∀u ∈ S
1, h(−u) = −h(u). A not too singular

projective hedgehog Hh ⊂ R
2 is a curve that has exactly one nonoriented

tangent line in each direction (Figure 1(c)).
In the Euclidean vector plane R

2, N -hedgehogs are defined in the same way
as hedgehogs, except that their support functions are 2Nπ-periodic instead of
being 2π-periodic (N ∈ N

∗). The integer N is just the number of full rotations
of the coorienting normal vector u(θ) = (cosθ, sin θ) as θ describes [0,2Nπ[.
Therefore, an N -hedgehog Hh ⊂ R

2 has exactly N cooriented support lines
with a given normal vector u ∈ S

1 (counted with their multiplicity). Natu-
rally, hedgehogs of R

2 are simply 1-hedgehogs of R
2. Here are some examples

of “multihedgehogs” of R
2: for every n ≥ 2, the hypocycloid (resp. the epicy-

cloid) with support function hn(θ) = sin(nθ) (resp. en(θ) = sin((n − 1)θ/nθ))
is a 1-hedgehog (resp. an n-hedgehog) with 2n (resp. 2(n − 1)) cusps (cf. Fig-
ure 2); when n is odd, the cusps of the hypocycloid are counted twice because
Hhn is described twice by xhn(θ) as θ describes [0,2π[.

Hedgehog theory. The notion of hedgehog with support function C2 ex-
tends to the Euclidean vector space R

n+1 (n ∈ N
∗) [5]. Every hedgehog

Hh ⊂ R
n+1 with support function C2 can be regarded as a difference of convex

(a) (b)

Figure 2. (a) The hypocycloid Hh5 . (b) The epicycloid He3 .
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bodies of class C2
+ (i.e., bounded by a C2 surface with nonvanishing Gauss

curvature). To this end, it suffices to write h in the form (h + r) − r, where
r ∈ R

∗
+ is large enough. We can also associate a hedgehog Hh ⊂ R

2 to any
function h ∈ C1(S1;R). But in general, such a hedgehog cannot be interpreted
as a difference of convex bodies (and may even be a fractal) [10].

More generally, this interpretation of hedgehogs with a C2 support func-
tion as differences of convex bodies of class C2

+ leads to associate an ap-
propriate geometric realization to any formal difference of convex bodies of
R

n+1 [10]. Hedgehog theory then consists in: 1. regarding each formal dif-
ference K − L of convex bodies K,L ⊂ R

n+1 as a (possibly singular and self-
intersecting) hypersurface of R

n+1, called a hedgehog and determined by the
difference h = hK − hL of the support functions; 2. extending the mixed vol-
ume V : (Kn+1)n+1 → R, where Kn+1 denotes the set of convex bodies of
R

n+1, to a symmetric (n + 1)-linear form on the vector space Hn+1 of hedge-
hogs of R

n+1; 3. considering the Brunn–Minkowski theory in Hn+1. For n ≤ 2,
the idea goes back to a paper by Geppert [4, 1937]. Its relevance comes from
the two following principles:
1. The study of convex bodies by splitting them judiciously (that is, according

to the problem under consideration) into a sum of hedgehogs;
2. The geometrization of analytical problems by regarding real functions as

support functions of hedgehogs or multihedgehogs.
The first one enabled the author to disprove a characterization of the 2-sphere
conjectured by Alexandrov in the thirties [7] and the second one to give a geo-
metrical proof of the Sturm–Hurwitz theorem [9]. Both principles will be used
in this paper. The reader will find a short introduction to the theory in [10].
A discrete version of hedgehogs has been studied since the nineties under
the name “virtual polytopes” (see the paper by Panina [11], which gives new
counterexamples to the Alexandrov conjecture). For a survey on the Brunn–
Minkowski theory, we refer the reader to the book by Schneider [12].

Introduction of results. The main result is the following theorem.

Theorem 1. Let h be a real 2Nπ-periodic function of class C2 on R (N ∈
N

∗). The number S ∈ N ∪ { ∞} of zeros of h + h′ in [0,2Nπ[ satisfies the
inequality

(1) sup
x∈R2

nh(x) ≤ S + 4N − 2,

where nh(x) ∈ N ∪ { ∞} denotes the number of zeros of hx(θ) = h(θ) − 〈x,u(θ)〉
in [0,2Nπ[.

It can naturally be interpreted in terms of N -hedgehogs.

Geometrical interpretation. Let Hh be an N -hedgehog of R
2. The

number S ∈ N ∪ { ∞} of its singular points (counted on [0,2Nπ[) satisfies the
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inequality
sup
x∈R2

nh(x) ≤ S + 4N − 2,

where nh(x) ∈ N ∪ {∞} denotes the number of cooriented support lines of Hh

through x (counted with their multiplicity).

Note that Theorem 1 allows us to estimate from above the number of zeros
that the solutions of certain differential equations may have.

Reformulation of Theorem 1. Let R be a real 2Nπ-periodic continu-
ous function on R such that∫ 2Nπ

0

R(θ)u(θ)dθ = 0R2 ,

and let S ∈ N ∪ { ∞} be the number of its zeros in [0,2Nπ[. Then we have

sup
h∈SR

n(h) ≤ S + 4N − 2,

where n(h) ∈ N ∪ {∞} is the number of zeros of h in [0,2Nπ[ and SR the set
of solutions of the differential equation h′ ′(θ) + h(θ) = R(θ).

Remark. The inequality of Theorem 1 can be reinforced in various par-
ticular cases (see below). However, under assumptions of Theorem 1, this
inequality is sharp: for every (N,S) ∈ N

∗ × 2N, there exists an N -hedgehog
Hh ⊂ R2 having exactly S cusps and satisfying the inequality

(2) sup
x∈R2

nh(x) = S + 4N − 2.

For every N = k + 1 ≥ 2, the two N -hedgehogs having the same geometrical
realization as the hypotrochoid Γk parametrized by γk : [0,2(k + 1)π] → R

2,
t �→ (γ1

k(t), γ2
k(t)), where{

γ1
k(t) = 2k cos t + (2k + 1)cos kt

k+1 ,

γ2
k(t) = 2k sin t − (2k + 1) sin kt

k+1

are singularity-free and satisfy (2). Figure 3 represents Γk for k = 1 and k = 2.
For every S ∈ 2N, we can then make pairs of cusps to appear successively

(as shown on Figure 4) in the region of the plane where the index achieves
its minimum value in order to obtain an N -hedgehog having exactly S cusps
and still satisfying (2).

For N = 1, every regular N -hedgehog Hh ⊂ R
2 satisfies (2) and, for every

S ∈ 2N, we can then make pairs of cusps to appear successively in the region
of the plane where the index achieves its minimum value in order to obtain
a hedgehog having exactly S cusps and still satisfying (2). For S = 2, one
obtains a hedgehog such that the hedgehog Hh represented in Figure 5, where
h(θ) = −7 − 4cos(2θ) − cos(3θ).
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(a) (b)

Figure 3. (a) (N,S) = (2,0). (b) (N,S) = (3,0).

The conclusion of Theorem 1 can be reinforced in the case where h is
a Möbius function, i.e., a 2π-periodic function such that h(θ + π) = −h(θ) for
every θ ∈ R.

Theorem 2. Let h be a real 2π-periodic function of class C2 on R such
that h(θ + π) = −h(θ) for every θ ∈ R. The number S ∈ N ∪ { ∞} of zeros of
h + h′ ′ in [0,2π[ satisfies the inequality

(3) sup
x∈R2

nh(x) ≤ S,

where nh(x) ∈ N ∪ { ∞} is the number of zeros of hx(θ) = h(θ) − 〈x,u(θ)〉 in
[0,2π[.

This result can naturally be interpreted in terms of projective hedgehogs.

Geometrical interpretation. Let Hh be a projective hedgehog of R
2.

The number S ∈ N ∪ { ∞} of its singular points (counted on S
1) satisfies the

inequality
sup
x∈R2

nh(x) ≤ S,

where nh(x) ∈ N ∪ { ∞} is the number of cooriented support lines of Hh through
x that is, the number of zeros of hx(θ) = h(θ) − 〈x,u(θ)〉 in [0,2π[.

Remark. The equality
sup
x∈R2

nh(x) = S

holds for every projective hedgehog that is the geometrical realization of a
hypocycloid with an odd number of cusps, i.e., with a support function of the

Figure 4. Creation of pairs of cusps.
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Figure 5. Case (N,S) = (1,2).

form
h(θ) = a cosθ + b sinθ + c cos[(2n + 1)θ] + d sin[(2n + 1)θ],

where (a, b) ∈ R
2, (c, d) ∈ R

2 − {(0,0)} and n ∈ N
∗.

Other geometric applications. These results also allow us to compare
number of vertices and maximal number of concurrent normal lines for a
convex curve of class C3

+ in R
2.

Corollary 1. Let Hh ⊂ R
2be an N -hedgehog of class C3

+. The number
S′ ∈ N ∪ { ∞} of its vertices satisfies the inequality

(4) sup
x∈R2

n′
h(x) ≤ S′ + 4N − 2,

where n′
h(x) ∈ N ∪ { ∞} is the number of oriented normal lines to Hh through x

(counted with their multiplicity) that is, the number of zeros of the derivative
of hx(θ) = h(θ) − 〈x,u(θ)〉 in [0,2Nπ[.

In the case of a curve of constant width, the conclusion can be reinforced.

Corollary 2. Let Hh ⊂ R
2 be a convex curve of class C3

+. If Hh is of
constant width (i.e., if there exists L ∈ R such that: ∀θ ∈ R, h(θ +π)+h(θ) =
L), then the number S′ ∈ N ∪ {∞} of its vertices satisfies the inequality

(5) sup
x∈R2

n′
h(x) ≤ S′,

where n′
h(x) ∈ N ∪ {∞} is the number of oriented normal lines to Hh through

x (i.e., the number of zeros of the derivative of hx(θ) = h(θ) − 〈x,u(θ)〉 in
[0,2π[).

Since the first nonvanishing harmonics of h′ + h′ ′ ′ is then of order N ≥ 3,
Hh has at least 6 vertices from the Sturm–Hurwitz theorem. The author:
(i) proved that for every convex curve of constant width and of class C2

+ of
R

2, there exists a point of R
2 through which infinitely many normals pass

or an open set of points through each of which pass at least 6 normals [6];
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(ii) studied under which necessary and sufficient condition(s) on Hh, we have
S′ = supx∈R2 n′

h(x) = 6 [8].
Lastly, by projective duality, Theorems 1 and 2 allow to compare, for any

spherical curve that is transverse to the meridians, the number of inflection
points to the maximal number of intersection points with a great circle. Recall
that, by virtue of the Arnold Tennis Ball Theorem, “Every closed simple
smooth spherical curve dividing the sphere S

2 into two regions of equal areas
has at least 4 inflection points” ([1], [3]). Here, an inflection point is simply
a zero of the geodesic curvature that is, a point of at least second order
tangency of the curve with a great circle. See [2] for the case where the
spherical curve is invariant under the antipodal map.

Corollary 3. Let C be a closed simple smooth curve on the unit sphere S
2

of R
3. If C is everywhere transverse to the meridians then the number I ∈

N ∪ {∞} of its inflection points (i.e., of zeros of its geodesic curvature) satisfies
the inequality

(6) sup
v∈S2

I(v) ≤ I + 2,

where I(v) ∈ N ∪ {∞} is the number of intersection points of C with the great
circle S

2 ∩ v⊥, v⊥ ⊂ R
3 denoting the vector plane that is orthogonal to v.

If moreover the curve C is invariant under the antipodal map, then

(7) sup
v∈S2

I(v) ≤ I.

2. Proof of results and further remarks

Proof of Theorem 1. Let us demonstrate that the inequality

(8) nh(x) ≤ S + 4N − 2

holds for every x ∈ R
2. As the equality is obvious when S = +∞, we may

assume that S is finite. The proof will rely on the following lemma.

Lemma. For every line D of R
2, we have:

#
(

{θ ∈ [0,2Nπ[ | xh(θ) ∈ D}
)

≤ S + 2N.

Proof. We may assume without loss of generality that D is the x1-axis,
where (x1, x2) are the coordinates of x in the canonical basis of R2. In this
case, we have xh(θ) = (x1

h(θ), x2
h(θ)) ∈ D if and only if x2

h(θ) = 0. Since Rolle’s
theorem ensures that the zeros of (x2

h)′(θ) = Rh(θ) cosθ separate those of x2
h,

we thus have indeed

S ≥ #
(

{θ ∈ [0,2Nπ[ | xh(θ) ∈ D}
)

− 2N,

from the fact that the equation cosθ = 0 has exactly 2N solutions in the
interval [0,2Nπ[.

Let us distinguish two cases.
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First case: x ∈ R
2 − Hh. Let ih(x) be the index of x with respect to the

oriented curve Hh, that is, the winding number of Hh around x (defined in
terms of degree or using complex analysis). Let us recall that:

(i) The orientation of an N -hedgehog such as Hh is determined by the di-
rection of the concavity of its regular subpaths. For this reason, the hedgehog
Hh3 (resp. the 3-hedgehog He3) represented in Figure 1(c) (resp. Figure 2(b))
is oriented in the positive (resp. negative) sense.

(ii) The index ih(x) can be regarded as the algebraic intersection number
of Hh and almost every oriented half-line with origin x. More precisely, for
every oriented half-line D with origin x that does not meet the singular locus
of Hh, we have:

ih(x) =
∑

θ∈x−1
h (D)

sign[〈xh(θ) − x,u(θ)〉Rh(θ)].

(iii) The number nh(x) of cooriented support lines of Hh through x satisfies
nh(x) = 2(N − ih(x)) [9].

Therefore, inequality (8) is obvious if ih(x) ≥ 0. Thus, let us assume ih(x) <
0. As we have then

2
(
1 + |ih(x)|

)
= 2

(
1 − ih(x)

)
= nh(x) − 2(N − 1),

the lemma ensures that it suffices to prove the existence of a line D ⊂ R
2 such

that
#

(
{θ ∈ [0,2Nπ[ | xh(θ) ∈ D}

)
≥ 2

(
1 + |ih(x)|

)
.

To this end, we may assume that hxRhx changes sign on R. Indeed, since
x ∈ R

2 − Hh the function hx changes sign at each of its zero so that if hxRhx

does not change sign then Rhx (i.e., Rh) changes sign at each zero of hx and
thus nh(x) ≤ S, which implies that inequality (8) holds.

Now, the sign of hxRhx indicates the direction of the concavity of Hh with
respect to x that is, the direction in which

γ(θ) =
xh(θ) − x

| xh(θ) − x‖
is moving on the circle S

1, where ‖ · ‖ is the Euclidean norm on R
2. Therefore,

if hxRhx changes sign on R, then there exists a line D through x for which

#
(

{θ ∈ [0,2Nπ[ | xh(θ) ∈ D}
)

≥ 2
(
1 + |ih(x)|

)
.

Second case: x ∈ Hh. By virtue of the first case, it suffices to prove that
there exists a y ∈ R

2 − Hh such that nh(x) ≤ nh(y). To this end, we are going
to study variations of nh on a line D that passes through x and is distinct
from support lines of Hh. We may assume without loss of generality that D
is the x1-axis and that x is the origin 0R2 of R

2. The lemma ensures that the
set

{θ ∈ [0,2Nπ[ | xh(θ) ∈ D, i.e., x2
h(θ) = 0}



STURM-TYPE COMPARISON THEOREM 991

is finite and therefore that there exists an ε > 0 such that (] − ε, ε[ ×{0}) ∩ Hh =
{0R2 }. For every θ ∈ R such that cosθ �= 0, the support line with equation

〈x,u(θ)〉 = h(θ) cuts the x1-axis at a point (x1(θ),0). The map x1 : R − { π
2 +

kπ|k ∈ Z} → R is given by

x1(θ) =
h(θ)
cosθ

,

so that

x′
1(θ) =

h′(θ) cosθ + h(θ) sinθ

cos2 θ
=

x2
h(θ)

cos2 θ
.

Therefore, on every connected component C of x−1
1 (] − ε, ε[), the map x1 : C →

R is never constant on a nontrivial segment and its variation direction changes
only at isolated points at which x2

h vanishes and changes of sign (i.e., at points
for which Hh crosses the x1-axis at 0R2). The map nh is thus of the following
form on ]−ε, ε[ ×{0}:

nh(x1,0) =

⎧⎪⎨
⎪⎩

2(p + r), if − ε < x1 < 0,

p + q + 2r, if x1 = 0,

2(q + r), if 0 < x1 < ε,

where r ∈ N and where

p = #({θ ∈ [0,2Nπ[ | x1 achieves a maximum equal to 0 at θ})

and

q = #({θ ∈ [0,2Nπ[ | x1 achieves a minimum equal to 0 at θ}).

As p + q ≤ 2max(p, q), it follows that there exists indeed a y ∈ R
2 − Hh such

that nh(y) ≥ nh(x). �

�

Proof of Theorem 2. By assumption, the hedgehog Hh is projective that
is, its support function h satisfies: ∀θ ∈ R, h(θ + π) = −h(θ). The parame-
trization xh is then π-periodic so that xh(θ) describes Hh twice as θ describes
the segment [0,2π]. Therefore, for every x ∈ R

2 − Hh such that hxRhx changes
sign on R, there exists a line D through x for which

#
(

{θ ∈ [0,2Nπ[ | xh(θ) ∈ D}
)

≥ 2
(
2 + |ih(x)|

)
.

Repeating the proof of Theorem 1 step by step, it follows that h satisfies (3).
�

Proofs of Corollaries 1 and 2. The following remarks enable us to consider
these corollaries as applications of Theorems 1 and 2 to the evolute of Hh:
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(i) Vertices of Hh correspond to singular points of its evolute. Now, we
know (cf. [9]) that this evolute is the N -hedgehog with support function

∂h(θ) = h′
(

θ − π

2

)
(θ ∈ R).

The number of vertices of Hh is thus equal to the number of zeros of R∂h in
[0,2Nπ[.

(ii) For every x ∈ R
2, we have:

∀θ ∈ R, (∂h)x

(
θ +

π

2

)
= (hx)′(θ),

where (∂h)x is given by (∂h)x(θ) = ∂h(θ) − 〈x,u(θ)〉 for every θ ∈ R. �

Proof of Corollary 3. Let (e1, e2, e3) be the canonical basis of R
3. Note

that upper bounds of the sets {I(v) | v ∈ S
2} and {I(v) | v ∈ R

2 × {−1}} are
equal by the fact that C is transverse to the meridians (i.e., to the great circles
through e3). By virtue of assumptions, C admits a parametrization of the form

γh : S
1 −→ S

2 ⊂ R
2 × R,

u �−→ 1√
1 + h(u)2

(u,h(u)),

where h : S
1 → R is the support function of a hedgehog of R2. The curves C

and Hh can be regarded as two projectively dual curves: the intersection of S
2

(resp. of R
2 × {−1}) with the vector plane that is orthogonal to (xh(u), −1)

(resp. γh(u)) is the great circle of S
2 that is tangent to C at γh(u) (resp. the

support line of the hedgehog Hh × {−1} ⊂ R
2 × {−1} with normal vector

(u, −1)). Therefore, inflection points of C correspond exactly to singular points
of xh : S1 → R2. Besides, for every v = (x, −1) ∈ R2 × {−1}, points of the
intersection of C with the great circle S

2 ∩ v⊥ correspond exactly to cooriented
support lines of Hh through x (i.e., to zeros of hx(u) = h(u) − 〈x,u〉 on S

1).
Inequalities (6) and (7) are thus straightforward consequences of those of
Theorems 1 and 2. �
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