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Abstract Our aim in this article is to deal with boundary limits of monotone Sobolev

functions in Musielak–Orlicz spaces on uniform domains in a metric space.

1. Introduction

We denote by B(x, r) the open ball centered at x with radius r > 0 and set

λB(x, r) =B(x,λr) for λ > 0. A continuous function u on an open set D in the

n-dimensional Euclidean space Rn is called monotone in the sense of Lebesgue

(see [13]) if the equalities

max
G

u=max
∂G

u and min
G

u=min
∂G

u

hold whenever G is a domain with compact closure G⊂D. If u is a monotone

function on D satisfying∫
D

∣∣∇u(z)
∣∣p dz <∞ for some p > n− 1,

then

(1.1)
∣∣u(x)− u(y)

∣∣ ≤C(n,p)r1−n/p
(∫

2B(x,r)

∣∣∇u(z)
∣∣p dz)1/p

whenever y ∈ B(x, r) with 2B(x, r) ⊂ D, where C(n,p) is a positive constant

depending only on n and p (see [17, Chapter 8], [20, Section 16]). By using this

inequality (1.1), Lindelöf theorems for monotone Sobolev functions on the half-

space of Rn were proved in [6], as an extension of [16, Theorem 2], [14], and [15].

Tangential boundary limits of monotone Sobolev functions with finite Dirichlet

integral in the half-space were studied in [16]. For Orlicz spaces, see [3]. For

related results, see [7], [12], [17], and [19].
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We denote by (X,d,μ) a metric measure space, where X is a set, d is a

metric on X , and μ is a Borel measure on X which is positive and finite in every

ball. We write d(x, y) = |x− y| for simplicity. A domain D in X with ∂D �= ∅ is

a uniform domain if there exist constants A1 ≥ 1 and A2 ≥ 1 such that each pair

of points x, y ∈D can be joined by a rectifiable curve γ in D for which

�(γ) ≤ A1|x− y|,(1.2)

δD(z) ≥ A2min
{
�
(
γ(x, z)

)
, �

(
γ(y, z)

)}
for all z ∈ γ,(1.3)

where �(γ), δD(z), and γ(x, z) denote the length of γ, the distance from z to

∂D, and the subarc of γ connecting x and z, respectively. Roughly speaking,

a domain D is a uniform domain if each pair of points in D can be joined by a

cigar which is not too thin or too crooked. For example, a Lipschitz domain is a

uniform domain (see [18]). Lindelöf theorems for monotone Sobolev functions on

uniform domains were studied in [5].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to

discuss nonlinear partial differential equations with nonstandard growth con-

ditions. For a survey, see [2] and [4]. Let B be the unit ball in Rn. Lindelöf

theorems for monotone Sobolev functions in variable exponent Lebesgue spaces

Lp(·)(B) were investigated in [9]. For the two variable exponents Lebesgue spaces

Lp(·)(logL)q(·)(B), see [10]. These spaces are special cases of so-called Musielak–

Orlicz spaces. Futamura and the authors [8] studied Lindelöf theorems for mono-

tone Sobolev functions in variable exponent Lebesgue spaces on uniform domains

in a metric space.

Our main task in this article is to establish Lindelöf-type theorems for mono-

tone Sobolev functions in Musielak–Orlicz spaces on uniform domains in a metric

space (see Theorem 2.2) as an extension of the above results. What is new about

this article is that we can pass our results to the Musielak–Orlicz spaces; the

technique developed in [3, Section 2] still works. We shall also show tangential

boundary limits of monotone Sobolev functions in our generalized setting (see

Proposition 4.1). Theorem 2.2 and Proposition 4.1 are new even for a constant

exponent case.

We state definitions and results in the next section. In Section 3, we prepare

some lemmas to prove our results. We prove Theorem 2.2 and Proposition 4.1 in

Section 4. Throughout this article, let C denote various constants independent

of the variables in question.

2. Definitions and main results

In this article, for p0 > 1, we are concerned with a positive continuous function

p(·) on X satisfying the following conditions:

(p1) p0 ≤ p− ≡ infx∈X p(x)≤ p+ ≡ supx∈X p(x)<∞,

(p2) |p(x)− p(y)| ≤ C
log(e+1/|x−y|) for all x, y ∈X .

If p(·) satisfies (p2), we say that p(·) satisfies a log-Hölder condition.

Let ϕ be a positive function on X × (0,∞) such that
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(ϕ0) 0< infx∈X ϕ(x,1/2) and supx∈X ϕ(x,2)<∞;

(ϕ1) ϕ(·, t) is measurable for all t > 0 and ϕ(x, ·) is uniformly quasi-

increasing:

ϕ(x, s)≤C1ϕ(x, t) for all x ∈X whenever 0< s< t.

We assume that ϕ is of log type; namely, there is a constant C2 > 0 such that

(ϕ2) 1
C2

≤ ϕ(x,t2)
ϕ(x,t) ≤C2 for all x ∈X and t > 0.

We further assume that ϕ satisfies the local log-Hölder-type condition:

(ϕ3) 1
C3

≤ ϕ(x,r−1)
ϕ(y,r−1) ≤C3 for all x, y ∈X with |x− y|< r and r ≤ 1.

The constants C1–C3 are independent of x, y ∈X and t, s, r > 0.

We see that (ϕ0)–(ϕ2) imply the uniform doubling condition:

(ϕ2.1) C−1 ≤ ϕ(x,t)
ϕ(x,s) ≤C for all x ∈X and 2−1s≤ t≤ 2s.

Further,

(ϕ2.2) tε0ϕ(x, t) is uniformly quasi-increasing on (0,∞) for every ε0 > 0;

(ϕ2.3) t−ε1ϕ(x, t) is uniformly quasidecreasing on (0,∞) for every ε1 > 0

(see, e.g., [17, Chapter 5, Lemma 3.1]). If ϕ(x, t) is of log type, then ϕ(x, t−1) is

also of log type.

EXAMPLE 2.1

Let qj(·), j = 1, . . . , k, be measurable functions on X such that

(q1) −∞< q−j := infx∈X qj(x)≤ supx∈X qj(x) =: q+j <∞
for all j = 1, . . . , k.

Set L(1)(t) = log(e+ t) for t≥ 0 and L(j+1)(t) = L(1)(L(j)(t)) inductively. Set

ϕ(x, t) =

k∏
j=1

(
L(j)(t)

)qj(x)
.

Then ϕ(x, t) satisfies (ϕ2), and ϕ(x, t) satisfies (ϕ1) if either

(i) q−� > 0 for some 1≤ �≤ k and q−j ≥ 0 for j = 1,2, . . . , �− 1, or

(ii) q−j ≥ 0 for all j = 1, . . . , k.

We see that ϕ(x, t) satisfies (ϕ3) if

(q2) for each j, qj(·) is (j + 1)-log-Hölder continuous, namely,

∣∣qj(x)− qj(y)
∣∣ ≤ Cqj

L(j+1)(1/|x− y|)
for all x, y ∈X with constants Cqj > 0.

For a function ϕ satisfying all the conditions (ϕ0)–(ϕ3), set

Φ(x, t) =

{
tp(x)ϕ(x, t) t > 0,

0 t= 0.

We see from the assumption p− > 1 in (p1) and (ϕ2.2) that
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(Φ0) limt→0+ t−1Φ(x, t) = 0;

(Φ1) t �→ t−1Φ(x, t) is uniformly quasi-increasing on (0,∞).

Here note that if Φ(x, t) is convex for each x ∈ X , then (Φ1) holds; in fact,

t−1Φ(x, t) is nondecreasing for each x ∈X .

Let D be a domain in X with ∂D �= ∅. A continuous function u is called

monotone in D (see [6]) if there exists a nonnegative function g ∈ Lp0

loc(D) such

that

(2.1)
∣∣u(x)− uB

∣∣ ≤Cr
( 1

μ(σB)

∫
σB

g(z)p0 dμ(z)
)1/p0

for every x ∈ B with σB ⊂ D, where σ > 1, B = B(y, r), p0 is the constant

appearing in (p1), and

uB =
1

μ(B)

∫
B

u(z)dμ(z).

In this article, following [5] and [7], we consider the boundary limits of func-

tions u on a uniform domain D for which there exist a constant α ∈R and a

nonnegative function g ∈ Lp0

loc(D) such that

(2.2)
∣∣u(x)− u(x′)

∣∣ ≤Cr
( 1

μ(σB)

∫
σB

g(z)p0 dμ(z)
)1/p0

for every x,x′ ∈B with σB ⊂D, where σ > 1, B =B(y, r), and

(2.3)

∫
D

Φ
(
z, g(z)

)
δD(z)α dμ(z)< 1.

Note here that (2.1) implies (2.2). Let μ be a Borel measure on X satisfying the

doubling condition

μ(2B)≤ cdμ(B)

for every ball B ⊂X . We further assume that

(2.4)
μ(B′)

μ(B)
≥C

(r′

r

)s

for all balls B′ = B(x′, r′) and B = B(x, r) with x′, x ∈ D and B′ ⊂ B, where

s > 1 (see, e.g., [11]). Here note that if μ satisfies the doubling condition, then

μ(B′)

μ(B)
≥ c−2

d

(r′

r

)log2 cd

for all balls B′ =B(x′, r′) and B =B(x, r) with x′, x ∈D and B′ ⊂B (see, e.g.,

[1, Lemma 3.3]).

Let u be a function on D, and let ξ ∈ ∂D. For β ≥ 1 and c > 0, set

Tβ(ξ; c) =
{
x ∈D : |x− ξ|β ≤ cδD(x)

}
.

We say that u has a tangential limit of order β at ξ if the limit

lim
Tβ(ξ;c)�x→ξ

u(x)
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exists and is finite for every c > 0. In particular, a tangential limit of order 1 is

called a nontangential limit.

Our main aim in this article is to establish the following result concerning

the Lindelöf-type theorem.

THEOREM 2.2

Let u be a function on a uniform domain D with g ≥ 0 satisfying (2.2) and (2.3),

and let β ≥ 1. Suppose s+ α− 1< p− ≤ p+ < s+ α, and set

Eβ =
{
ξ ∈ ∂D : limsup

r→0
rβ(p(ξ)−s−α)+sϕ(ξ, r−1)−1μ

(
B(ξ, r)

)−1

×
∫
B(ξ,r)∩D

Φ
(
z, g(z)

)
δD(z)α dμ(z)> 0

}
.

If ξ ∈ ∂D \Eβ and there exists a rectifiable curve γ in D tending to ξ along which

u has a finite limit L, then u has a tangential limit L of order β at ξ.

REMARK 2.3

Let β ≥ 1. Let hβ(r;x) = rβ(−p(x)+s+α)−sϕ(x, r−1)μ(B(x, r)) for x ∈ ∂D and 0<

r < r̃, where r̃ > 0. Assume that hβ(·;x) is nondecreasing on (0, r̃) for each x ∈
∂D. For E ⊂ ∂D and 0< r0 < r̃, let

H
(r0)
hβ

(E) = inf
{∑

j

hβ(rj ;xj);E ⊂
⋃
j

B(xj , rj),0< rj ≤ r0

}
.

Since H
(r0)
hβ

(E) increases as r0 decreases, we define the generalized Hausdorff

measure with respect to hβ by

Hhβ
(E) = lim

r0→+0
H

(r0)
hβ

(E).

Clearly, H
(r0)
hβ

(E) and Hhβ
(E) are measures on X .

If g satisfies (2.3) and p− > s(1− 1/β)+α, then Hhβ
(Eβ) = 0. In particular,

if g satisfies (2.3) and p− >α, then Hh1(E1) = 0.

COROLLARY 2.4

Let q = q1 be as in Example 2.1. Let u be a monotone Sobolev function on a

uniform domain D in Rn satisfying

(2.5)

∫
D

∣∣∇u(z)
∣∣p(z)(log(e+ ∣∣∇u(z)

∣∣))q(z)δD(z)α dz <∞.

Suppose max{n− 1, n+ α− 1}< p− ≤ p+ < n+ α. Set

E′
β =

{
ξ ∈ ∂D : limsup

r→0
rβ(p(ξ)−n−α)

(
log(e+ r−1)

)−q(ξ)

×
∫
B(ξ,r)∩D

∣∣∇u(z)
∣∣p(z)(log(e+ ∣∣∇u(z)

∣∣))q(z)δD(z)α dz > 0
}
.

If ξ ∈ ∂D \E′
β and there exists a rectifiable curve γ in D tending to ξ along which

u has a finite limit L, then u has a tangential limit L of order β at ξ.
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3. Preliminary lemmas

Let us begin with the following result borrowed from [9, Lemma 3].

LEMMA 3.1

Let {pj} be a sequence such that p∗ = inf pj > 1 and p∗ = suppj <∞. Then

∑
|ajbj | ≤ 2

(∑
|aj |pj

)1/q(∑
|bj |p

′
j

)1/q′

,

where 1/pj + 1/p′j = 1, q = p∗ if
∑

|aj |pj ≥
∑

|bj |p
′
j , and q = p∗ if

∑
|aj |pj ≤∑

|bj |p
′
j .

LEMMA 3.2 (CF. [5, LEMMA 1])

Let D be a uniform domain in X. Then for each ξ ∈ ∂D there exists a rectifiable

curve γξ in D ending at ξ such that

(3.1) δD(z)≥A3�
(
γξ(ξ, z)

)
for all z ∈ γξ, where A3 is a constant depending only on A1 and A2.

Fix ξ ∈ ∂D. For x ∈D, set

r(x) = |ξ − x|.

Now, we give the estimate of

Fu(x, y) =min
{∣∣u(x)− u(y)

∣∣p−
,
∣∣u(x)− u(y)

∣∣p+}
whenever x and y can be joined by a rectifiable curve γ in D such that

(3.2) δD(z)≥A0�
(
γ(x, z)

)
and σB(z)⊂B

(
ξ, c0r(x)

)
for all z ∈ γ, where A0 and c0 are positive constants, σ is the constant appearing

in (2.2), and B(z) =B(z, δD(z)/(2σ)).

REMARK 3.3

Let D be a uniform domain. Suppose that x, y ∈D satisfy

Q−1r(x)≤ r(y)≤Qr(x)

for some Q ≥ 1. Here let γ be a rectifiable curve in D joining x and y and

satisfying (1.2) and (1.3). Take ζ ∈ γ such that �(γ(x, ζ)) = �(γ(y, ζ)), and set

γ1 = γ(x, ζ) and γ2 = γ(y, ζ). Then each γi satisfies (3.2) with A0 = A2 and

c0 = 3(A1(Q+ 1) + 1)/2.

In fact, we have by (1.3)

δD(z)≥A2min
{
�
(
γ(x, z)

)
, �

(
γ(z, y)

)}
=A2�

(
γ1(x, z)

)
for z ∈ γ1. Take w ∈ σB(z) for z ∈ γ1. Then note that

|w− ξ| ≤ |w− z|+ |z − ξ| ≤ 3

2
|z − ξ| ≤ 3

2

(
r(x) + �(γ)

)
≤ 3(A1(Q+ 1) + 1)

2
r(x)
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since we have by (1.2)

�(γ)≤A1|x− y| ≤A1(Q+ 1)r(x).

Similarly, we have

δD(z)≥A2�
(
γ2(y, z)

)
and σB(z)⊂B(ξ, cor(y)) for z ∈ γ2.

LEMMA 3.4 (CF. [3, LEMMA 2.2])

Let λ ∈R, and let x, y ∈D. Let u be a function on D with g ≥ 0 satisfying (2.2)

and (2.3). Suppose that points x and y are joined by a rectifiable curve γ in D

satisfying (3.2). Let 0< ε< 1.

(1) If p+ < s−λ, x ∈ Tβ(ξ; c) for some c > 0, and r(x)<min{1/c0,A0/c0,1},
then

Fu(x, y) ≤ C
{
r(x)β(p(ξ)−s+λ)+sϕ

(
ξ, r(x)−1

)−1
μ
(
B

(
ξ, r(x)

))−1

×
∫
B(ξ,c0r(x))∩D

Φ
(
z, g(z)

)
δD(z)−λ dμ(z) + r(x)p

−(1−ε)
}
,

where C may depend on ε.

(2) If p− > s− λ, x ∈D, and r(x)<min{1/c0,A0/c0,1}, then

Fu(x, y) ≤ C
{
r(x)p(ξ)+λϕ

(
ξ, r(x)−1

)−1
μ
(
B

(
ξ, r(x)

))−1

×
∫
B(ξ,c0r(x))∩D

Φ
(
z, g(z)

)
δD(z)−λ dμ(z) + r(x)p

−(1−ε)
}
,

where C may depend on ε.

Proof

We can take a finite chain of balls B0,B1, . . . ,BN such that

(i) Bj =B(xj), xj ∈ γ, x0 = x, and y ∈BN ;

(ii) �(γ(xj , xj+1))≥ δD(xj)/(2σ) and �(γ(x,xj+1))> �(γ(x,xj));

(iii) Bj ∩Bk �= ∅ if and only if |j − k| ≤ 1;

(iv) c1δD(x) ≤ δD(xj) ≤ c0r(x), where c1 is a positive constant depending

only on A0 and σ;

(v) for each t > 0, the number of xj ’s such that t < δD(xj)≤ 2t is less than

c2, where c2 is a positive constant depending only on A0 and σ;

(vi)
∑N

j=0 χBj (z) ≤ c3, where χE denotes the characteristic function of E

and c3 is a positive constant depending only on the doubling constant of μ and σ.

See [7, Lemmas 2.1 and 2.2] and [8, Lemma 2.3].

Consider the function p∗(xj) = infz∈σBj p(z). Since p∗(xj)≥ p0, we see that

∣∣u(ζ1)− u(ζ2)
∣∣ ≤CδD(xj)

( 1

μ(σBj)

∫
σBj

g(z)p∗(xj) dμ(z)
)1/p∗(xj)
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for every ζ1, ζ2 ∈Bj . Set Gj = {z ∈ σBj : g(z)≥ δD(xj)
−ε} for 0< ε< 1. Then∫

σBj

g(z)p∗(xj) dμ(z)

=

∫
Gj

g(z)p(z)g(z)p∗(xj)−p(z) dμ(z)

+

∫
σBj\Gj

g(z)p∗(xj) dμ(z)

≤
∫
Gj

g(z)p(z) dμ(z) + μ(σBj)δD(xj)
−εp∗(xj)

since δD(xj)≤ c0r(x)< 1 by (iv). By (ϕ1), (ϕ2), and (ϕ3), we have

ϕ
(
z, g(z)

)−1 ≤ Cϕ
(
z, δD(xj)

−ε
)−1 ≤C(ε)ϕ

(
z, δD(xj)

−1
)−1

≤ C(ε)ϕ
(
xj , δD(xj)

−1
)−1

since |z − xj | ≤ δD(xj)/2≤ c0r(x)/2< 1/2 when z ∈Gj . Hence, we obtain∣∣u(ζ1)− u(ζ2)
∣∣

≤C
{
δD(xj)ϕ

(
xj , δD(xj)

−1
)−1/p∗(xj)

μ(σBj)
−1/p∗(xj)

×
(∫

σBj

Φ
(
z, g(z)

)
dμ(z)

)1/p∗(xj)

+ δD(xj)
1−ε

}
.

Here note from (2.4) that

μ(σBj)
−1/p∗(xj)

= μ(σBj)
−1/p(xj)μ(σBj)

−(p(xj)−p∗(xj))/(p(xj)p∗(xj))

≤ μ(σBj)
−1/p(xj)

{
Cμ

(
B(ξ, c0)

)(δD(xj)

2c0

)s}−(p(xj)−p∗(xj))/(p(xj)p∗(xj))

≤Cμ(σBj)
−1/p(xj)δD(xj)

−C/ log(1/δD(xj))

≤Cμ(σBj)
−1/p(xj)

since δD(xj)≤ c0 by (iv) and σBj ⊂B(ξ, c0r(x))⊂B(ξ, c0). Similarly, we have

C−1δD(xj)
1/p∗(xj) ≤ δD(xj)

1/p(xj) ≤CδD(xj)
1/p∗(xj),

and by (ϕ2.2),

ϕ
(
xj , δD(xj)

−1
)−1/p∗(xj)

= ϕ
(
xj , δD(xj)

−1
)1/p(xj)−1/p∗(xj)

ϕ
(
xj , δD(xj)

−1
)−1/p(xj)

≤C
(
δD(xj)

ε0
)−C/ log(1/δD(xj))

ϕ
(
xj , δD(xj)

−1
)−1/p(xj)

≤Cϕ
(
xj , δD(xj)

−1
)−1/p(xj)

.
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Therefore, for λ ∈R, we find by (2.3),∣∣u(ζ1)− u(ζ2)
∣∣

≤C
{
δD(xj)ϕ

(
xj , δD(xj)

−1
)−1/p(xj)

μ(σBj)
−1/p(xj)

×
(∫

σBj

Φ
(
z, g(z)

)
dμ(z)

)1/p(xj)

+ δD(xj)
1−ε

}

≤C
{
δD(xj)

1+λ/p(xj)ϕ
(
xj , δD(xj)

−1
)−1/p(xj)

μ(σBj)
−1/p(xj)

×
(∫

σBj

Φ
(
z, g(z)

)
δD(z)−λ dμ(z)

)1/p(xj)

+ δD(xj)
1−ε

}
since δD(xj)/2≤ δD(z)≤ 3δD(xj)/2 for z ∈ σBj .

Set pj = p(xj), and pick zj ∈Bj−1∩Bj for 1≤ j ≤N ; set z0 = x and zN+1 =

y. By the above inequality, we see that∣∣u(x)− u(y)
∣∣

≤
N∑
j=0

∣∣u(zj+1)− u(zj)
∣∣

≤C
{ N∑
j=0

δD(xj)
1+λ/pjϕ

(
xj , δD(xj)

−1
)−1/pj

μ(σBj)
−1/pj

×
(∫

σBj

Φ
(
z, g(z)

)
δD(z)−λ dμ(z)

)1/pj

+

N∑
j=0

δD(xj)
1−ε

}
.

Taking integers k0 and k1 such that 2−k0−1 ≤ c0r(x) < 2−k0 and 2−k1−1 ≤
c1δD(x)< 2−k1 , we see from (iv) and (v) that

N∑
j=0

δD(xj)
1−ε ≤

k1∑
k=k0

( ∑
2−k−1≤δD(xj)<2−k

δD(xj)
1−ε

)

≤ c2

k1∑
k=k0

(2−k)1−ε ≤C(2−k0)1−ε ≤Cr(x)1−ε.

Hence, we have by Lemma 3.1∣∣u(x)− u(y)
∣∣

≤C
{( N∑

j=0

δD(xj)
p′
j(1+λ/pj)ϕ

(
xj , δD(xj)

−1
)−p′

j/pj
μ(σBj)

−p′
j/pj

)1/q′

×
( N∑
j=0

∫
σBj

Φ
(
z, g(z)

)
δD(z)−λ dμ(z)

)1/q

+ r(x)1−ε
}

≤C
{(

Iq−1

∫
∪σBj

Φ
(
z, g(z)

)
δD(z)−λ dμ(z)

)1/q

+ r(x)1−ε
}
,
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where q is a number in {minpj ,maxpj} and

I =

N∑
j=0

δD(xj)
p′
j(1+λ/pj)ϕ

(
xj , δD(xj)

−1
)−p′

j/pj
μ(σBj)

−p′
j/pj .

Since

δD(xj)≥A0�
(
γ(x,xj)

)
≥A0|x− xj |

by (3.2), we have∣∣∣pj + λ

pj − 1
− p(x) + λ

p(x)− 1

∣∣∣ = ∣∣∣ (λ+ 1)(p(x)− pj)

(p(x)− 1)(pj − 1)

∣∣∣
≤ C

∣∣p(x)− pj
∣∣≤ C

log(1/|x− xj |)
≤ C

log(1/δD(xj))

and ∣∣∣p′j
pj

− p′(x)

p(x)

∣∣∣ = ∣∣∣ p(x)− pj
(p(x)− 1)(pj − 1)

∣∣∣≤C
∣∣p(x)− pj

∣∣≤ C

log(1/δD(xj))
,

where 1/p(x) + 1/p′(x) = 1. Therefore, we have

δD(xj)
p′
j(1+λ/pj) = δD(xj)

p(x)+λ
p(x)−1 δD(xj)

pj+λ

pj−1−
p(x)+λ
p(x)−1

≤ δD(xj)
p(x)+λ
p(x)−1 δD(xj)

−C/ log(1/δD(xj))

≤ CδD(xj)
p(x)+λ
p(x)−1 ,

since δD(xj)≤ c0r(x)< 1 by (iv). Here note from (ϕ0), (ϕ1), and (ϕ2.3) that

ϕ
(
xj , δD(xj)

−1
)−p′

j/pj

= ϕ
(
xj , δD(xj)

−1
)p′(x)/p(x)−p′

j/pj
ϕ
(
xj , δD(xj)

−1
)−p′(x)/p(x)

≤C
(
δD(xj)

−ε1
)C/ log(1/δD(xj))

ϕ
(
xj , δD(xj)

−1
)−p′(x)/p(x)

≤Cϕ
(
xj , δD(xj)

−1
)−p′(x)/p(x)

≤Cϕ
(
x, δD(xj)

−1
)−p′(x)/p(x)

since |x− xj | ≤ δD(xj)/A0 ≤ c0r(x)/A0 < 1. Further, we note from (2.4) that

μ(σBj)
−p′

j/pj = μ(σBj)
−p′(x)/p(x)μ(σBj)

−(p′
j/pj−p′(x)/p(x))

≤ μ(σBj)
−p′(x)/p(x)

{
Cμ

(
B(ξ, c0)

)(δD(xj)

2c0

)s}−C/ log(1/δD(xj))

≤ Cμ(σBj)
−p′(x)/p(x)δD(xj)

−C/ log(1/δD(xj))

≤ Cμ(σBj)
−p′(x)/p(x)
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since δD(xj)≤ c0 by (iv) and σBj ⊂B(ξ, c0r(x))⊂B(ξ, c0). Hence, we obtain by

(ϕ2.1),

I ≤ C

N∑
j=0

δD(xj)
(p(x)+λ)/(p(x)−1)ϕ

(
x, δD(xj)

−1
)−p′(x)/p(x)

μ(σBj)
−p′(x)/p(x)

≤ C
N∑
j=0

δD(xj)
(p(x)+λ)/(p(x)−1)μ

(
B

(
ξ, r(x)

))−p′(x)/p(x)
r(x)sp

′(x)/p(x)

× δD(xj)
−sp′(x)/p(x)ϕ

(
x, δD(xj)

−1
)−p′(x)/p(x)

= Cμ
(
B

(
ξ, r(x)

))−p′(x)/p(x)
r(x)sp

′(x)/p(x)

×
N∑
j=0

δD(xj)
(p(x)+λ−s)/(p(x)−1)ϕ

(
x, δD(xj)

−1
)−p′(x)/p(x)

≤ C
(
μ
(
B

(
ξ, r(x)

))−1
r(x)s

) 1
p(x)−1

∫ 2c0r(x)

c1δD(x)/2

t
p(x)−s+λ
p(x)−1 ϕ(x, t−1)−1/(p(x)−1) dt

t
.

First consider the case p+ < s − λ and x ∈ Tβ(ξ; c). Since r(x)β ≤ cδD(x) and

|x− xj | ≤ (1 + c0)r(x), we see that∣∣∣ (p(x)− s+ λ)(q− 1)

p(x)− 1
−

(
p(ξ)− s+ λ

)∣∣∣
=

∣∣∣ (p(x)− s+ λ)(q− p(x))

p(x)− 1
+

(
p(x)− p(ξ)

)∣∣∣
≤C

∣∣q− p(x)
∣∣+ ∣∣p(x)− p(ξ)

∣∣ ≤ C

log(1/r(x))
≤ C

log(1/δD(x))

and ∣∣∣ q− 1

p(x)− 1
− 1

∣∣∣ ≤C
∣∣q− p(x)

∣∣ ≤ C

log(1/r(x))
≤ C

log(1/δD(x))
.

Then we have by (p2) and (ϕ3)

Iq−1 ≤ C
(
μ
(
B

(
ξ, r(x)

))−1
r(x)s

) q−1
p(x)−1 δD(x)(p(x)−s+λ)(q−1)/(p(x)−1)

×ϕ
(
x, δD(x)−1

)−(q−1)/(p(x)−1)

≤ Cμ
(
B

(
ξ, r(x)

))−1
r(x)sδD(x)p(ξ)−s+λϕ

(
ξ, δD(x)−1

)−1

since (μ(B(ξ, r(x)))

μ(B(ξ,1))

)−C|q−p(x)|
≤Cr(x)−C|q−p(x)| ≤C

by (2.4). Hence, we obtain by (vi) and c−1r(x)β ≤ δD(x)≤ r(x)

Fu(x, y) ≤
∣∣u(x)− u(y)

∣∣q
≤ C

{
μ
(
B

(
ξ, r(x)

))−1
r(x)sδD(x)p(ξ)−s+λϕ

(
ξ, δD(x)−1

)−1
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×
∫
∪σBj

Φ
(
z, g(z)

)
δD(z)−λ dμ(z) + r(x)q(1−ε)

}

≤ C
{
μ
(
B

(
ξ, r(x)

))−1
r(x)β(p(ξ)−s+λ)+sϕ

(
ξ, r(x)−1

)−1

×
∫
B(ξ,c0r(x))∩D

Φ
(
z, g(z)

)
δD(z)−λ dμ(z) + r(x)p

−(1−ε)
}
.

Next consider the case p− > s− λ. Noting that∣∣∣ (p(x)− s+ λ)(q− 1)

p(x)− 1
−

(
p(ξ)− s+ λ

)∣∣∣ ≤ C

log(1/r(x))
,

we have

Iq−1 ≤ C
(
μ
(
B

(
ξ, r(x)

))−1
r(x)s

) q−1
p(x)−1 r(x)(p(x)−s+λ)(q−1)/(p(x)−1)

×ϕ
(
ξ, r(x)−1

)−(q−1)/(p(x)−1)

≤ Cμ
(
B

(
ξ, r(x)

))−1
r(x)p(ξ)+λϕ

(
ξ, r(x)−1

)−1
.

Thus, we can show the second part in the same manner as the first part. �

REMARK 3.5

Let λ ∈R, and let x, y,w ∈D. Let u be a function on D with g ≥ 0 satisfying

(2.2) and (2.3). Let γ1 be a rectifiable curve in D joining x and w satisfying

(3.2), and let γ2 be a rectifiable curve in D joining y and w satisfying (3.2). Let

0< ε< 1.

(1) If p+ < s− λ, x, y ∈ Tβ(ξ; c) for some c > 0, and r(x) = r(y)<min{1/c0,
A0/c0,1}, then

Fu(x, y)

≤C
{
r(x)β(p(ξ)−s+λ)+sϕ

(
ξ, r(x)−1

)−1
μ
(
B

(
ξ, r(x)

))−1

×
∫
B(ξ,c0r(x))∩D

Φ
(
z, g(z)

)
δD(z)−λ dμ(z) + r(x)p

−(1−ε)
}
.

(2) If p− > s− λ, x, y ∈D, and r(x) = r(y)<min{1/c0,A0/c0,1}, then

Fu(x, y)

≤C
{
r(x)p(ξ)+λϕ

(
ξ, r(x)−1

)−1
μ
(
B

(
ξ, r(x)

))−1

×
∫
B(ξ,c0r(x))∩D

Φ
(
z, g(z)

)
δD(z)−λ dμ(z) + r(x)p

−(1−ε)
}
.

REMARK 3.6

In Lemma 3.4, we can replace∫
B(ξ,c0r(x))∩D

Φ
(
z, g(z)

)
δD(z)−λ dμ(z)
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by ∫
B(ξ,c0r(x))∩D

Φ
(
z, g(z)

)
δD(z)α

∣∣r(x)− |z − ξ|
∣∣−λ−α

dμ(z)

if α+ λ > 0 (see [8, Remark 2.5]). Here note that

∣∣r(x)− |z − ξ|
∣∣ ≤ |x− z| ≤ |x− xj |+ |xj − z| ≤ �

(
γ(x,xj)

)
+

δD(xj)

2

≤
(
A0 +

1

2

)
δD(xj)

and δD(xj)≤ 2δD(z) for z ∈ σBj .

REMARK 3.7

The number of balls B0,B1, . . . ,BN in Lemma 3.4 is less than (see [8, Remark

2.6])

c2

(
log2

c0r(x)

c1δD(x)
+ 2

)
.

In fact,

N + 1 =

k1∑
k=k0

#
{
j : 2−k−1 ≤ δD(xj)< 2−k

}

≤
k1∑

k=k0

c2 = c2(k1 − k0 + 1)≤ c2

(
log2

c0r(x)

c1δD(x)
+ 2

)
,

where we take k0 and k1 as in the proof of Lemma 3.4.

LEMMA 3.8 (CF. [8, LEMMA 2.7])

Let u be a function on a uniform domain D with g ≥ 0 satisfying (2.2) and (2.3).

If ξ ∈ ∂D \E1 and there exist a rectifiable curve γξ in D ending at ξ satisfying

(3.1) and a sequence {yj} such that yj ∈ γξ, 2
−j−1 ≤ |ξ − yj | < 2−j , and u(yj)

has a finite limit L, then u has a nontangential limit L at ξ.

Proof

Fix ξ ∈ ∂D \ E1. Take xj ∈ T1(ξ; c) with 2−j−1 ≤ |xj − ξ| < 2−j . Let γ be a

rectifiable curve in D joining xj and yj satisfying (1.2) and (1.3). Take y ∈ γ

such that �(γ(xj , y)) = �(γ(yj , y)), and set γ1 = γ(xj , y) and γ2 = γ(yj , y). Then

each γi satisfies (3.2) with A0 =A2 and c0 = 3(3A1 + 1)/2 by Remark 3.3.

Then, for γi, we can take a finite chain of balls Bi
0,B

i
1, . . . ,B

i
Ni

with Bi
k =

B(wi
k) as in the proof of Lemma 3.4. By Remark 3.7, we note that Ni is less than

a positive constant C1, since

r(xj)

δD(xj)
≤ cr(xj)

|xj − ξ| = c
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and

r(yj)

δD(yj)
≤ r(yj)

A3|ξ − yj |
=

1

A3

by (3.1). Furthermore, we note from the proof of [8, Lemma 2.7] that

C−12−j ≤ δD(wi
k)≤C2−j

and

C−1|wi
k − ξ| ≤ δD(wi

k)≤ |wi
k − ξ|.

Hence, we obtain by (3.3) and (vi) in the proof of Lemma 3.4 that∣∣u(xj)− u(yj)
∣∣

≤
∣∣u(xj)− u(y)

∣∣+ ∣∣u(yj)− u(y)
∣∣

≤C
{ 2∑

i=1

Ni∑
k=0

δD(wi
k)

1−α/p(wi
k)ϕ

(
wi

k, δD(wi
k)

−1
)−1/p(wi

k)μ(σBi
k)

−1/p(wi
k)

×
(∫

σBi
k

Φ
(
z, g(z)

)
δD(z)α dμ(z)

)1/p(wi
k)

+
2∑

i=1

Ni∑
k=0

δD(wi
k)

}

≤C
{ 2∑

i=1

Ni∑
k=0

(
δD(wi

k)
p(ξ)−αμ(σBi

k)
−1ϕ

(
ξ, δD(wi

k)
−1

)−1

×
∫
σBi

k

Φ
(
z, g(z)

)
δD(z)α dμ(z)

)1/p(wi
k)

+

2∑
i=1

Ni∑
k=0

δD(wi
k)

}

≤C
{
2−j +

(
2−j(p(ξ)−α)μ

(
B(ξ,2−j)

)−1
ϕ(ξ,2j)−1

×
∫
B(ξ,c02−j)

Φ
(
z, g(z)

)
δD(z)α dμ(z)

)1/p+}
.

Since ξ ∈D \E1 and limj→∞ u(yj) = L, u has a nontangential limit L at ξ. �

4. Proof of Theorem 2.2

In this section, we prove Theorem 2.2. First, we show the following proposition

as an extension of [16, Theorem 4], [8, Theorem 1.1], [10, Theorem 1.1], and [3,

Remark 3.1].

PROPOSITION 4.1

Let u be a function on a uniform domain D with g ≥ 0 satisfying (2.2) and (2.3),

and let β ≥ 1. Suppose p+ < s+ α. If ξ ∈ ∂D \Eβ and there exists a rectifiable

curve γ in Tβ(ξ; c̃) tending to ξ along which u has a finite limit L for some c̃ > 0,

then u has a tangential limit L of order β at ξ.
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Proof

It is sufficient to prove

lim
Tβ(ξ;c)�x→ξ

u(x) = L

for every c≥ c̃. Let c≥ c̃. We may assume that, for each x ∈ Tβ(ξ; c), there exists

a point y(x) ∈ γ such that r(x) = r(y(x))<min{1/c0,A0/c0,1} since Tβ(ξ; c̃)⊂
Tβ(ξ; c). As in the proof of Lemma 3.8, let γ0 be a rectifiable curve in D join-

ing x and y(x) satisfying (1.2) and (1.3). Take w ∈ γ0 such that �(γ0(x,w)) =

�(γ0(y(x),w)), and set γ1 = γ0(x,w) and γ2 = γ0(y(x),w). Here note that γ1
and γ2 satisfy (3.2). Since ξ /∈ Eβ , we have by Lemma 3.4(1) with λ =−α and

Remark 3.5

lim
Tβ(ξ;c)�x→ξ

Fu

(
x, y(x)

)
= 0,

so that

lim
Tβ(ξ;c)�x→ξ

∣∣u(x)− u
(
y(x)

)∣∣ = 0.

Since limx→ξ u(y(x)) = L by our assumption,

lim
Tβ(ξ;c)�x→ξ

u(x) = L,

as required. �

COROLLARY 4.2

Let q = q1 be as in Example 2.1. Let u be a monotone Sobolev function on a

uniform domain D in Rn satisfying (2.5). Suppose n− 1< p− ≤ p+ < n+ α. If

ξ ∈ ∂D \E′
β and there exists a rectifiable curve γ in Tβ(ξ; c̃) tending to ξ along

which u has a finite limit L for some c̃ > 0, then u has a tangential limit L of

order β at ξ.

Next we give the following result concerning the Lindelöf-type theorem as an

extension of [3], [5], [6], [14]–[16] in the constant exponent case and the authors

[9, Theorem], [10, Theorem 1.2], and [8, Theorem 1.2] in the variable exponent

case.

PROPOSITION 4.3

Let u be a function on a uniform domain D with g ≥ 0 satisfying (2.2) and (2.3).

Suppose p− > s+α− 1. If ξ ∈ ∂D \E1 and there exists a rectifiable curve γ in D

tending to ξ along which u has a finite limit L, then u has a nontangential limit

L at ξ.

Proof

Take λ ∈R such that max{s+α−p−,0}< λ+α < 1. Let γξ be as in Lemma 3.2.

For r > 0 sufficiently small, take x(r) ∈ γ ∩ ∂B(ξ, r) and y(r) ∈ γξ ∩ ∂B(ξ, r). Let

γ0 be a rectifiable curve in D joining x(r) and y(r) satisfying (1.2) and (1.3).
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Take w ∈ γ0 such that �(γ0(x(r),w)) = �(γ0(y(r),w)), and set γ1 = γ0(x(r),w)

and γ2 = γ0(y(r),w). Here note that γ1 and γ2 satisfy (3.2). By Lemma 3.4(2)

and Remarks 3.5 and 3.6, we have

Fu

(
x(r), y(r)

)
≤C

{
rp(ξ)+λϕ(ξ, r−1)−1μ

(
B(ξ, r)

)−1

×
∫
B(ξ,c0r)∩D

Φ
(
z, g(z)

)
δD(z)α

∣∣r− |z − ξ|
∣∣−λ−α

dμ(z) + rp
−(1−ε)

}
.

Moreover, since 0< λ+ α< 1, we see that∫ 2−j

2−j−1

∣∣r− |z − ξ|
∣∣−λ−α

dr ≤C2−j(1−λ−α).

Hence, it follows that

inf
2−j−1≤r<2−j

Fu

(
x(r), y(r)

)

≤C
{∫ 2−j

2−j−1

rp(ξ)+λϕ(ξ, r−1)−1μ
(
B(ξ, r)

)−1

×
(∫

B(ξ,c0r)∩D

Φ
(
z, g(z)

)
δD(z)α

∣∣r− |z − ξ|
∣∣−λ−α

dμ(z)
)dr

r

+ (2−j)p
−(1−ε)

}
≤C

{
2−j{p(ξ)+λ−1}ϕ(ξ,2j)−1μ

(
B(ξ,2−j)

)−1

×
∫
B(ξ,c02−j)∩D

Φ
(
z, g(z)

)
δD(z)α

(∫ 2−j

2−j−1

∣∣r− |z − ξ|
∣∣−λ−α

dr
)
dμ(z)

+ (2−j)p
−(1−ε)

}
≤C

{
2−j{p(ξ)−α}ϕ(ξ,2j)−1μ

(
B(ξ,2−j)

)−1

×
∫
B(ξ,c02−j)∩D

Φ
(
z, g(z)

)
δD(z)α dμ(z) + (2−j)p

−(1−ε)
}
.

Since ξ /∈E1, we see that

lim
j→∞

inf
2−j−1≤r<2−j

Fu

(
x(r), y(r)

)
= 0.

Hence, we find a sequence {rj} such that 2−j−1 ≤ rj < 2−j and

lim
j→∞

Fu

(
x(rj), y(rj)

)
= 0.

Since u has a finite limit L at ξ along γ, we have

lim
j→∞

u
(
y(rj)

)
= lim

j→∞
u
(
x(rj)

)
= L.

Thus, u has a nontangential limit L at ξ by Lemma 3.8. �
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COROLLARY 4.4

Let q = q1 be as in Example 2.1. Let u be a monotone Sobolev function on a

uniform domain D in Rn satisfying (2.5). Suppose p− >max{n− 1, n+α− 1}.
If ξ ∈ ∂D \E′

1 and there exists a rectifiable curve γ in D tending to ξ along which

u has a finite limit L, then u has a nontangential limit L at ξ.

REMARK 4.5

In Proposition 4.1, unlike Theorem 2.2, it is necessary for the rectifiable curve γ

to be included in Tβ(ξ; c̃). On the other hand, in Proposition 4.3, we only show

that u has a nontangential limit L at ξ.

Proof of Theorem 2.2

Since T1(ξ; c) ∩B(ξ,1)⊂ Tβ(ξ; c) ∩B(ξ,1) and E1 ⊂ Eβ for all β ≥ 1 and c > 0,

we obtain the required result by Propositions 4.1 and 4.3. �
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DOI 10.4171/099.

[2] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and

Harmonic Analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer,
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Sobolev functions in Orlicz spaces, Illinois J. Math. 57 (2013), 1025–1033.

MR 3285866.

[4] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev

Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer,

Heidelberg, 2011. MR 2790542. DOI 10.1007/978-3-642-18363-8.
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