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Abstract In this article, we consider Trudinger’s inequality and continuity for Riesz

potentials of functions in Orlicz spaces of two variable exponents near Sobolev’s expo-

nent over nondoubling metric measure spaces.

1. Introduction

A famous Trudinger inequality (see [39]) insists that Sobolev functions in

W 1,N (G) satisfy finite exponential integrability, where G is an open bounded set

in RN (see also [1], [5], [29], [40]). In [23], Trudinger-type exponential integra-

bility for Riesz potentials of functions in Orlicz spaces of two variable exponents

near Sobolev’s exponent was studied. Our aim in this article is to extend the

result to the nondoubling metric measure setting. We also study the continuity

of Riesz potentials in our setting.

For 0<α<N , we define the Riesz potential of order α for a locally integrable

function f on RN by

Uαf(x) =

∫
RN

|x− y|α−Nf(y)dy.

Here it is natural to assume that Uα|f | �≡ ∞, which is equivalent to (see [21,

Theorem 1.1, Chapter 2])∫
RN

(
1 + |y|

)α−N ∣∣f(y)∣∣dy <∞.

Great progress on Trudinger-type inequalities has been made for Riesz potentials

of order α in the limiting case αp=N (see, e.g., [9]–[11], [36]). In [3], [24], and
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[27], Trudinger-type exponential integrability was studied on Orlicz spaces as an

extension of [9] and [11].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to

discuss nonlinear partial differential equations with nonstandard growth condi-

tions. For a survey, see [7] and [8]. Trudinger-type exponential integrability was

investigated on variable exponent Lebesgue spaces Lp(·) in [12]–[14].

Let p(·) :RN → (1,∞) and q(·) :RN → [0,∞) be variable exponents satisfy-

ing log-Hölder and loglog-Hölder conditions on G, respectively. Define

Φ(x, t) = tp(x)
(
log(c0 + t)

)q(x)
,

and denote by LΦ(G) the family of all measurable functions f on G such that

‖f‖LΦ(G) = inf
{
λ > 0 :

∫
G

Φ
(
x,

∣∣f(x)/λ∣∣)dx≤ 1
}
<∞.

Note that c0 ≥ e is chosen so that Φ(x, ·) is convex on [0,∞).

Mizuta and the authors [23, Theorem 4.1] proved Trudinger-type exponen-

tial integrability for Riesz potentials of functions in Orlicz spaces LΦ(G) of two

variable exponents near Sobolev’s exponent in the Euclidean setting. In fact we

proved the following.

THEOREM A

Let p(·) and q(·) be two variable exponents on G satisfying log-Hölder and loglog-

Hölder conditions on G, respectively, such that

p(x)≥N/α and q(x)< p(x)− 1

for x ∈G. Then there exist constants c1, c2 > 0 such that∫
G

exp
( Uαf(x)

p(x)/(p(x)−q(x)−1)

(c1γ2(x))p(x)/(p(x)−q(x)−1)

)
dx≤ c2

for all nonnegative measurable functions f on G with ‖f‖LΦ(G) ≤ 1, where

γ2(x) = γ1(x)
−(p(x)−1)/p(x)

(
log

(
1/γ1(x)

))q(x)/p(x)
with γ1(x) =min{p(x)− q(x)− 1,1/2}.

In [23, Theorem 3.1], the case p(x)<N/α was treated. For the case supx∈G p(x)<

N/α, see for example [17] and [22].

We denote by (X,d,μ) a metric measure space, where X is a bounded set, d

is a metric on X , and μ is a nonnegative complete Borel regular outer measure on

X which is finite in every bounded set. For simplicity, we often write X instead

of (X,d,μ). For x ∈X and r > 0, we denote by B(x, r) the open ball centered at

x with radius r, and dX = sup{d(x, y) : x, y ∈X}. We assume that

μ
(
{x}

)
= 0

for x ∈ X and that 0 < μ(B(x, r)) < ∞ for x ∈ X and r > 0 for simplicity. In

the present article, we do not postulate on μ the so-called doubling condition.

Recall that a Radon measure μ is said to be doubling if there exists a constant
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A0 > 0 such that μ(B(x,2r))≤A0μ(B(x, r)) for all x ∈ supp(μ) (=X) and r > 0.

Otherwise, μ is said to be nondoubling. We say that a measure μ is lower Ahlfors

Q-regular if there exists a constant A1 > 0 such that

(1.1) μ
(
B(x, r)

)
≥A1r

Q

for all x ∈X and 0< r < dX . In this article we assume that μ is lower Ahlfors

Q-regular. Here note that if μ is a doubling measure and dX <∞, then μ is lower

Ahlfors log2A0-regular since

μ(B(x, r))

μ(B(x,dX))
≥A−2

0

( r

dX

)log2 A0

for all x ∈X and 0< r < dX (see, e.g., [4, Lemma 3.3]).

For α > 0 and τ > 0, we define the Riesz potential of order α for a locally

integrable function f on X by (see, e.g., [15], [28])

Iα,τf(x) =

∫
X

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y).

We write Iαf = Iα,1f . Observe that this naturally extends the Riesz potential

operator Uαf when (X,d) is the N -dimensional Euclidean space and μ= dx.

Our main aim in this article is to give a general version of exponential integra-

bilities of Trudinger type for Riesz potentials Iα,τf of functions in Orlicz spaces

LΦ(X) of variable exponents near Sobolev’s exponent on nondoubling metric

measure spaces X when p(x) ≥Q/α ≥ 1 and q(x) < p(x)− 1 (Theorem 3.1) as

an extension of Theorem A. To this end, we apply Hedberg’s trick (see Hed-

berg [18]) by the use of the modified Hardy–Littlewood maximal operator Mλ

adapted to our setting (see Section 2 for the definitions of LΦ(X) and Mλ). What

is new about this article is that we can pass our results to the nondoubling met-

ric measure setting. In the case when p(x) ≥ Q/α ≥ 1 and q(x) ≥ p(x) − 1, we

discuss double exponential integrabilities of Trudinger type (Theorem 3.6) as an

extension of [23, Theorem 5.1].

On the other hand, beginning with Sobolev’s embedding theorem (see, e.g.,

[2], [1]), continuity properties of Riesz potentials and Sobolev functions have been

studied by many authors. The continuity of Riesz potentials of functions in Orlicz

spaces was studied in [11], [21], [20], [25], and [27] (see also [26]). Such continuity

was investigated on variable exponent Lebesgue spaces in [12], [13], and [16] and

on two variable exponent Lebesgue spaces in [23].

In the final section, we consider the continuity of Riesz potentials Iα,τf when

p(x)≥Q/α≥ 1 and q(x)> p(x)− 1 for x ∈X (Theorem 4.1) as an extension of

[23, Theorem 7.1].

For variable exponents attaining the value 1 over nondoubling metric measure

spaces, we refer the reader to [34]. For related results, see also [16], [19], [31], [33],

and [35].

2. Boundedness of the maximal operator

Throughout this article, let C denote various positive constants independent of

the variables in question. In this article, following Cruz-Uribe and Fiorenza [6],
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we consider variable exponents p(·) and q(·) such that
∣∣p(x)− p(y)

∣∣ ≤ a

log(e+ 1/d(x, y))
for all x, y ∈X,

∣∣q(x)− q(y)
∣∣ ≤ b

log(e+ log(e+ 1/d(x, y)))
for all x, y ∈X,

1< p− ≡ inf
x∈X

p(x)≤ sup
x∈X

p(x)≡ p+ <∞,

and

0≤ q− ≡ inf
x∈X

q(x)≤ sup
x∈X

q(x)≡ q+ <∞,

for a, b > 0.

We say that f is a locally integrable function on X if f is an integrable

function on all balls B in X . For α > 0 and τ > 0, we define the Riesz potential

of order α for a locally integrable function f on X by (see, e.g., [15], [28])

Iα,τf(x) =

∫
X

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y).

Define

Φ(x, t) = tp(x)
(
log(c0 + t)

)q(x)
,

and denote by LΦ(X) the family of all measurable functions f on X such that

‖f‖LΦ(X) = inf
{
λ > 0 :

∫
X

Φ
(
x,

∣∣f(x)/λ∣∣)dμ(x)≤ 1
}
<∞.

Note that c0 ≥ e is chosen so that Φ(x, ·) is convex on [0,∞).

For a locally integrable function f on X and λ ≥ 1, the Hardy–Littlewood

maximal function Mλf is defined by

Mλf(x) = sup
r>0

1

μ(B(x,λr))

∫
B(x,r)∩X

∣∣f(y)∣∣dμ(y).
For λ ≥ 1, we say that X satisfies (Mλ) if there exists a constant C > 0 such

that

μ
({

x ∈X :Mλf(x)> k
})

≤ C

k

∫
X

∣∣f(y)∣∣dμ(y)
for all measurable functions f ∈ L1(X) and k > 0. Nazarov, Treil, and Volberg

[30] proved that X satisfies (M3) if X is a separable metric space. Terasawa

[38] showed that X satisfies (Mλ) for λ≥ 2 if μ(B(x, r)) is continuous with the

variable r > 0 when x ∈X is fixed. Sawano [32] showed that X satisfies (Mλ)

for λ≥ 2 if X is a separable metric space (see also [37] where (M1) is true for

the Poincaré disk).

LEMMA 2.1

Let 1< p0 <∞, and let λ≥ 1. Suppose that X satisfies (Mλ). Then there exists

a constant C > 0 such that
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∫
X

{
Mλf(x)

}p0
dμ(x)≤C

for all measurable functions f on X with ‖f‖Lp0 (X) ≤ 1.

LEMMA 2.2 ([31, LEMMA 2.3])

Let λ≥ 1, and let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤
1 such that f(x)≥ 1 or f(x) = 0 for each x ∈X. Set

I = Iλ(x, r, f) =
1

μ(B(x,λr))

∫
B(x,r)∩X

f(y)dμ(y)

and

J = Jλ(x, r, f) =
1

μ(B(x,λr))

∫
B(x,r)∩X

g(y)dμ(y),

where g(y) = Φ(y, f(y)). Then there exists a constant C > 0 such that

I ≤CJ1/p(x)
(
log(e+ J)

)−q(x)/p(x)

for all x ∈X.

Proof

Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1 such that

f(x)≥ 1 or f(x) = 0 for each x ∈X . First, consider the case when J ≥ 1. Set

k = J1/p(x)
(
log(e+ J)

)−q(x)/p(x)
.

Then we have

I ≤ k+
1

μ(B(x,λr))

∫
B(x,r)∩X

f(y)
(f(y)

k

)p(y)−1( log(c0 + f(y))

log(c0 + k)

)q(y)

dμ(y).

Since ‖f‖LΦ(X) ≤ 1, we find by (1.1) that

J ≤ 1

μ(B(x,λr))

∫
X

g(y)dμ(y)≤ 1

μ(B(x,λr))
≤A−1

1 λ−Qr−Q.

Hence, we obtain, for y ∈B(x, r),

k−p(y) ≤ C
{
J1/p(x)

(
log(e+ J)

)−q(x)/p(x)}−p(x)+ a
log(e+1/r)

≤ C
{
J1/p(x)

(
log(e+ J)

)−q(x)/p(x)}−p(x)+ a

log(e+1/(CJ−1/Q))

≤ CJ−1
(
log(e+ J)

)q(x)
and

(
log(c0 + k)

)−q(y) ≤ C
{
log(e+ J)

}−q(x)+ b

log(e+log(e+1/(CJ−1/Q)))

≤ C
(
log(e+ J)

)−q(x)
.

Consequently, it follows that

I ≤CJ1/p(x)
(
log(e+ J)

)−q(x)/p(x)
.
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In the case J ≤ 1, we find that

I ≤ J ≤CJ1/p(x)
(
log(e+ J)

)−q(x)/p(x)
.

Now the result follows. �

Now we are ready to show the boundedness of the maximal operator Mλ.

THEOREM 2.3 ([31, THEOREM 2.4])

Let λ≥ 1. Suppose that X satisfies (Mλ). Then there exists a constant cM > 0

such that ∫
X

Φ
(
x,Mλf(x)

)
dμ(x)≤ cM

for all measurable functions f on X with ‖f‖LΦ(X) ≤ 1.

Proof

Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1. Write

f = fχ{y∈X:f(y)≥1} + fχ{y∈X:f(y)<1} = f1 + f2,

where χE denotes the characteristic function of E. Then, since Mλf2 ≤ 1 on X ,

we see from Lemma 2.2 that

Φ
(
x,Mλf(x)

)
≤C

{
1 +Mλg(x)

}
,

where g(y) = Φ(y, f(y)). Now take p1 such that 1< p1 < p−. Then, applying the

above inequality with p(x) replaced by p(x)/p1, we obtain

Φ
(
x,Mλf(x)

)
≤C

{
1 +

{
Mλg1(x)

}p1
}
,

where g1(y) = Φ(y, f(y))1/p1 = g(y)1/p1 . By Lemma 2.1, we see that∫
X

Φ
(
x,Mλf(x)

)
dμ(x)≤ cM ,

as required. �

3. Trudinger’s exponential integrability

This section concerns the exponential integrability of Trudinger’s type. Our main

result is the following, which is an extension of [23, Theorem 4.1].

THEOREM 3.1

Let τ > λ≥ 1. Suppose that

p(x)≥Q/α≥ 1 and q(x)< p(x)− 1

for x ∈X. Assume that X satisfies (Mλ). Then there exist constants c1, c2 > 0

such that ∫
X

exp
( Iα,τf(x)

p(x)/(p(x)−q(x)−1)

(c1γ2(x))p(x)/(p(x)−q(x)−1)

)
dμ(x)≤ c2
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for all nonnegative measurable functions f on X with ‖f‖LΦ(X) ≤ 1, where

γ2(x) = γ1(x)
−(p(x)−1)/p(x)

(
log

(
1/γ1(x)

))q(x)/p(x)
with γ1(x) =min{p(x)− q(x)− 1,1/2}.

COROLLARY 3.2

Let τ > λ≥ 1. Suppose that

p(x)≥Q/α≥ 1 and q(x)< p(x)− 1

for x ∈X. Assume that X satisfies (Mλ). Then there exists a constant c3 > 0

such that ∫
X

{
exp

( Iα,τf(x)
p(x)/(p(x)−q(x)−1)

(c3γ2(x))p(x)/(p(x)−q(x)−1)

)
− 1

}
dμ(x)≤ 1

for all nonnegative measurable functions f on X with ‖f‖LΦ(X) ≤ 1.

REMARK 3.3 ([23, REMARK 4.3])

Let B=B(0,1)⊂RN . For 0< δ < 1, we can find f ∈ LΦ(B) such that∫
B

exp
((
γ2(x)

−δUαf(x)
)p(x)/(p(x)−q(x)−1))

dx=∞.

This implies that the weight γ2(x)
−p(x)/(p(x)−q(x)−1) in Theorem 3.1 is needed.

Before proving Theorem 3.1, we prepare the following result.

LEMMA 3.4

Let τ > 1. Suppose that

p(x)≥Q/α≥ 1 and q(x)< p(x)− 1

for x ∈X. Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1.

Then there exists a constant C > 0 such that∫
X\B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)≤Cγ2(x)

(
log(1/δ)

)(p(x)−q(x)−1)/p(x)

for all x ∈X and 0< δ < 1/2.

Proof

Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1.

First we consider the case γ1(x)
1/Q/τ ≤ δ. We have∫

X\B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y) ≤ A−1

1 τ−Q

∫
X\B(x,δ)

d(x, y)α−Qf(y)dμ(y)

≤ A−1
1 τ−Qδα−Q

∫
X\B(x,δ)

f(y)dμ(y)

≤ A−1
1 τ−Qδα−Q

∫
X

{
1 + g(y)

}
dμ(y)
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≤ Cγ1(x)
(α−Q)/Q

≤ Cγ2(x)
(
log(1/δ)

)(p(x)−q(x)−1)/p(x)
,

where g(y) = Φ(y, f(y)).

Next we consider the case γ1(x)
1/Q/τ > δ. Note that∫

X\B(x,γ1(x)1/Q/τ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)

≤Cγ1(x)
(α−Q)/Q

∫
X\B(x,γ1(x)1/Q/τ)

f(y)dμ(y)

≤Cγ2(x)
(
log(1/δ)

)(p(x)−q(x)−1)/p(x)
.

Setting

η(x) = γ1(x)
1/p(x)

(
log

(
1/γ1(x)

))q(x)/p(x)
and

N(x, y) = d(x, y)−Q/p(x)
(
log

(
1/d(x, y)

))−(q(x)+1)/p(x)
,

we have∫
B(x,γ1(x)1/Q/τ)\B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)

≤
∫
B(x,γ1(x)1/Q/τ)\B(x,δ)

d(x, y)α

μ(B(x, τd(x, y)))

{
η(x)N(x, y)

}
dμ(y)

+

∫
B(x,γ1(x)1/Q/τ)\B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))

×
( f(y)

η(x)N(x, y)

)p(y)−1( log(c0 + f(y))

log(c0 + η(x)N(x, y))

)q(y)

dμ(y)

= J1 + J2.

Let j0 be the smallest positive integer such that τ j0δ ≥ γ1(x)
1/Q/τ . We

obtain

J1 ≤
j0∑
j=1

∫
X∩(B(x,τjδ)\B(x,τj−1δ))

d(x, y)α

μ(B(x, τd(x, y)))

{
η(x)N(x, y)

}
dμ(y)

≤ η(x)

×
j0∑
j=1

∫
X∩(B(x,τjδ)\B(x,τj−1δ))

(τ jδ)α−Q/p(x)(log(1/(τ jδ)))−(q(x)+1)/p(x)

μ(B(x, τ jδ))
dμ(y)

≤ η(x)

j0∑
j=1

(τ jδ)α−Q/p(x)
(
log

(
1/(τ jδ)

))−(q(x)+1)/p(x)

≤ Cη(x)

∫ 2dX

δ

tα−Q/p(x)
(
log(1/t)

)−(q(x)+1)/p(x) dt

t
.
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Since p(x)≥Q/α, we have

J1 ≤ Cη(x)

∫ 2dX

δ

(
log(1/t)

)−(q(x)+1)/p(x) dt

t

≤ Cη(x)γ1(x)
−1

(
log(1/δ)

)(p(x)−q(x)−1)/p(x)

≤ Cγ2(x)
(
log(1/δ)

)(p(x)−q(x)−1)/p(x)
.

Next we estimate J2. If y ∈B(x,γ1(x)
1/Q/τ), then γ1(x)

−p(y) ≤Cγ1(x)
−p(x),

so that η(x)−p(y) ≤Cη(x)−p(x). Hence,

{
η(x)N(x, y)

}−p(y) ≤Cη(x)−p(x)d(x, y)Q
(
log

(
1/d(x, y)

))q(x)+1
,

and by the fact that log(c0 + st)≤ log(c0 + s) log(c0 + t) when s, t > 0,

{
log

(
c0 + η(x)N(x, y)

)}−q(y) ≤C
(
log

(
1/γ1(x)

))q(x)(
log

(
1/d(x, y)

))−q(x)

for y ∈B(x,γ1(x)
1/Q/τ). Therefore, we have by (1.1)

J2 ≤ A−1
1 τ−Q

∫
B(x,γ1(x)1/Q/τ)\B(x,δ)

d(x, y)α−Q
( 1

η(x)N(x, y)

)p(y)−1

×
( 1

log(c0 + η(x)N(x, y))

)q(y)

g(y)dμ(y)

≤ Cη(x)1−p(x)
(
log

(
1/γ1(x)

))q(x) ∫
B(x,γ1(x)1/Q/τ)\B(x,δ)

d(x, y)α−Q/p(x)

×
(
log

(
1/d(x, y)

))(p(x)−q(x)−1)/p(x)
g(y)dμ(y)

≤ Cγ2(x)
(
log(1/δ)

)(p(x)−q(x)−1)/p(x)
,

where g(y) = Φ(y, f(y)) as before.

Consequently, it follows that∫
G\B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)≤Cγ2(x)

(
log(1/δ)

)(p(x)−q(x)−1)/p(x)

for 0< δ < 1/2, which gives the lemma. �

Proof of Theorem 3.1

Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1. Note that
∫
B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)≤ δα

1− (τ/λ)−α
Mλf(x),

since τ > λ≥ 1 (see [31, proof of Theorem 3.1]). Lemma 3.4 gives

Iα,τf(x)≤C
{
δαMλf(x) + γ2(x)

(
log(1/δ)

)(p(x)−q(x)−1)/p(x)}
for 0< δ < 1/2. Here, considering

δ =C
(
γ2(x)

−1Mλf(x)
)−1/α(

log
(
γ2(x)

−1Mλf(x)
))(p(x)−q(x)−1)/(αp(x))
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when γ2(x)
−1Mλf(x)≥ e, we find that

Iα,τf(x) ≤ C
{
γ2(x)

(
log

(
c0 + γ2(x)

−1Mλf(x)
))(p(x)−q(x)−1)/p(x)

+ γ2(x)
}

≤ Cγ2(x)
(
log

(
c0 +Mλf(x)

))(p(x)−q(x)−1)/p(x)
.

Hence, it follows that

c−1
1 γ2(x)

−1Iα,τf(x)≤
(
log

(
c0 +Mλf(x)

))(p(x)−q(x)−1)/p(x)
,

so that

exp
( Iα,τf(x)

p(x)/(p(x)−q(x)−1)

(c1γ2(x))p(x)/(p(x)−q(x)−1)

)
≤ c0 +Mλf(x)≤C

{
Φ

(
x,Mλf(x)

)
+ 1

}
.

By Theorem 2.3, we have∫
X

exp
( Iα,τf(x)

p(x)/(p(x)−q(x)−1)

(c1γ2(x))p(x)/(p(x)−q(x)−1)

)
dμ(x)

≤C
(∫

X

Φ
(
x,Mλf(x)

)
dμ(x) + 1

)
≤C,

as required. �

Finally, we consider the case in which p(x)≥Q/α≥ 1 and q(x)≥ p(x)− 1.

LEMMA 3.5

Let τ > 1. Suppose that

p(x)≥Q/α≥ 1 and q(x)≥ p(x)− 1

for x ∈X. Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1.

Then there exists a constant C > 0 such that∫
X\B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)≤C

(
log

(
log(1/δ)

))(p(x)−1)/p(x)

for all x ∈X and 0< δ < 1/4.

Proof

Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1. First note

that ∫
X\B(x,1/(4τ))

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)

≤A−1
1 τ−Q

∫
X\B(x,1/(4τ))

d(x, y)α−Qf(y)dμ(y)≤C.

Next, setting

N(x, y) = d(x, y)−Q/p(x)
(
log

(
1/d(x, y)

))−1(
log

(
log

(
1/d(x, y)

)))−1/p(x)
,

we have
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∫
B(x,1/(4τ))\B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)

≤
∫
B(x,1/(4τ))\B(x,δ)

d(x, y)α

μ(B(x, τd(x, y)))
N(x, y)dμ(y)

+

∫
B(x,1/(4τ))\B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))

( f(y)

N(x, y)

)p(y)−1

×
( log(c0 + f(y))

log(c0 +N(x, y))

)q(y)

dμ(y)

≤C
{(

log
(
log(1/δ)

))(p(x)−1)/p(x)
+

∫
B(x,1/(4τ))\B(x,δ)

d(x, y)α−Q/p(x)

×
(
log

(
1/d(x, y)

))p(x)−q(x)−1(
log

(
log

(
1/d(x, y)

)))(p(x)−1)/p(x)
g(y)dμ(y)

}

≤C
(
log

(
log(1/δ)

))(p(x)−1)/p(x)
,

where g(y) = Φ(y, f(y)), as required. �

As in the proof of Theorem 3.1, we establish the following double exponential

integrability for f ∈ LΦ(X) in view of Lemma 3.5 and Theorem 2.3.

THEOREM 3.6

Let τ > λ≥ 1. Suppose that

p(x)≥Q/α≥ 1 and q(x)≥ p(x)− 1

for x ∈X. Assume that X satisfies (Mλ). Then there exist constants c1, c2 > 0

such that ∫
X

exp
(
exp

(Iα,τf(x)
p(x)/(p(x)−1)

c
p(x)/(p(x)−1)
1

))
dμ(x)≤ c2

for all nonnegative measurable functions f on X with ‖f‖LΦ(X) ≤ 1.

4. Continuity of Riesz potentials

In this section, we discuss the continuity of Riesz potentials under the condition

that there are constants θ > 0, ι > 1, and C0 > 0 such that

(4.1)
∣∣∣ d(x, y)α

μ(B(x, τd(x, y)))
− d(z, y)α

μ(B(z, τd(z, y)))

∣∣∣≤C0

(d(x, z)

d(x, y)

)θ d(x, y)α

μ(B(x, ιd(x, y)))

whenever d(x, z)≤ d(x, y)/2.

THEOREM 4.1

Let τ > 1. Suppose that

p(x)≥Q/α≥ 1 and q(x)> p(x)− 1



90 Kanemori, Ohno, and Shimomura

for x ∈X. If f is a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1,

then Iα,τf(x) is continuous for all x ∈X and there exists a constant C > 0 such

that ∣∣Iα,τf(z)− Iα,τf(x)
∣∣ ≤Cγ4(x)

(
log

(
1/d(x, z)

))−(q(x)−p(x)+1)/p(x)

as z → x for each x ∈X, where

γ4(x) = γ3(x)
−(p(x)−1)/p(x)

(
log

(
1/γ3(x)

))q(x)/p(x)
with γ3(x) =min{q(x)− p(x) + 1,1/2}.

For a proof of Theorem 4.1, we prepare two lemmas.

LEMMA 4.2

Let τ > 1. Suppose that

p(x)≥Q/α≥ 1 and q(x)> p(x)− 1

for x ∈X. Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1.

Then there exists a constant C > 0 such that∫
B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)≤Cγ4(x, δ)

(
log(1/δ)

)−(q(x)−p(x)+1)/p(x)

for all x ∈X and 0< δ < 1/2, where

γ4(x, t) = γ3(x)
−(p(x)−1)/p(x)−a/(p(x) log(1/t))

×
(
log

(
1/γ3(x)

))q(x)/p(x)−aq(x)/(p(x) log(1/t))+b/ log(log(1/t))
.

Proof

Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1. Setting

η(x) = γ3(x)
1/p(x)

(
log

(
1/γ3(x)

))q(x)/p(x)
and

N(x, y) = d(x, y)−Q/p(x)
(
log

(
1/d(x, y)

))−(q(x)+1)/p(x)
,

we have ∫
B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)

≤C
{∫

B(x,δ)

d(x, y)α

μ(B(x, τd(x, y)))
η(x)N(x, y)dμ(y)

+

∫
B(x,δ)

d(x, y)α−Qf(y)
( f(y)

η(x)N(x, y)

)p(y)−1

×
( log(c0 + f(y))

log(c0 + η(x)N(x, y))

)q(y)

dμ(y)
}
.
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Note that{
η(x)N(x, y)

}−p(y) ≤ η(x)−p(x)−a/ log(1/δ)d(x, y)Q
(
log

(
1/d(x, y)

))q(x)+1

and {
log

(
c0 + η(x)N(x, y)

)}−q(y)

≤C
(
log

(
1/γ3(x)

))q(x)+b/ log(log(1/δ))(
log

(
1/d(x, y)

))−q(x)

for y ∈B(x, δ). Consequently, it follows that∫
B(x,δ)

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)

≤C
{
η(x)γ3(x)

−1
(
log(1/δ)

)−(q(x)−p(x)+1)/p(x)

+ η(x)−p(x)+1−a/ log(1/δ)
(
log

(
1/γ3(x)

))q(x)+b/ log(log(1/δ))

×
∫
B(x,δ)

d(x, y)α−Q/p(x)
(
log

(
1/d(x, y)

))−(q(x)−p(x)+1)/p(x)
g(y)dμ(y)

}

≤Cγ4(x, δ)
(
log(1/δ)

)−(q(x)−p(x)+1)/p(x)
(
1 +

∫
B(x,δ)

g(y)dμ(y)
)

≤Cγ4(x, δ)
(
log(1/δ)

)−(q(x)−p(x)+1)/p(x)
,

where g(y) = Φ(y, f(y)), as required. �

LEMMA 4.3

Let τ > 1. Suppose that

p(x)≥Q/α≥ 1 and q(x)> p(x)− 1

for x ∈X. Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1.

Then there exists a constant C > 0 such that∫
X\B(x,δ)

d(x, y)α−θf(y)

μ(B(x, τd(x, y)))
dμ(y)≤Cδ−θ

(
log(1/δ)

)−(q(x)−p(x)+1)/p(x)

for all x ∈X and 0< δ < 1/2.

Proof

Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1. First note

that ∫
X\B(x,1/(2τ))

d(x, y)α−θf(y)

μ(B(x, τd(x, y)))
dμ(y)

≤C

∫
X\B(x,1/(2τ))

d(x, y)α−Q−θf(y)dμ(y)≤C.

Setting

N(x, y) = d(x, y)−Q/p(x)
(
log

(
1/d(x, y)

))−(q(x)+1)/p(x)
,
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we have ∫
B(x,1/(2τ))\B(x,δ)

d(x, y)α−θf(y)

μ(B(x, τd(x, y)))
dμ(y)

≤C
{∫

B(x,1/(2τ))\B(x,δ)

d(x, y)α−θ

μ(B(x, τd(x, y)))
N(x, y)dμ(y)

+

∫
B(x,1/(2τ))\B(x,δ)

d(x, y)α−Q−θf(y)
( f(y)

N(x, y)

)p(y)−1

×
( log(c0 + f(y))

log(c0 +N(x, y))

)q(y)

dμ(y)
}
.

Since {
N(x, y)

}−p(y) ≤Cd(x, y)Q
(
log

(
1/d(x, y)

))q(x)+1

and {
log

(
c0 +N(x, y)

)}−q(y) ≤C
(
log

(
1/d(x, y)

))−q(x)

for y ∈B(x,1/(2τ)), it follows that∫
B(x,1/(2τ))\B(x,δ)

d(x, y)α−θf(y)

μ(B(x, τd(x, y)))
dμ(y)

≤C
{
δ−θ

(
log(1/δ)

)−(q(x)+1)/p(x)

+

∫
B(x,1/(2τ))\B(x,δ)

d(x, y)α−Q/p(x)−θ
(
log

(
1/d(x, y)

))−(q(x)−p(x)+1)/p(x)

× g(y)dμ(y)
}

≤Cδ−θ
(
log(1/δ)

)−(q(x)−p(x)+1)/p(x)
(
1 +

∫
B(x,1/(2τ))\B(x,δ)

g(y)dμ(y)
)

≤Cδ−θ
(
log(1/δ)

)−(q(x)−p(x)+1)/p(x)
,

where g(y) = Φ(y, f(y)), as required. �

Proof of Theorem 4.1

Let f be a nonnegative measurable function on X with ‖f‖LΦ(X) ≤ 1.

Write

Iα,τf(x)− Iα,τf(z)

=

∫
B(x,2d(x,z))

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)

−
∫
B(x,2d(x,z))

d(z, y)αf(y)

μ(B(z, τd(z, y)))
dμ(y)

+

∫
X\B(x,2d(x,z))

( d(x, y)α

μ(B(x, τd(x, y)))
− d(z, y)α

μ(B(z, τd(z, y)))

)
f(y)dμ(y)
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for x, z ∈X . By Lemma 4.2, we have∫
B(x,2d(x,z))

d(x, y)αf(y)

μ(B(x, τd(x, y)))
dμ(y)

≤Cγ4
(
x,2d(x, z)

)(
log

(
1/d(x, z)

))−(q(x)−p(x)+1)/p(x)

and ∫
B(x,2d(x,z))

d(z, y)αf(y)

μ(B(z, τd(z, y)))
dμ(y)

≤
∫
B(z,3d(x,z))

d(z, y)αf(y)

μ(B(z, τd(z, y)))
dμ(y)

≤Cγ4
(
z,3d(x, z)

)(
log

(
1/d(x, z)

))−(q(z)−p(z)+1)/p(z)

for 0< d(x, z)< 1/6. On the other hand, we have by (4.1) and Lemma 4.3
∣∣∣
∫
X\B(x,2d(x,z))

( d(x, y)α

μ(B(x, τd(x, y)))
− d(z, y)α

μ(B(z, τd(z, y)))

)
f(y)dμ(y)

∣∣∣

≤Cd(x, z)θ
∫
X\B(x,2d(x,z))

d(x, y)α−θf(y)

μ(B(x, ιd(x, y)))
dμ(y)

≤C
(
log

(
1/d(x, z)

))−(q(x)−p(x)+1)/p(x)
.

Now we establish∣∣Iα,τf(x)− Iα,τf(z)
∣∣ ≤ C

{
γ4

(
x,2d(x, z)

)(
log

(
1/d(x, z)

))−(q(x)−p(x)+1)/p(x)

+ γ4
(
z,3d(x, z)

)(
log

(
1/d(x, z)

))−(q(z)−p(z)+1)/p(z)}
for 0< d(x, z)< 1/6, which implies

∣∣Iα,τf(z)− Iα,τf(x)
∣∣ ≤Cγ4(x)

(
log

(
1/d(x, z)

))−(q(x)−p(x)+1)/p(x)

as z → x for each x ∈X . �
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