Infinitesimal CR automorphisms
and stability groups of infinite-type
models in C*
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Abstract The purpose of this article is to give explicit descriptions for stability groups
of real rigid hypersurfaces of infinite type in C2. The decompositions of infinitesimal CR
automorphisms are also given.

1. Introduction

Let M be a C*°-smooth real hypersurface in C”, and let p € M. We denote by
Aut(M) the Cauchy—Riemann (CR) automorphism group of M, by Aut(M,p)
the stability group of M, that is, those germs at p of biholomorphisms mapping
M into itself and fixing p, and by aut(M,p) the set of germs of holomorphic
vector fields in C™ at p whose real part is tangent to M. We call this set the
Lie algebra of infinitesimal CR automorphisms. We also denote by autg(M,p) :=
{H € aut(M,p): H(p) =0}.

For a real hypersurface in C™, the stability group and the Lie algebra of
infinitesimal CR automorphisms are not easy to describe explicitly; besides, they
are unknown in most cases. But, the study of Aut(M,p) and aut(M,p) of spe-
cial types of hypersurfaces is given in [CM], [EKS1|, [EKS2], [K1], [K2], [K3],
[KM], [KMZ], [S2], and [S1]. For instance, explicit forms of the stability groups
of models (see detailed definition in [K1], [KMZ]) have been obtained in [FKS2],
[K1], [K2], and [KMZ]. However, these results are known for Levi nondegenerate
hypersurfaces or, more generally, for Levi degenerate hypersurfaces of finite type
in the sense of D’Angelo [D].

In this article, we give explicit descriptions for the Lie algebra of infinitesimal
CR automorphisms and for the stability group of an infinite-type model (Mp,0)
in C? which is defined by

Mp = {(21,22) € C*: Rez + P(z2) =0},
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where P is a nonzero germ of a real-valued C*°-smooth function at 0 vanishing
to infinite order at zo = 0.

To state these results more precisely, we establish some notation. Denote by
Go(Mp,0) the set of all CR automorphisms of Mp defined by

(21,22) (21792(22»,

for some holomorphic function g with g2(0) =0 and |g2’(0)| =1 defined on a
neighborhood of the origin in C satisfying that P(g2(22)) = P(22). Also denote
by A, a disk with center at the origin and radius €y, and denote by AZ a
punctured disk A, \{0}.

Let P: A, — R be a C*-smooth function. Let us denote by So.(P) ={z €
A, : v,(P) =400}, where v,(P) is the vanishing order of P(z + () — P(z) at
¢ =0, and denote by P, (Mp) the set of all points of infinite type in Mp.

REMARK 1
It is not hard to see that Py (Mp) = {(it — P(22),22): t € R, 20 € Soo(P)}.

REMARK 2

In the case that P # 0, Go(Mp,0) contains only CR automorphisms of Mp
defined by

(21,22) — (21792(2’2))7

where g2 is a conformal map with g2(0) = 0 satisfying P(g2(22)) = P(z2) and
either go/(0) = e2™?/4 (p,q € Z) and gy = id or go'(0) = 2™ for some § € R\ Q
(see Lemma 3 in Section 2 and Lemmas 5 and 6 in Section 3).

The first aim of this article is to prove the following two theorems, which give
a decomposition of the infinitesimal CR automorphisms and an explicit descrip-
tion for stability groups of infinite-type models. In what follows, all functions,
mappings, hypersurfaces, and so on are understood to be germs at the reference
points, and we will not refer to them if there is no confusion.

THEOREM 1

Let (Mp,0) be a real C*-smooth hypersurface defined by the equation p(z) :=
p(z1,22) = Rez + P(22) =0, where P is a C*-smooth function on a neighborhood
of the origin in C satisfying the conditions:

(i) P(z2) #0 on a neighborhood of zo =0, and
(ii) the connected component of 0 in Soo(P) is {0}.

Then the following assertions hold.
(a) The Lie algebra g = aut(Mp,0) admits the decomposition
g=g-1® auty(Mp,0),
where g_1 ={if0,, : f €R}.
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(b) If autg(Mp,0) is trivial, then
Aut(Mp,0) = Ga(Mp,0).

REMARK 3

The condition (ii) simply tells us that Mp is of infinite type. Moreover, the
connected component of 0 in Poo(Mp) is the set {(it,0): t € R}, which plays a
key role in the proof of this theorem.

In the case that the connected component of 0 in So (P) is not {0}, such as when
Mp is tubular, we have the following theorem.

THEOREM 2
Let P be a C™®-smooth function defined on a neighborhood of 0 in R satisfying

(i) P(z)#0 on a neighborhood of x =0 in R, and
(ii) the connected component of 0 in S (P) is {0}.

Denote by P a function defined by setting P(zy) := P(Rezy). Then the following
assertions hold.

(a) autg(Mp,0) =0 and the Lie algebra g = aut(Mp,0) admits the decompo-
sition

g=90-1D 9o,

where g_1 = {iB0,, : B € R} and go = {iB0,,: B € R}.

(b) Aut(Mp,0) = {id}.

(¢) If Suo(P) = {0}, then Aut(Mp) =T (Mp)®T2(Mp) = {(21,22) — (21 +
it,zo + is): t,s € R}, where TH(Mp) = {(21,22) = (21 + it,z2): t € R} and
T2(Mp) = {(21,22) + (21,22 +it): t € R}.

These theorems show that the special conditions of defining functions determine
the forms of holomorphic vector fields. Conversely, the second aim of this article is
to show that holomorphic vector fields determine the form of defining functions.
This is, in some sense, the converse of Example 2 in Section 6, which holds
generally. Namely, we prove the following.

THEOREM 3
Let (Mp,0) be a C°°-smooth hypersurface defined by the equation p(z) :=
p(z1,22) =Rez1 + P(22) =0, satisfying the conditions:

(i) the connected component of zo =0 in the zero set of P is {0}, and
(ii) P wanishes to infinite order at zo =0.

Then any holomorphic vector field vanishing at the origin tangent to (Mp,0) is
either identically zero or, after a change of variable in z2, of the form i8220,,



444 Atsushi Hayashimoto and Ninh Van Thu

for some monzero real number 3, in which case Mp is rotationally symmetric;
that is, P(z2) = P(]22]).

The organization of this article is as follows. In Section 2, we prove three lemmas
which we use in the proof of theorems. In Section 3, we give a description of
stability groups, and proofs of Theorems 1 and 2 are given in Section 4. In
Section 5, we prove Theorem 3 and the lemmas needed to prove it. In Section 6, we
introduce some examples. Finally, two theorems are presented in the Appendix.

2. Preliminaries

In this section, we shall recall some definitions and introduce three lemmas which
are used to prove Theorems 1 and 2.

DEFINITION 1
Let g1, g2 be two conformal maps with g1(0) = g2(0) = 0. We say that g; and go

are holomorphically locally conjugated if there exists a biholomorphism ¢ with
©(0) =0 such that

g=¢ togrop.

DEFINITION 2
Let g be a conformal map with g(0) =0.
(i) If ¢’(0) =1, then we say that g is tangent to the identity.
(ii) If ¢’(0) = €2™/49, p,q € Z, then we say that g is parabolic.
(iii) If ¢'(0) = e2™% for some § € R\ Q, then we say that g is elliptic.

The following lemma is a slight generalization of [N1, Lemma 2].

LEMMA 1

Let P be a C*®-smooth function on A, (€9 > 0) satisfying vo(P) = 400 and
P(z) #£0. Suppose that there exists a conformal map g on A, with g(0) =0 such
that

P(g(z)) = (B + 0(1))P(z), z €A,
for some B €R*. Then |¢’(0)] =1.

Proof
Suppose that there exist a conformal map g with g(0) =0 and a 8 € R* such
that P(g(z)) = (8 +o(1))P(2) holds for z € A.,. Then, we have

P(g(z)) = (ﬂ +7(z))P(z), z2€ Agy,

where v is a function defined on A, with v(z) — 0 as z — 0, which implies that
there exists dp > 0 such that |y(z)| < |8|/2 for any z € As,. We consider the
following cases.
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Case 1: 0 < |¢’(0)| < 1. In this case, we can choose dp and a with 0 < g < €
and [¢'(0)] < o <1 such that [g(z)| < afz| for all z in Ag,. Fix a point 2o € A}
with P(zg) # 0. Then, for each positive integer n, we get

[P(g"(20)) | = [(B+~(9" " (20))) [|P(9"*(20)) | = -
[(B+7(9" " (20))) |-+ [(B +7(0)) || P(20)]|
(181 = 17 (g™ (20))[) -+ (181 = [7(20) )| P(20) |
> (181/2)" | P(=0)

where g™ denotes the composition of g with itself n times. Moreover, since 0 <
a < 1, there exists a positive integer mg such that |a™°| < |8|/2. Notice that
0 <]9™(20)| < a™|z| for any n € N. Then it follows from (1) that

[P(g"(20)) o |P(20)] (lﬁ\/Q)”

lg7(z0)|™0 " |zo|™o '
This yields that |P(g"(20))|/|9"(z0)|™ — +00 as n — oo, which contradicts the
fact that P vanishes to infinite order at 0.

Case 2: 1< |¢'(0)|. Since P(g(z)) = (8 +0(1))P(z) for all z € A, it follows
that P(g~1(2)) = (1/8 + o(1))P(z) for all z € A, which is impossible because
of Case 1.

Altogether, |¢’(0)| =1, and the proof is thus complete. |

(1)

v

)

amo

LEMMA 2
Let f:[—r,r] = R (r > 0) be a continuous function satisfying f(0) =0 and f #0.
If B is a real number such that

fE+8f1) = f(t)
for every t € [—r,r] with t+ Bf(t) € [-r,r], then 5 =0.

Proof
Suppose, to derive a contradiction, that there exists a § # 0 such that f(¢t +
Bf(t)) = f(t) for every t € [—r,r] with t + Bf(t) € [-r,r]. Then we have

FO)=F(E+BfH) = F(t+BFE)+Bf(t+BF(1)))

=f(t+28f(t) == f(t+mBf(t))

for every m € N and for every t € [—r, 7] with ¢t + mBf(t) € [-r,7].

Let tg € [—r,r] be such that f(t9) # 0. Then since f is uniformly continuous
on [—r, 1], for every e > 0 there exists § > 0 such that, for every ¢1,ts € [—r,r] with
|t1 —t2] < &, we have that | f(¢1) — f(t2)| < €/2. On the other hand, since f(t) =0
as t — 0 and since f #£0, one can find ¢ € [—§/2,§/2] such that |Sf(t)| < and
0 <|f(t)] < €/2. Therefore, there exists an integer m such that [t+mpBf(t) —to| <

(2)
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d, and thus by (2) one has
|[f(to)| < [f(t+mBF(B) = f(to)| + |F(t+mBF(1)]
<e/24|f(t)|<e/2+€/2=¢

This implies that f(t9) = 0, which is a contradiction. Hence, the proof is complete.
|

LEMMA 3

Let P be a nonzero C*-smooth function with P(0) =0, and let g be a conformal
map satisfying g(0) =0, |¢'(0)| =1, and g #id. If there exists a real number
§ € R* such that P(g(z)) =0P(z), then § = 1. Moreover, we have either ¢'(0) =
e?™®/4(p,q € 7) and g7 =id or ¢'(0) = €™ for some € R\ Q.

Proof
Replacing g by its inverse if necessary, one can assume that |§| > 1. Now we
divide the proof into three cases as follows.

Case 1: g'(0) = 1. As a consequence of the Leau-Fatou flower theorem (see
Theorem 4 in Appendix A.1), there exists a point z in a small neighborhood of the
origin with P(z) # 0 such that ¢"(z) — 0 as n — co. Since P(¢"(2)) = (§)"P(z)
and lim,,—, y o P(¢"(2)) = P(0) = 0, we have 0 < |§] < 1, which is a contradiction.

Case 2: \:= ¢'(0) = e*™®/4(p,q € 7). Suppose that ¢g? = id; then by [A,
Proposition 3.2], there exists z in a small neighborhood of 0 satisfying P(z) #0
such that the orbit {¢™(z)} is contained in a relativity compact subset of some
punctured neighborhood. Therefore, by the assumption that P(g(z)) = §P(z),
the sequence {§™} must be convergent. This means that § = 1. In the case of
g% #1d, we have g%(z) = z+ -+ and P(g%(z)) = 07P(z). This is absurd because
of Case 1 with g being replaced by g4.

Case 3: \:=¢'(0) =e*>™%(0 ¢ Q). By [A, Proposition 4.4], we may assume
that there exists z in a small neighborhood of 0 satisfying P(z) # 0 such that
the orbit {¢"(z)} is contained in a relativity compact subset of some punctured
neighborhood. Therefore, the same argument as in Case 2 shows that § = 1.
Altogether, the proof is complete. O

3. Explicit description for G2 (M p,0)

In this section, we are going to give an explicit description for the subgroup
G2 (Mp,0) of the stability group of Mp. By virtue of Lemma 3, Go(Mp,0) con-
tains only CR automorphisms of Mp defined by

(21,22) = (21,92(22)),

where g5 is either parabolic or elliptic. Conversely, given either a parabolic g with
g% =id for some positive integer ¢ or an elliptic g, we shall show that there exist
some infinite-type models (Mp,0) such that the mapping (21, 22) — (21,9(22))
belongs to Ga(Mp,0).

First of all, we need the following lemma.
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LEMMA 4
If P(e2™2) = P(z) for some § € R\ Q, then P(z) = P(|2|); that is, P is rota-
tional.

Proof

We note that P(e*™"z) = P(z) for any n € N and {e2>""¢z: n € N} =S,|, where
S, :={z€C: |z| =r} for r > 0. Therefore, because of the continuity of P, we
conclude that P(z) = P(|z]). O

3.1. The parabolic case

LEMMA 5

Let g(z) = e*™P/9% 4 ... be a conformal map, with A = e>™P/9 being a primitive
root of unity. If g9 =1id, then there exists an infinite-type model Mp such that
(21,22) ¥ (21,97 (22)) belongs to Go(Mp,0) for every j=1,2,...,q— 1.

Proof

Suppose that g(z) = e?™P/4y 4 ... is a conformal map such that A = e27?/4 is a
primitive root of unity satisfying g? =id. It is known that ¢ is holomorphically
locally conjugated to h(z) = Az (see [A, Proposition 3.2]). Let P be a C*-smooth
function with yo(p) = 4-00. Define a C*°-smooth function by setting

P(z)=P(2) + P(g(2)) + -+ P9 (2)).

Then it is easy to see that P(g(z)) = P(z). Thus, fj(21,22) = (21,¢°(22)) €
Go(Mp,0), j=1,...,q— 1, are biholomorphic. |

REMARK 4

In the case of g9 # id, we have g%(z) = z + ---, and therefore P(z + ---) =
P(g%(z)) = P(2). It follows from Lemma 3 that there is no infinite-type model
Mp satisfying P #Z 0 on some petal such that (z1,22) — (21,9(22)) belongs to
GQ(MP7O).

3.2. The elliptic cases

LEMMA 6

Let g(z) = ¥z + ... be a conformal map with 6 ¢ Q. Then there exists an
infinite-type formal model Mp such that (z1,22) — (21,9(22)) belongs to
G2(Mp,0). Moreover, Mp is biholomorphically equivalent to a rotationally sym-
metric model M.

Proof

Suppose that g(z) = €2z 4 - - - is a conformal map with ¢ Q. Then it is known
that g is formally locally conjugated to Ry (z) = e*™?z (see [A, Proposition 4.4]),
that is, there exists a formally conformal map ¢ at 0 with ¢(0) =0 such that

g=¢ ToRgop.
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Let P be a rotational C>®°-smooth function with v(P) = +o0. Define a C>-
smooth formal function by setting

P(2) = P(p(2)) = P(|o(2)])-

Then P(g(2)) = P(pog(2)) = P(Rg o (2)) = P(|Rg o p(2)]) = P(|¢(2)]) = P(2).
This means that (z1,22) — (21,9(22)) belongs to Ga(Mp,0). Moreover,
fi(21,22) :== (21, Lo Ry 0 p(22)) is a formal mapping in Ga(Mp,0) for all t € R.
In addition, it is easy to see that Mp is biholomorphically equivalent to Mp,
which is rotationally symmetric. O

4. Proofs of Theorems 1 and 2

This section is devoted to the proofs of Theorems 1 and 2. For the sake of smooth
exposition, we shall present these proofs in two sections.

4.1. Proof of Theorem 1

Proof of Theorem 1
(a) Let H(z1,22) = h1(z1,22)0s + ha(21,22)0,, € aut(Mp,0) be arbitrary, and let
{¢t}1er C Aut(Mp) be the one-parameter subgroup generated by H. Since ¢; is
biholomorphic for every t € R, the set {¢:(0): ¢ € R} is contained in Py, (Mp). We
remark that the connected component of 0 in Po (Mp) is {(s,0): s € R}. There-
fore, we have ¢.(0,0) C {(is,0): s € R}. Consequently, we obtain Reh;(0,0) =0
and hg(0,0) = 0. Hence, the holomorphic vector field H — i$9,,, where § :=
Imh4(0,0), belongs to auty(Mp,0), which ends the proof.

(b) In the light of (a), we see that aut(Mp,0) =g_1, that is, it is generated
by i0,,. Denote by {T}}ier the one-parameter subgroup generated by i0,,, that
is, it is given by

Tt(zth):(zl +it,22)7 teR.

Let f = (f1,f2) € Aut(Mp,0) be arbitrary. We define the family of automor-
phisms {F}}er by setting Fy := foT_; o f~1. Then it follows that {F}};cr is a
one-parameter subgroup of Aut(Mp). Since aut(Mp,0) = g_1, it follows that the
holomorphic vector field generated by {F;}+cr belongs to g_;. This means that
there exists a real number § such that Fy = Ty; for all ¢t € R, which yields that

(3) f=TspofoTy, teR.

We note that if 6 =0, then f = f oT; and thus T; = id for any ¢t € R, which is a
contradiction. Hence, we may assume that § # 0.
We shall prove that 6 = —1. Indeed, (3) is equivalent to

fi(z1,22) = fi(z1 + it, 22) + 6L,
f2(zlvz2) = f2(zl + Zta 2:2)
for all ¢ € R. This implies that %fl(zhzg) = -4 and %fg(zl,zﬁ = 0. Thus,
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the holomorphic functions f; and f; can be rewritten as
f1(z1,22) = =021 + g1(22),

f2(21, 22) = g2(22),

where g1, g2 are holomorphic functions on a neighborhood of 2z, = 0.

(4)

Since Mp is invariant under f, one has
(5) Refl(itfp(ZQ),Zz) +P(f2(ltfp(22),22)) :0

for all (z2,t) € A¢, X (—dg,09) for some €g, g > 0.
It follows from (5) with ¢ =0 and (4) that

0P(z2) +Regi(22) + P(g2(22)) =0

for all z3 € A,,. Since vy(P) = 400, we have vy(g1) = +00, and hence g; =0.
This tells us that

P(gg(Zg)) = —6P(22)

for all zo € A.,. Therefore, Lemmas 1 and 3 tell us that |¢’(0)] =1 and § = —1.
Hence, f € Go(Mp,0), which finishes the proof. |

We note that if P vanishes to infinite order at only the origin, then we have the
following corollary.

COROLLARY 1
Let (Mp,0) be as in Theorem 1. Assume that

(i) P(z2) #0 on a neighborhood of z2 =0, and
(if) Seo(P)={0}.
If autg(Mp,0) is trivial, then
Aut(Mp) = Go(Mp,0) ® T (Mp,0),

where TY(Mp,0) denotes the set of all translations T}, t € R, defined by
TH(z1, 22) = (21 +it, 22).

Proof

Let f € Aut(Mp) be arbitrary. Since the origin is of infinite type, so is f(0,0).
Because of the assumption (ii), we have P, (Mp) = {(it,0): t € R}. This tells
us that f(0,0) = (itg,0) for some to € R. Then T?, o f € Aut(Mp,0). Thus, the
proof easily follows from Theorem 1. O
In the case that P is positive on a punctured disk A? , auto(Mp,0) is at most one-
dimensional (see [NCM]). Moreover, if P is rotational, that is, P(z2) = P(|22]),
then in [N2] we proved that Aut(Mp,0) = Ga(Mp,0) = {(21,22) + (21,€"22) :
t € R}. Therefore, we only consider the case that P is not rotationally symmet-
ricable, that is, there is no conformal map ¢ with ¢(0) =0 such that Pop(z2) =
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P o p(]z2]), in which case we showed that auty(Mp,0) = {0} provided that the
connected component of 0 in the zero set of P is {0} (see Theorem 3). In addition,
this assertion still holds if P, defined on a neighborhood U of 0 in C, satisfies
the condition (I) (see [N1]), that is,

(L1) limsupgs, | Re(bzk%ﬂ = +00,

; Pl(z)) _
(1.2) limsupgs. |W| = +00,
for all k=1,2,... and for all b€ C*, where U := {z € U : P(z) # 0}. Therefore,
as an application of Theorem 1 we obtain the following corollaries.

COROLLARY 2
Let (Mp,0) be as in Theorem 1. Assume that

(i) P is not rotationally symmetricable,
(ii) the connected component of 0 in the zero set of P is {0}, and
(iii) the connected component of 0 in Soo(P) is {0}.

Then
Aut(Mp,O) = GQ(MP,O).

COROLLARY 3
Let (Mp,0) be as in Theorem 1. Assume that

(i)  P(z2) #£0 on a neighborhood of zo =0,
(ii) P satisfies the condition (1), and
(iii) the connected component of 0 in Soo(P) is {0}.

Then
Aut(Mp,0) = G3(Mp,0).

4.2. Proof of Theorem 2

Proof of Theorem 2
(a) As a consequence of Theorem 5 in Appendix A.2, we see that auto(Mp,0) =0.
Therefore, we shall prove that aut(Mp,0) = g_1 ® go. Indeed, let H(z1,22) =
hi(z1,22)0,, +ha(z1,22)0,, € aut(Mp,0) be arbitrary, and let {¢; }+1cr C Aut(Mp)
be the one-parameter subgroup generated by H. Since ¢; is biholomorphic for
every t € R, the set {¢+(0): t € R} is contained in Py (Mp). We remark that
the connected component of 0 in Py (Mp) is {(it1,it2): t1,t2 € R}. Therefore,
we have ¢:(0,0) C {(it1,it2): t1,t2 € R}. Consequently, we obtain Rehq(0,0) =0
and Rehs(0,0) = 0. Hence, the holomorphic vector field H — if310,, — i5320,,,
where 8; :=Im#h;(0,0) for j = 1,2, belongs to auty(Mp,0), which ends the proof
of (a).

(b) By (a), we see that aut(Mp,0) = g_1 @ go, that is, it is generated by 0.,
and i0,,. Denote by {th }ter the one-parameter subgroups generated by id.; for
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j =1,2; that is,
Ttl(Zl,Zg) = (2’1 +it722), TtZ(Zl,Zg) = (21,22+it), teR.

For any f = (f1, f2) € Aut(Mp,0), we define families {F/},cr of automorphisms
by setting F/ := foT”,0 f~1 (j=1,2). Then it follows that {F}};cr,j =1,2,
are one-parameter subgroups of Aut(Mp). Since aut(Mp, 0) = g_1®go, the holo-
morphic vector fields H7, j = 1,2, generated by {th}‘teR‘, j=1,2, belong to
g-1 @ go- This means that there exist real numbers 47,83, j = 1,2, such that
HI =i6{0,, +1630,, for j = 1,2, which yield that

Fl(21,20) = (21 +i07t, 20 +i0Jt) =T}y 0 T2, j=12t€R.
1 2
This implies that

f:Tl' OT2

&t 82t

which is equivalent to

fi1(z1,22) = fi(z1 +it, 20) + 067 t,
f2(21,22) = fa(z1 +it, 20) + @05,
(6) o
fi(z1,22) = f1(z1, 22 + it) +idit,
fa(z1,20) = fa(z1, 20 +it) + idat.

It follows from (6) that

8_,21f1(zl’z2) = _6%7

0
a—zlfQ(ZhZQ):*(%,

fi(z1,22) = =67,

9z

%fz(zhza) =03,
which tells us that
f(z1,22) = (=6121 — 0122, 0321 — §322).
Since Mp is invariant under f, one has
Re f1(it — P(22), z2) + P(f2(it — P(22), 22))
(7) =Re(—07 (it — P(23)) — 03 22) + P (=63 (it — P(22)) — 6322)
=81 P(22) — 05 Re(22) + P(63P(22) — 6522) =0

for all (z2,t) € A, X (—dp,0p) for some €g, g > 0 small enough.
Since vg(P) = 400, we have §2 = 0. Therefore, putting 2o =t € (—e€g,€g) in
(7), we obtain

0 P(~8t+ 61P(t) = 61P(1)
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for all ¢ € (—¢€p, €0). By the mean value theorem, for each ¢ € (—ep, €p) there exists
a number v(t) € [0, 1] such that

(9) P(—85t+ 03 P(t)) = P(—65t) + P' (=05t + ()53 P(t)) 55 P(2).

Because of the fact that the function P’(—d35t + ()63 P(t)) vanishes to infinite
order at t =0, by (8) and (9), one has

P(=63t) = (=61 +0(1))P(t), t€ (—eo,€0).

Then it follows from the proof of Lemma 1 that —§] = —63 = 1.
Now (8) becomes

P(t+683P(t)) = P(t)

for all t € (—€g,€0). By Lemma 2, this equation implies that §1 = 0. Therefore,
we conclude that f =id, which finishes the proof of (b).

(c) Denote by T} and T? the shifts to imaginary directions of the first and
second components

Ttl (21, 22) = (21 —+ it, 22), Tt2(217 ZQ) = (Zl, 29 + Zt), teR.

Now let f € Aut(Mp) be arbitrary. Then f(0,0) is of infinite type. It follows
from Su(P) = {0} that we have P, (Mp) = {(it,is): t,s € R}. Therefore, we get
£(0,0) = (ito, iso) for some tg, so € R and we obtain T, oT?2_ o f € Aut(Mp,0) =
{id} by (b). The proof of (c) follows. O

5. Analysis of holomorphic tangent vector fields

In this section, we study the determination of the defining function from holo-
morphic vector fields. Assume that an infinite-type hypersurface Mp is defined
by p(z) =Rez; + P(z2) satisfying conditions (i) and (ii) posed in Theorem 3.
Theorem 3 says that if there are nontrivial holomorphic vector fields vanishing
at the origin tangent to Mp, then the hypersurface Mp is rotationally symmetric.
The typical example of a rotationally symmetric hypersurface is

1
Mp = {(21,22) €C?:Rez —i—exp(_W) :0}7
2

where a > 0, as in Example 2 in Section 6.
To prove Theorem 3, we need some lemmas.

LEMMA 7

Let P: A., — R be a C*°-smooth function satisfying that the connected component
of z=0 in the zero set of P is {0} and that P vanishes to infinite order at z =0.
If a,b are complex numbers and if go, g1, g2 are C*-smooth functions defined on

A, satisfying

(A1) go(2) =O(|2), 91(2) = O(|2[*), and g2(2) = o(|z[™), and
(A2) Re[(az™ + go(2))P" 1 (2) + b24(1 4 go(2))P.(2) + g1(2)P(2)] = 0 for
every z € A,

€0
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for any nonnegative integers £, m, and n except for the following two cases:

(E1) £=1 and Reb=0, and
(E2) m=0 and Rea =0,

then ab=0.

The proof of Lemma 7 for the case that P is positive on A is given in [KN,
Lemma 3] (see also [NCM, Lemma 1]). Furthermore, Lemma 7 follows easily from
[KN, Lemma 3] and the following lemma.

LEMMA 8
Let P, go,91,92,a,b be as in Lemma 7. Suppose that 7y : [to,loc) — AL (to €R),
where either too € R or too =400, is a solution of the initial-value problem

dy(t
% =0 (1)(1+90(+(1)), (o) =20,
where zg € AY with P(zo) # 0, such that limgyy y(t) =0. Then P(y(t)) #0 for

every t € (to,too)-

Proof

To obtain a contradiction, we suppose that P has a zero on 7. Then since the
connected component of z = 0 in the zero set of P is {0}, without loss of generality
we may assume that there exists a t1 € (fo,tx0) such that P(y(t)) #0 for all ¢ €
(to,t1) and P(y(t1)) = 0. Denote u(t) := 3 log|P(y(t))| for to <t < t1. It follows
from (A2) that

W' (t) = =P (v(1)) (Re(ay™ (1) + o(|7(8)| ™)) + O(J(#)[)

for all tg < ¢ < ¢1. This means that «'(¢) is bounded on (to,?1). Therefore, u(t)
is also bounded on (tg,1), which contradicts the fact that u(t) - —oco as t 1 ¢;.
Hence, our lemma is proved. O

Following the proof of Lemma 7 (see also [NCM, Lemma 1]), we have the following
corollary.

COROLLARY 4
Let P: A., = R be a C*°-smooth function satisfying that the connected component
of z=0 in the zero set of P is {0} and that P wvanishes to infinite order at
z=0. If b is a complex number and if g is a C*°-smooth function defined on A,
satisfying

(B1) g(2) =O(][**), and

(B2) Re[(bz* + g(2))P.(2)] =0 for every z € A,

for some nonnegative integer k, except the case k=1 and Re(b) =0, then b=0.

Now we are ready to prove Theorem 3.
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Proof of Theorem 3
The CR hypersurface germ (Mp,0) at the origin in C? is defined by the equation

p(z1,22) :=Rez; + P(22) =0,

where P is a C*°-smooth function satisfying the two conditions of this theorem.
In particular, recall that P vanishes to infinite order at z5 = 0.

Then we consider a holomorphic vector field H = hy(z1,22)0, +ha(z1,22)0s,
defined on a neighborhood of the origin. We only consider H that is tangent to
Mp. This means that they satisfy the identity

(10) (ReH)p(z)=0, Vze Mp.

Expand h; and hs into the Taylor series at the origin

> . m .
h(zi,20) = Y apzlzs =) a;(22)2],
§,k=0 j=0

ha(z1,22) = ) bjwzlzs =) bj(z2)7,
=0

3,k=0
where a;,b;i, € C and a;,b; are holomorphic functions for every j € N. We note
that ago = boo = 0 since h1(0,0) = h2(0,0) =0.

By a simple computation, we have
1
pzl(zlsz) = 51 pz2(21,2’2):P22(22),

and (10) can thus be rewritten as

(11) Re{%hl(zl,@) +P, (zz)hz(zl,zg)] —0

for all (z1,22) € Mp. Since the point (it — P(z2), 22) is in Mp with ¢ small enough,
the above equation again admits a new form

1 o0 i o0 m
(12) Re[5 > aji(it — P(22)) 25 + Poy(22) D byn (it — P(22)) Zg} -0
J,k=0 m,n=0

for all z; € C and for all ¢t € R with |z2| < € and || < g, where €9 > 0 and o >0
are small enough. Without loss of generality, we may assume that H # 0. Since
P,,(#2) vanishes to infinite order at 0, we notice that if hy =0, then (11) shows
that hy =0. So, we must have ho Z 0.

We now divide the argument into two cases as follows.

Case 1: hy #Z0. In this case let us denote by jy the smallest integer such
that ajyr # 0 for some integer k. Then let ky be the smallest integer such that
@joke 7 0. Similarly, let mg be the smallest integer such that b,,, # 0 for some
integer n. Then denote by ng the smallest integer such that b,,,n, 7 0. We see
that jo > 1 if kg =0, and mg > 1 if ng = 0. Since P(22) = o(|22|?) for any j € N,
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inserting t = aP(z2) into (12), where o € R will be chosen later, one has

Re Eajoko (i — 1)% (P(zg))JO (,zg‘J + 0(\22|k0))
(13)

- B (i = 1) (25 + 0(|22]") ) (P(22)) ™ Py (22)] = 0
for all zp € A,. We note that, in the case kg =0 and Re(a;,0) =0, « is chosen in
such a way that Re((ic — 1)%a;,0) # 0. Then (13) yields that jo > mg by virtue
of the fact that P,,(22) and P(z2) vanish to infinite order at z; =0.

We now consider two subcases as follows.

Subcase 1.1: mg > 1. If ng =1, then the number « can also be chosen such
that Re(by,1(iac — 1)™0) #£ 0. Therefore, divide (13) by (P(z2))™® to obtain an
equation which contradicts Lemma 7. Hence, we must have mg = 0.

Subcase 1.2: mg = 0. In addition to this condition, if ng > 1, or if ng =1
and Re(bg1) # 0, then (13) contradicts Lemma 7. Therefore, we may assume that
ng =1 and Re(bg1) = 0. By a change of variable in z5 as in [KN, Lemma 1], we
may assume that by (z2) = iza.

Next, we shall prove that b,, =0 for every m € N*. Indeed, suppose otherwise.
Then let m; > 0 be the smallest integer such that b,,, # 0. Thus, it can be written
as

bm, (22) =bmin, Z;Ll + O(Z;Ll )7
where ny = vg (b, ) and by,,n, € C*. Take a derivative by ¢ at t = aP(z2) of both
sides of (12), and notice that vy(P) = 4occ0. One obtains that

. . mq— my—1 n n
(1) Re [zml(az —1)m I(P(ZQ)) ! (bmlsz1 + o(]22] 1))P22 (22)
+ 51 (aj1k1Z§1 + 0(|22|k1))(ozi — l)jl’l(P(Z2))jl_1] =0
for all zo € A, where ji,n; € N and aj,x, €C.

Following the argument as above, by Lemma 7 and Corollary 4, we conclude
that m; =nqy =1 and by(22) = —5122(1 4+ O(22)) for some 57 € R*. We claim that
b1(#z2) = —P122. Otherwise, (14) implies that

Re(—iB1 (22 — azs + o(|22[")) Psy (22)) + O(P(22)) =0
on A, for some a € C* and ¢ > 2, which is equivalent to
(15) Re(i22P.,(22)) =Re[az’ (1 + O(|22])) Psy (22)] + O(P(22))

on A, for some a € C* and ¢ > 2. On the other hand, since vy(P) = 400, inserting
t =0 into (12) one has

(16) Rel[izo (1 —if1(1+ O(|22])) P(22)) Psy (22) + (@10 + 0(1)) P(22)] =0
on A, . Therefore, subtracting (15) from (16) yields
(17) Re [iazé (14 0(|z2])) P, (22) + (a10 + 0(1)) P(22)] =0

on A, which is impossible by Lemma 7. Hence, by (z2) = — 22.
Using the same argument as above, we obtain that b,,(z2) = B,,i™ 12y for
every m € N*| where 3, € R* for every m € N*.
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Putting ¢t = aP(z2) in (12), one has
Relizo(1+iB1 (i — 1)P(z2) 4 -+ + ™ B (icv — 1) P (29) + -+ ) Psy (22)
+ (a10 + O(l))P(Zg)] =0

on A.,. On the other hand, taking the derivative of both sides of (12) by ¢ at
t = aP(z2), one also has

(18)

Re {izz (1'2/31 + 3289 (i — 1) P(22) + -+

+ "2 m By, (i — 1) P (29) + -+ ) Py (22)

SO jagulio = 177 P ()24 =0,
j=1k=0

+

DN =

or, equivalently,

Relizz(1+ z’2%(m —1)P(z) 4+

(19) i m%( PP () 4 ) Py (e2)

ZZja]k ia —1)771pi- 1(22),22} =0

j 1 k=0
on A,

Now it follows from (18) and (19) that
262/ B1 = P, 363/ P51 = Ba, ey mBm/B1 = Bm-1, ceej
otherwise, subtracting (18) from (19) one gets an equation depending on « which
contradicts Lemma 7 for some « € R. Therefore, 5, = (ﬁ L— for all m € N* and,
hence,
251 2 m BT

hg(zl,zg)—zzg(l—i—zﬂlzl +1 z1—|— c g™ —zl + - ):izgewlzl

for all z5 € A.,. Moreover, (12) becomes
e . kL o
(20) Re [5 Z aji (it — P(22))’ 25 + iz P, (22) exp(if1 (it — P(Zg))):| =0
k=0
for all (z2,t) € A¢, X (—dp,d0).
Denote f(z2,t) := Re[zj 0 @ik (it — P(22))7 28] for (20,t) € Ay x (=00, d0).
Then (20) tells us that

f(ZQ,t) =—2Re [Z‘ZQPZ2 (ZQ)GXp(iﬂl (Zt - P(Z2)))], V(ZQ,t) € Aeo X (760,50).

This implies that f(ze,t) vanishes to infinite order at zo =0 for every ¢ since
P,,(#2) vanishes to infinite order at zo =0 and fi(z2,t) = —f51f(22,t). Conse-
quently, one must have a;, =0 for every k € N* and j € N and, thus,
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f(#2,t) =Re [i ajo (it — P(zz))j} .

Furthermore, the equation f;(22,0) = —81 f(22,0) yields
Re(ia10) + 2Re(iaz) (—P(22)) + o(P(22))
= —61 (Re(alo) (—P(Zz)) + 0(13(22)))7

which implies that Re(iai0) =0, 2Re(iago) = —B1 Re(a10) = —f1a10. Similarly,
it follows from the equation fi;(22,0) = —fB1 fi(22,0) = 57 f(22,0) that

2Re(i%az) + 3! Re(i%azo) (—P(22)) + o(P(22))
=2 (Re(alo) (—P(ZQ)) + O(P(zg))),
which again implies that Re(i%ag) = 0, 3!Re(i%as0) = 83 Re(a10) = Ba1g. Con-
(iﬁlyn—l

m!

tinuing this process, we conclude that a,,g = aig for every m € N* and,
hence,
eibrz1 _ 1
hi(z1,22) = 10—

i1
This implies that a9 # 0 as h; does not vanish identically.
Without loss of generality, we may assume that a9 < 0. The case that a1g >0
will follow by a similar argument.
Now (20) with ¢t =0 is equivalent to

sin(81P(22))
A
for all z; € A,,. Since P is continuous at z; =0, we may assume that |P(z3)] <
ra.y for every |z2| < €. Moreover, because of the property (i) of P there exists a
real number 7 € (0,¢€p) such that 0 < |P(r)| < a7 and re™/laol < ¢,
Fix r, and let v: (—a,b) = A

€07

(21) 2Re[iza P., (22) exp(—if1P(22))] = a1o

where a,b € (0,+00), be a flow of the equa-

tion
d
DO (1) exp(-i8 P(3(8)). (0) =
Denote u(t) := P(y(t)) for —a <t <b. Then (21) is equivalent to
u’(t) = alOSin(ﬂ%’u).

A short computation shows that this differential equation has the solution
2

(22) P(y(t)) =u(t) = A arctan{tan(B; P(r)/2)e*°"}, —a<t<b.
1

Therefore we have, for —a <t <b,

t
~(t) =rexp [/ ieiiﬁlp('y(s))ds}
0

=rexp [/Otiexp(—% arctan{tan(ﬁlP(r)ﬂ)e‘“"s})dé’}7
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and thus,

[v(t)| =rexp {/Ot sin(2arctan{tan (8, P(r)/2)e"* })d ]

Since a1 < 0, one can choose a = 400, and by employing some trigonometric
identities we obtain

+ :tl}mooh/ |

=rexp _/_Oosin(Qarctan{tan(ﬁlp( )/2) alos}) ]

:rexp/o Oosm 2arctan{%})ds}
:rexp/o OOsm 2arctan{%})ds]

too 00108
—rexp __ /0 sin (2 arctan{ tan (B P()/2) }) ds}

2108

_ +o0 tan(B: P(1)/2)
=rexp _2/ 1 an(ﬁle“(lz)s/ ) 2d8]
L 1+ (e
2108
2 [t dlggrem)
=rexp|—— 1 e10° }
ao Jo +(@merom)’

2
=rexp [— arctan

aio (tan(51]13(7")/2))}

T
< rexp<m> < €g.

Therefore, there exists a sequence {t,} C R such that ¢, — —oco and ~(¢t,) —
et as n — oo for some 6 € [0,2m). Moreover, |P(r*e’™)| < |F-|. However,

since a19 < 0 and since P is continuous on A, it follows from (22) that

€0

|P(r+ei9U | =|P(lim y(t,))| =] lim P(~(t

n—00 n— oo

which is impossible. Therefore, altogether we must have hy = 0.
Case 2: h; =0. We shall follow the proof of [N1, Lemma 12]. In this case,
(12) is equivalent to

oo

(23) Re [Pz2 (22) Y (it - P(ZQ))mbm(ZQ)] ~0

m=0
for all (z9,t) € A, X (—00,00), where ¢y >0 and Jdy > 0 are small enough.

Since hg # 0, there is a smallest mg such that b,,, # 0 and thus it can be
written as

bmo (22) = bmoﬂozgo + 0(230)7
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where ng = vg(bp,) and by n, € C*. Moreover, since P(z2) = o(|z2]|™) it follows
from (23) with t = aP(z2) (o € R will be chosen later) that

Re[(ic = 1)™ (bygno 25° 4 0(|22]™) ) Pzy (22)] =0
for every 2o € A7 . Notice that if mg > 0, then we can choose a so that
Re [byngn, (ior — 1)"°] # 0.

Therefore, it follows from Corollary 4 that mg = 0,n9 = 1, and Re(bpn,) =
Re(bg1) = 0. By a change of variable in 2z (see [N1, Lemma 1]), we can assume
that bg(z2) = izs.

Next, we shall prove that b,, =0 for every m € N*. Indeed, suppose otherwise.

Then by using the same argument as in Subcace 1.1, b, (22) = im+1M22 for

” m!
every m € N*. Therefore, hy(2y) = izpe?171.
Now (23) with ¢t =0 is equivalent to

(24) 2Re [izQPZQ(zQ)exp(—iﬁlP(zg))] =0

for all zo € A, .
Let v:(—a,b) — A} , where a,b € (0,400), be a flow of the equation

de—Sst) =1(t)exp(=iBLP(1(1)), ~(0) =,

where 0 < r < ¢g with P(r) # 0. Denote u(t) := P(y(t)) for —a <t < b. Then (24)
is equivalent to

u'(t)=0, —a<t<b.

This tells us that u(¢) = u(0), and therefore P(v(t)) = P(r) for all t € (—a,b).
Hence, we have

~(t) = Texp(iefwlp(r)t)
for all t € (—a,b), and thus
(25) |v(t)| = rexp(sin(B1P(r))t).

Without loss of generality, we may assume that 51 P(r) < 0. Then one can choose
b= 400 and (25) implies that v(¢) — 0 as t — +o00. Therefore,

P(r)= P(V(t)) = t_l}iinooP(v(t)) = P(0) =0.

This is a contradiction. Therefore, ha(22) = i2.
Consequently, (23) is now equivalent to
Re [iZQP/(Zz)] =0

for all z3 € A,,, and thus, it follows from [KN, Lemma 4] that P is rotational.
This ends the proof. O
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6. Examples

EXAMPLE 1
For a,C' >0, let P be a function given by

C .
P(ZQ) _ exp(—W) if RQ(ZQ) 750,
if Re(z2) =0.
We note that the function P satisfies condition (I) (see [N1, Example 1]). More-
over, since the function P, defined by P(z3) = exp(—-5=) if 29 # 0 and P(0) = 0,

|Z2|0‘
vanishes to infinite order only at the origin, it follows from Theorem 2 that

auty(Mp,0) =0 and
aut(Mp,()) =g_1DPgo= {iﬂlazl +1620,,: b1,z € R}.

In addition, one obtains that Aut(Mp,0) = {id} and Aut(Mp) = {(z1,22) —
(21 +it, 22 +1is): t,s € R}.

EXAMPLE 2
Denote by Mp the hypersurface

Mp = {(21722) € (CQZ Rezl +P(Zg) = 0}
Let Py, P, be functions given by

1 .
exp(— =) if 29 #0,
pl(Z2):{0 (—me) fzn#

if 2’2:0,
1 .
— 1= + Re(zy" f 0,
Py(20) = exp( B e(23")) 1 2o #
if 20 =0,

where a > 0 and m € N*.

It is easy to check that Soo (P1) = Soo (P2) = {0}. Moreover, Py, P, are positive
on C*, P; is rotational, and P» is not rotational. Therefore, by Theorems 1, 2
and 3, [N2, Theorem B], and Corollaries 1 and 2, we obtain

auto(Mp,,0) = {iB220,,: BER},

aut(Mp,,0) = g_1 ® autg(Mp,,0)
={i$10:, +152220,,: p1,02 € R},

auty(Mp,,0) =0,

aut(Mp,,0) = g_1 = {i80.,: BER}
and
Aut(Mp,,0) = {(21,22) — (21,€""25): t ER},
Aut(Mp,) = Aut(Mp,,0) & T (Mp,)

= {(zl,ZQ) — (21 —i—is,e”zg): s, te R},
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Aut(Mp,,0) = {(21,22) — (zl,e%”/m@): k=0,....,m— 1},
Aut(Mp,) = Aut(Mp,,0) & TH(Mp,)

= {(zl,z2)|—>(zl +it,62k”/ng): teR,k=0,...,m— 1}.

Appendix

A.1 Leau-Fatou flower theorem

The Leau—Fatou flower theorem states that it is possible to find invariant simple
connected domains containing 0 on the boundaries such that, on each domain,
a conformal map which is tangent to the identity is conjugated to a parabolic
automorphism of the domain and each point in the domain is either attracted
to or repelled from 0. For more details we refer the reader to [A] and [B]. These
domains are called petals and their existence is predicted by the Leau-Fatou
flower theorem. To give a simple statement of such a result, we note that if
9(2) =z +a,2" + O(2"*) with r > 1 and a, # 0, then it is possible to perform
a holomorphic change of variables in such a way that g becomes conjugated
to g(z) =z + 2" + O(2" ™). The number r is the order of g at 0. With these
preliminary considerations at hand we have the following result.

THEOREM 4 (LEAU-FATOU FLOWER THEOREM)

Let g(2) =z + 2" + O(2"Y) with r > 1. Then there exist 2(r — 1) domains called
petals, Pji, symmetric with respect to the (r — 1) directions argz = 2wq/(r — 1),
q=0,...,7 —2, such that P;'OP,:' =0 and P; NP =10 for j#k, Oeani,
each petal is biholomorphic to the right half-plane H, and g*(z) — 0 as k — +oo
forall z € Pji, where g¥ = (g71)~F for k <0. Moreover, for all j, the map g |ij:
is holomorphically conjugated to the parabolic automorphism z — z+1 on H.

A.2 Holomorphic tangent vector fields on the tubular model
In the case that an infinite-type model is tubular, we have the following theorem.

THEOREM 5

Let P be a C™-smooth function defined on a neighborhood of 0 in C satisfying
(i) P(x) 20 on a neighborhood of =0 in R, and
(ii) P wvanishes to infinite order at zo =0.

Denote by P a C*°-smooth function defined by setting P(z;) := P(Rez3). Then
autg(Mp,0) =0.

Proof

Suppose that H = hq (21, 22)0., +ha(z1, 22)0., is a holomorphic vector field defined
on a neighborhood of the origin satisfying H(0) =0. We only consider H that is
tangent to Mp, which means that it satisfies the identity

(26) (ReH)p(z) =0, z€ Mp.
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Expand h; and hs into the Taylor series at the origin

1(21, 22) E a]k21227 ha(z1,22) E bgkz1227
7,k=0 7,k=0

where a;x, b € C. We note that agp = boo = 0 since h1(0,0) = h2(0,0) =0.
By a simple computation, we have

1

1
le(zlaZ2):§? pz2(21,22):Pz2(22):§Pl($),

where x = Re(z2), and (26) can thus be rewritten as
1
(27) Re|:§h1(21,22)+Pz2(22)h2(21,22):| =0

for all (z1,22) € Mp. Since the point (it — P(z2), 22) is in Mp with ¢ small enough,
the above equation again admits a new form

1 oo ) oo .
(28) Re[5 N ajulit — P(z2)) 25 + Poy(z2) Y buun (it — P(22)) zg} —0
J,k=0 m,n=0

for all z € C and for all ¢ € R with |22]| < €9 and [t]| < §p, where 9 > 0 and Jp >0
are small enough. The goal is to show that H = 0. Striving for a contradiction,
we suppose that H # 0. Since P,,(z2) vanishes to infinite order at 0, we notice
that if ho =0, then (27) shows that Ay =0. So, we must have hy Z 0.

We now divide the argument into two cases as follows.

Case 1: hy #0. In this case let us denote by jo the smallest integer such
that ajyr # 0 for some integer k. Then let ky be the smallest integer such that
@joke 7 0. Similarly, let mg be the smallest integer such that b, # 0 for some
integer n. Then denote by ng the smallest integer such that b, n, # 0. We see
that jo > 1 if kg =0, and mg > 1 if ng = 0. Since P(22) = o(|22|?) for any j € N,
inserting ¢t = aP(z2) into (28), where oo € R will be chosen later, one has

Re[ gt (i — 117 (P(22)) " (247 + o |2 *))
(29)

+ bigng (fx — 1)™0 (zgo + 0(\zg|”°)) (P(,z*g))mOPZ2 (22)} =0

for all zo € A.,. We note that, in the case kg =0 and Re(a,,0) =0, « is chosen in
such a way that Re((iocv — 1)7°a;,0) # 0. Then (29) yields that jo > mg by virtue
of the fact that P,,(z2) and P(z2) vanish to infinite order at zo = 0. Moreover,
we remark that P.,(22) = 3P'(z), where z := Re(z2). Therefore, it follows from
(29) that

P'(z)  _ Refajor (ia—1)%(25" + o(|z2]*))]
(P(x))i0=m0 " Re[bmgn, (ia — 1) (25° + o(|22]"0) )]
for all zo =z + iy € A, satisfying
P(z)#0, Re[bmgn, (i — 1) (25° + 0(]z2|™)) ] #0.

However, (30) is a contradiction since its right-hand side depends also on y and,
hence, one must have hy =0.

(30)
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Case 2: hy =0. Let mg,ng be as in Case 1. Since P(z2) = 0(]22|™), putting
t = aP(z) in (28), where a € R will be chosen later, one obtains that

%P'(a:) Re|(ic = 1)™bmgn, (25° + 0(|22]™))] = 0

for all zo =z +iy € A,,. Since P’(x) # 0, one has

(31)

Re [(ZC% - 1)m0bmono (Zgo + 0(|Z2|n0))] =0

for all zo € A,,. Note that if ny =0, then a can be chosen in such a way that
Re((iav — 1)™0byy0) # 0. Hence, (31) is absurd.

Altogether, the proof of our theorem is complete. O
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