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Abstract Let F be a non-archimedean local field. Recently, Broussous, Sécherre, and
Stevens extended the notion of an endo-class, introduced by Bushnell and Henniart for
GLy(F) with N > 1, to an inner form of GLy (F') over F, and conjectured that this
endo-class for discrete series representations is preserved by the Jacquet—Langlands cor-
respondence. Explicit realizations of the correspondence are given by Silberger and Zink
for level-zero discrete series representations and by Bushnell and Henniart for totally
ramified ones. In this paper, we show that these realizations confirm the conjecture.

Introduction

Let F be a non-archimedean local field of finite residue characteristic p, and
let D be a central division F-algebra of dimension d2, d > 1. Let or and op
be the rings of integers in F' and D, respectively. Let m be a positive integer.
The product N = md being fixed, there exist bijective maps, referred to as the
Jacquet—Langlands correspondence, between the sets of irreducible discrete series
representations of GL,,(D) such that a character relation is preserved (see [1],
[9], [12], [13]). There exist a series of works by Bushnell and Henniart (see [7], [8],
[11]) and by Silberger and Zink (see [17], [18]) in which the Jacquet—Langlands
correspondences were described explicitly in terms of types. The notion of an
endo-class was introduced in [6], and it was proved in [5] and [8] that an endo-
class is an invariant associated to an irreducible supercuspidal representation
of GLy(F), which is constructed as a compactly induced representation of a
compact-mod-center subgroup of GLy (F'). Broussous, Sécherre, and Stevens [4]
extended the notion of an endo-class over F' for GLy (F') to any group of the form
GL,,, (D), that is, we can associate an endo-class over F' to any discrete series
representation of GL,,(D), and it was conjectured that the Jacquet—Langlands
correspondence preserves this endo-class over F'. In this paper, we prove that the
realizations of [6] and [17] confirm this conjecture.

More precisely, we give a description of the result obtained. The simple char-
acters for G = GL,,,(D) are parameterized by 4-tuples [2,n,0,8], which are
referred to as simple strata, consisting of a hereditary op-order 21 in A with
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P =rad(2A), a positive integer n, and an element S € A which generates a field
extension F[f] over F', with the technical condition kr(8) < 0 and with 5 € P~".
By [14], associated with a simple stratum [2(,n,0,] in A =M,,(D), we have a
compact open subgroup H'(3,2) of G and a finite set ¢'(2,0, 3) of simple char-
acters of H'(3,21).

From [15] and [16], it follows that every irreducible discrete series represen-
tation 7 of G contains a simple character 6 € € (2,0, 3) attached to a simple
stratum [, n,0, 8] in A. Neither the simple stratum nor the simple character is
unique. The endo-class, denoted by @, for the pair ([2,n,0,5],0) was defined
by [6] and [4] so that this @ depends only on the representation 7w of G as
follows. A potential simple character (ps-character for short) is an equivalence
class, denoted by O, in the set of such pairs ([2,n,m,5],0) in A as above, where
[2(,n,m, 3] is a simple stratum in A and 6 € (A, m, ). Indeed, another pair
(U, n',m’,5],0") in a central simple F-algebra A’ is referred to as equivalent to
([, n,m, 3],0), denoted by

([ma n,m, 5}79) ~ ([Ql/a nla m/a /8]7 9/)7

if ¢’ is the transfer of 0 (see Definition 1.7). The pair ([, n,m,],0) is referred
to as a realization of ©. Two ps-characters ©; and ©4 are referred to as endo-
equivalent if, in a central simple F-algebra A, they are defined by realizations
([, ns,my, Bi],0;), for i =1,2, of the same degree and normalized level, and
such that the simple characters 67 and 0, intertwine in A* (see Definition 1.9).
Two simple characters contained in the irreducible discrete series representation
m of G intertwine in G. Hence, the endo-class ® above depends only on the
representation m. Write this ® as O¢(m).

Let D,,q be a central division F-algebra of dimension m?d?, and let JL be
the Jacquet—Langlands correspondence between the sets of isomorphism classes of
irreducible discrete series representations of G = GL,,(D) and H = D, ;. Then,
the equality

OpoJL=0g

was conjectured by [4, Conjecture 9.5].

It was stated in [4, Introduction] that this conjecture can be seen as a general-
ization of the preservation of the level-zero representations through the Jacquet—
Langlands correspondence, which was proved by [17]. This is explained as fol-
lows. From [10], every irreducible discrete series representation of G = GL,, (D)
of level zero contains the trivial representation 171(q) for some principal heredi-
tary op-order 2 in A = M,, (D) with P = rad (), where U(2) = 1 +B. We view
[%,0,0,0] as a simple stratum in A, as in [19], and view ([2,0,0,0], 1y1(9)) as the
realization of the trivial ps-character ©g. Moreover, we have H'(0,2) = U*(2l)
and

€ (2,0,0) = {1U1(QL)}-

Hence, by the definition of endo-class, that statement is explained.
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Let F' be a finite extension of Q, with p # 2. For a positive integer m,
set A= M,m(F), and let D be a central division F-algebra of dimension p2m
Then, there exists the Jacquet-Langlands correspondence JL between the sets
of isomorphism classes of irreducible discrete series representations of G = A* =
GL,m (F) and H = D*. Let A“"(F) be the set of isomorphism classes of irre-
ducible supercuspidal representations 7w of G which are totally ramified: this
means that 7 is not isomorphic to the representation xm : g — x(det(g))n(g) for
any unramified quasicharacter x # 1 of F'*. Set A" (D) = JL(AY"(F)). Then,
we obtain a canonical bijection, denoted again by JL,

JL: AV (F) ~ AV (D).

In [6], the representations in AY"(F') and A{" (D) were explicitly constructed
as induced representations of quasicharacters of compact-mod-center subgroups,
and the correspondence JL was described.

Let m be an irreducible supercuspidal representation of G = GLym (F) in
AYT(F). Then, from the construction of m, we can choose a pair ([2,n,0,5],0),
as above, such that 7 contains 6. Set 7' = JL(w). Then, from the realization of
JL, we can also choose a pair ([op,n/,0,:8], pf) such that 7’ contains 6, where
t: F[8] — D denotes an F-embedding. For a finite unramified extension K/F of
degree divisible by p™, set A =A®,,. 0x and pAx = 0p @, 0k . Then, through
the identification Ax = AQr K =D ®r K = Dg, we can set Ax = p/UAx and
take an element yo € 25 such that (8 =y, 1By = Ad(yO )8, where we identify
B f®1in Ak. Then we can choose simple characters §(K) and pf(K) of

HY(3,2k) and Hl(Lﬁ,DQIK , respectively, such that

)
0=0(K)|H'(8,2),  pd=pd(K)|H' (f,0p).
We prove that pf(K)=0(K) o Ad(yp) and that pf(K) is the transfer of 6(K).
Thus, by [14, Theorem 3.53] for transfers, pf is the transfer of 6, that is,
([lenﬂoaﬁ])e) ~ ([UD,’I'L/,O, Lﬁ]a De)a

which implies Oy (1) = O¢g(7).

The remainder of the present paper is organized as follows. In Section 1,
we recall the notation of ps-character and endo-class defined in [5] and [4]. In
Section 2, we recall the conjecture on the preservation of the endo-class of the
Jacquet—Langlands correspondence given in [4]. In Section 3, we prove that the
realizations of [5] and [17] confirm this conjecture.

1. Endo-class of ps-characters

We recall the definition of endo-class and ps-character for an inner form of
GLy(F) in [4], which is a generalization of the F-split GLy (F') defined in [5].
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1.1. Simple character

Let F' be a non-archimedean local field. Let K be a commutative or noncommu-
tative finite extension of F, let ox be the ring of integers in K, and let px be
the maximal ideal of 0.

Let A be a simple central F-algebra of finite dimension, and let V' be a simple
left A-module. Write D = End4(V)°P. Then, D is a central division F-algebra,
and V can be viewed as a right D-vector space. There exists a canonical isomor-
phism A ~Endp (V).

DEFINITION 1.1

A nonempty set of right op-lattices £L={L;:i €Z} in V is referred to as an
op-lattice chain in V if the following conditions are satisfied: (1) L; D L;11 for
all i € Z, and (2) there exists a positive integer e satisfying L;1. = L;pp for all
i € Z. This integer e is referred to as the o p-period of £ and is denoted by ep(L).

For k€ Z, set
PBr(L)={a€A:aL; C Liyy,i €Z}.

Then, A =A(L) =Po(L) is a hereditary op-order in A. All such orders are
obtained in this way from an op-lattice chain £ in V. The set P =P(L) =P (L)
is the Jacobson radical of 2I, and we have Py (L) =B* for all k € Z,k > 0. Thus,
we have compact open subgroups of GG defined by

UR)=U@)=2%,  UF)=1+F" keZk>0.
The G-centralizer R(2() of 2 is defined by
AR ={gecG:gAg =2}

Then, for A =2A(L), g € K() if and only if there exists a unique n = v(g) € Z such
that gL; = L;1,, for all i € Z. We define a function vy : R(A) — Z by v (g) = v(g)
for g € R(A). Then, we have Kervy = U ().

DEFINITION 1.2

(a) A stratum in A is a 4-tuple [A,n,m, 8] made of a hereditary op-order 2
in A, myneZ with0<m<nand &P ".

(b) Two strata [2,n,m, 3;],i = 1,2, are referred to as equivalent if B3 — 3 €

RUBES
Here, [2,0,0,0] is referred to as the null stratum as is defined in [19].

DEFINITION 1.3

A stratum [, n,m,[] in A is referred to as pure if it satisfies the following
conditions:

(a) the sub-F-algebra F[j3] generated by 3 is a field, say, E = F[f];
(b) 2 is E-pure, that is, E* C R(2);
(c) va(B)=—n.
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Let [2A,n,m, 3] be a pure stratum in A. Let B be the A-centralizer of 3, and
write B = C4(83). For each k € Z, we set ng(3,2) = {z € A: Bx — x8 € P*} and
define the quantity ko(5,2() by

min{k € Z: k > vy (B) and nj41(8,2) C AN B+ P}.

DEFINITION 1.4
A stratum [2,n,m,[] in A is referred to as simple if it is pure and if m <

—ko(f,21) — 1.

It is convenient to view the null stratum [2,0,0,0] in A as a simple stratum, as
in [19]. Hereafter, we do so.
A simple stratum [, n,m, 5] in A gives rise to a pair

H(BA) CIBA) A
of op-orders in A (see [14]). If 3 =0, then we set
£(0,20) = 3(0,21) = 2.
We take the standard filtration subgroups of the unit groups
H(8,2) =9H(8,2) N UM ),
JE(B,2) =3(8,2) NU*(Q),

for ke Z,k>0.

We fix a level-one additive character ) = ¢ p of F; that is, pp C Ker®y and
¥ | op # 1. Through this character ) = ¢)r, a finite set of characters, referred
to as simple characters, of the compact group H™1(3,2), say, € (A, m,) =
€ (A, m,3,1), was defined in [14].

Associated with the null simple stratum [2(,0,0,0] in A, we view % (2,0,0)
as the set consisting of the single trivial character 1¢1(q() of the group H Lo0,2) =
U(2A), that is (see [15, Remark 4.4]),

1.2. Ps-character and endo-class
Let 3 be a nonzero element in a finite subextension of F' in A, and set E = F[f].
We denote by vg the normalized valuation on E. The set {p% :i € Z} is an

E-pure op-lattice chain on the F-space E, unique up to translation. We set
A(E)=Endp(E) and (see [8, (1.1.2)])

A(E) = Bnd?, ({1 € 2)).
Then, 2A(F) is a hereditary op-order in A(E). Set
k() = ko (8, U(E)).
Then, unless 5 € F, we have kr(8) > vg(f).
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DEFINITION 1.5 ([5, DEFINITION 1.5])
A simple pair over F is a pair (k, ) consisting of a nonzero element 3 in some
finite extension of F' and an integer 0 < k < —kp(8) — 1.

If (k,B) is a simple pair over F', then [A(E), —vg(8),k, 8] is a simple stratum in
A(E). Thus, we have a set of quasisimple characters of H**1(3,2(E)) (see [14,
Section 3.3.3])
Cr(k,B) =€ (U(E).k,B) =€ (UE).k, B,0r).
We also view the pair (0, 0) as a simple pair over F. It is referred to as the null
simple pair. By definition, we have €5 (0,0) = {1y1(o,)}, where Ut (0p) = 1+pp.
Let A be a central simple F-algebra, and let V' be a simple left A-module.

Let D = End4(V)°P. For a real number r, denote by |r] the greatest integer that
is less than or equal to r.

DEFINITION 1.6 (SEE [4])

A realization of a nonnull simple pair (k,3) in A is a stratum in A of the form
[le n,m, @(6)} made of:

(a) a homomorphism ¢ of F-algebras from F[5] to A;
(b) a @(F[f])-pure hereditary op-order 2 in A;
(c) an integer m such that k = [m/epp,(5) ()]

It is convenient to view the null stratum [2(,0,0,0] in A as the realization of the
null simple pair (0,0) in A.

From [14, Proposition 2.5], the realization [2,n,m, ()] in Definition 1.6 is
a simple stratum in A. Thus, we have a set

cg(m’ m, 90(6)) = %(Q{, m, 30(6)7 wF)

of simple characters of H™"1(¢(3),2). For a realization [2,n,m,p(8)] in A of
a nonnull simple pair (k, 3) over F, it follows from [14, Section 3.3.3] that there
exists a canonical bijective map (cf. [16, Definition 2.11])

To,m, () - Cr(k, B) — ‘5(91, m, ap(ﬁ)).

This map is referred to as a transfer map. If (k,8) = (0,0), then it is the trivial
map by definition. We denote by 79 0,0 the transfer map €r(0,0) — %(,0,0).
Given a simple pair (k, ) over F, we consider a pair

( [Ql, n,m, w(ﬂ)] , 0)

made of a realization [, n,m,¢(8)] in A and a simple character 6 € € (2, m,

©(B))-

DEFINITION 1.7 (SEE [4, SECTION 1.2])
Let [, n',m' ¢'(B)] be another realization of the simple pair (k,5) in some
simple central F-algebra A’, and let 8’ be a simple character in € (', m’, ¢’ (3)).
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We say that ([2,n,m,p(8)],0) and ([A',n',m/,¢'(B)],0") are equivalent, denoted
by

([Q[a n,m, 90(5)] 5 0) ~ ([Q(/, nla m/ﬂ QD/(B)] ; 9/)3
if the equality 0" = Tor 1 o1 (8) © TQ_l,in,go(B)(a) is satisfied.

It is easy to see that, given a simple pair (k,) over F', it is an equivalence
relation on the set of such pairs ([2,n,m,¢(3)],0), which is denoted by &' g).

DEFINITION 1.8 (SEE [4, DEFINITION 1.5])
A potential simple character over F' (or ps-character) is a triple (0, k, 8) made
of a simple pair (k,3) over F' and an equivalence class © in ¢y g).

If a pair ([, n,m,¢(8)],6) belongs to an equivalence class ©, we write

9(9[, m, w(ﬁ)) =0.

DEFINITION 1.9 (SEE [4, DEFINITION 1.10])
For i = 1,2, let (©;,k;,[;) be a ps-character over F. We say that these ps-
characters are endo-equivalent, denoted by

@1 ~ 927
if these ps-characters satisfy the following conditions:

(a) k1= ks;

(b) [F[B1]: F]=[F[Ba] : Fl;

(c) there exists a central simple F-algebra A together with realizations
([, niymi, i (Bi)] of (kiy Bi), i=1,2, in A such that ©1(2,m1,¢1(51)) and O (%,
ma,@2(B2)) intertwine in A*.

2, The Jacquet-Langlands correspondence and endo-classes

We recall from [4, Conjecture 9.5] that an endo-class over F' is invariant under
the Jacquet—Langlands correspondence.

2.1. Simple type

Let D be a central division F-algebra of dimension d? over F, d > 1, and let
V be a right D-vector space of dimension m > 1. Set A =Endp (V). Through a
D-basis of V', we identify A= M,,(D) and set G = A* = GL,,,(D).

Associated with a simple stratum [2(,n,0, 8] in A, we have the compact open
subgroups J(3,21) D J1(B,2) = J(3,2%) NU(2), as defined in Section 1.1. Let
E =F[f], let B=C4(E), and let B =20N B. Then, there exists a canonical
isomorphism

J(B,2A)/J'(8,%) = U(B)/U(B),
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and there exist a central E-algebra Dp of dimension d% and a positive integer
mpg such that B~M,, . (Dg).

DEFINITION 2.1 ([10, SECTION 0.6], [15, 2.5.1])
A simple type of level zero in G is a pair (U, 7), where

(a) U=U() for a principal hereditary op-order in A with r =ep();

(b) 7 is an irreducible representation of U = U(2l), trivial on U() and
inflated from a representation 75" of the quotient group U () /U (2) ~ GL4(kp)",
where @ is an irreducible cuspidal representation of GLs(kp) and r, s are positive
integers satisfying rs =m.

We say that a simple type (U, 7) = (U(2l),7) of level zero in G is attached to the
null simple stratum [2,0,0,0] in A (see [15, Remark 4.1]).

DEFINITION 2.2
A simple type of positive level in G is a pair (J, A), attached to a nonnull simple
stratum [, n,0, 3] in A, given as follows:

(a) there exists a simple stratum [, n,0, 3] in A such that J = J°(3,2A) and
that if E = F[8], B=C4(F) and 6 =2(N B, B is a principal hereditary og-order
in B with r =eg(B);

(b) there exist a simple character 6 € €(2,0,5,¢%r) and a simple type
(U(B),7) of level zero in B* such that X is a representation of J of the form

A=KQ®o0,

where

(1) k is a S-extension of ny;

(2) o is the representation of J, trivial on J!, deduced from 7 via the isomor-
phism J/J! ~U(B)/U(B) and 7 is an irreducible representation of U = U(B),
trivial on U'(B) and inflated from a representation &4 of the quotient group
U(B)/U(B) ~ GLy, ./ (kpy)", where @ is an irreducible cuspidal representa-
tion of GL,,, /r(kpDy)-

2.2. Conjecture about preservation of the endo-class
Let A=M,,(D), and let G = A* be as defined in Section 2.1. Let Nrd4: A — F
be the reduced norm.

An irreducible smooth representation w of G is referred to as essentially
square-integrable (or discrete series) if there exists an unramified character x of
F* such that (xy oNrd4) ® 7 is square-integrable modulo F*. Let A%(G) be the
set of isomorphism classes of irreducible essentially square-integrable representa-
tions of G, and let £(F) be the set of endo-classes of ps-characters over F' (see
[4, Section 9.3]).
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THEOREM 2.3

For each m € A%(G), there exist a simple type (J,\) in G attached to a simple
stratum [A,n,0, 8] in A such that 7| J contains A.

Proof
This follows from [2] and [16]. O

From Theorem 2.3, for each m € A%(G), a pair ([2,n,0,4],0) is given such that
the character 6 occurs in 7 | H'(3,21). Let (©,0,03) be the ps-character defined
by the pair ([2,n,0,5],0) and denote by @ its endo-class. This endo-class ©
depends only on the representation 7, as in the Introduction. Thus, we write this
endo-class © as Og (7). Hence, we get a map

O : AX(G) — E(F).

For m € A%(G), we denote by . the character function of =.

THEOREM 2.4 ([1], [9], [12], [13])

Let D' be another central simple F-algebra of dimension d'?, d' > 1, and let
G' = GL,, (D") for a positive integer m’ with m’d’ =md. Then, there exists a
canonical bijection, referred to as the Jacquet—Langlands correspondence,

(2.1) JL: A%(G) — A%(G)
such that, if ©' = JL(7) for m € A%(G), then we have that
(=1)"xx(9) = (=1)" xx(9),
where g and g’ are reqular elliptic elements of G and G', respectively, whose
characteristic polynomials over F are the same.
In [4, 9.3], the following conjecture is given:
(2.2) O¢ (JL(7)) = O¢(n),
for any m € A%(G).
REMARK 2.5
Moreover, it is probable that there exists a single simple pair (0,3) over F
such that, as representatives, @/ (JL(7)) and @¢g(7) have ps-characters over
F (©,0,06) and (0,0, 5), respectively.
3. Some examples for the conjecture
We shall see that the Jacquet—Langlands correspondences given by Bushnell and
Henniart [6] and Silberger and Zink [17] satisfy the equality (2.2).

3.1. An example for level-zero representations
Let A=M,,(D), and let G = A* = GL,,,(D) be as above.
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DEFINITION 3.1 ([10, SECTION 0.6])

An irreducible smooth representation 7 of G is referred to as level zero if there
exists a principal hereditary op-order 21 in A such that its representation space
V has a nonzero U (2l)-fixed vector.

Let A%(G) be the subset of level-zero representations in A?(G). If a smooth
representation 7 of G belongs to A3(G), then, from [10, Theorem 5.5(i)], it
contains a simple type (J,A) = (U(2),7) of level zero in G. Thus, we obtain a
ps-character (0,0,0) with ([2,0,0,0],1y1(2y) € ©, that is,

@(Q[,0,0) = 1U1(Q[) S %(9[, 0, 0),
and consequently the endo-class, denoted by O¢(7), of this (6,0,0).
We now let D’ be a central division F-algebra of dimension m?d?, and let

G’ = GL1(D’). Then, from Theorem 2.4, we have the Jacquet-Langlands corre-
spondence JL: A%(G’) — A%(G).

PROPOSITION 3.2 ([17, PROPOSITION 3.2])
The Jacquet-Langlands correspondence JL induces a canonical bijection A3(G') —

A2(G).

We again denote by
JL: A(G) — A%(G)

the bijection of Proposition 3.2.

THEOREM 3.3
Let JL be the correspondence defined above. Then, for m € A3(G'), we have

(")G (JL(TK‘)) = @G/(ﬂ').

Proof

Suppose that a class ©' belongs to the endo-class O/ () and that a class ©
belongs to the endo-class @ (JL()). Then, we have the realizations ([2(’,0,0,0],
1)) € ©" and ([A,0,0,0],1y1()) € ©. Since, by definition, we have ¢'(',0,
0) = {1y} and €(A,0,0) = {1y (e}, we obtain

]_Ul(Q[) = Tg[70,0 [¢] 7'2—[,17070(1(]1@[/)),

where, for example, Ty, is the transfer €#(0,0) — ¢(2,0,0) defined in Sec-
tion 1.2. Hence, by Definition 1.7, we have

([m707070]7 ]-Ul(Ql)) ~ ([Ql’,070,0], 1U1(2[’))

and so © = ©'. This shows the equality of this theorem and the proof is complete.
O



Endo-class and the Jacquet-Langlands correspondence 309

3.2. An example for totally ramified representations
In this section, we shall show that the explicit Jacquet—Langlands correspondence
realized by Bushnell and Henniart [6] also satisfies the conjecture (2.2). This is
never trivial. We first recall the realization of the correspondence.

Let F' be a finite extension of Q, with p # 2, and let D be a central division
F-algebra of dimension p™, m > 1. Set G = GLpn (F) and G’ = GLy(D) = D*.

Let m be an irreducible smooth representation of an inner form of G. Denote
by t(m) the cardinality of the unramified characters x of F'* such that (xoNrd)®
7 ~ 7, where Nrd denotes the reduced norm. This is referred to as the inertial
degree of m. The representation 7 is referred to as totally ramified if t(w) =1 is
satisfied.

From Theorem 2.4, there exists the Jacquet—Langlands correspondence

JL: A%(G) — AX(G).

Denote by AY"(F) the set of isomorphism classes of irreducible totally ramified
supercuspidal representations of G = GL,m (F), as in [6]. Then, this is a subset
of A%(G). We can define a subset AY"(D) of A%(G’) by

AgT (D) = JL(A;”,LT(F)).
Thus, we get a canonical bijection, denoted again by JL,
JL: AV (F) — AF" (D).

In [6], this correspondence is explicitly described. From [7, (1.4.4)], we have
t(JL(7)) = t(n), for = € A%(G). Thus, every m € AY" (D) is totally ramified.

We prepare notation to describe JL. Set A = M,m (F'). Let 2 be the minimal
hereditary op-order in A, and denote by .#*"(2l) the set of elements a of K(2A)
satisfying the following conditions (see [6, Section 1.1]):

(1) [2,n,0,q] is a simple stratum in A, where n = —vy(a);
(2) the field extension F[«a]/F is of degree p™.

Then, since 2 is minimal, the extension F[a]/F is totally ramified.

We fix a level-one character ¢p of F'* as before. Let 8 € . (2). Then, asso-
ciated with the simple stratum [, n,0, 5] in A, we have compact open subgroups
of G=A*

HY(B,2A) C J'(B,2)
as in Section 1.1. In order to indicate the base field, we write them as follows:
Hp(8,2) € Jp(B,20).

We have a certain open subgroup I}(3,2) of G that is normalized by F[3]* and
satisfies

HE(B,2) C IE(B,2) C JH(B,2).
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See [6, Section 6.4] for the definition. This group depends only on the simple
stratum [, n,0, 5] in A. We can define the subgroup Ir(5,2) of G by

We denote by

@(maﬁuwF):gF(ﬂ’qu)

the group of certain quasicharacters of the group Ir(83,2) defined in [6, Sec-
tion 8.4]. To simplify, we will write Ix(8,21) as Ir(8).

We define the subset .#*"(op) of G' = D* like " () C G = GL,m (F).
Let o € /" (0p). Then, associated with the simple stratum [op, —vp(«),0,q]
in D, we similarly have the compact open subgroups H!(a,0p) C J(a,0p) (see
[3], [14]) and the group pI*(a,0p), defined in [6, Section 6.4], that is normalized
by Fla]* and satisfies

H'(o,0p) C pI'(a,0p) C J (o, 0p).
We define the open subgroup pI(a,op) of G'=D* by
pl(a,0p)=Fla]*pI'(a,op).
We also write
pH}E (o) = H (a,0p), pJr(a) =J (a,0p), plk(a) = pI'(a,0p).
We denote by
P(op, o, ¥r) = pPr(a,vr)

the group of certain quasicharacters of the group pIr(a) = pI(a,o0p) (see [6,
Comment 8.4]).

Write Gp = G = GL,m (F) and G = G’ = D* to indicate the base field.
Now we can describe the Jacquet-Langlands correspondence JL as follows.

THEOREM 3.4 ([6, COROLLARIES 2-4 TO THEOREM 3.1])
For m e AYT(F), there exist f € S (A) and X\ € Dr(B,¢F) such that

~ TG
T~C IndIFF(B))\,
and there exist 18 € D* and p\ € pPr(L8,¢F) such that

JL(x) ~IndSr DA,

7 (
Here, the element 13 € op is conjugate to f=®1 in AQp K=D ®p K for
some finite unramified extension K/F (see below).

In Theorem 3.4, we write

mr(N) =cIndf%, A, 7p(pA) =Ind"r

Ir(B8) A

)P
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3.3. Realizations for the endo-classes

Assume that a smooth representation m of G = GLpm (F) belongs to AL (F').
From Theorem 3.4, we have m ~ 7p () for some A € P (8,1 r). We may identify
7 =mp(N). Since H:(8) C I1(8B), by the definition of the quasicharacter A in [6,
Section 8.4], we get that

0=A | H}‘(ﬁ) 6(5(91,073>1/1F)~

Thus, 7 = 7r(A) contains the simple character 6. Hence, we can associate 7 with
a pair ([A,n,0,8],0), where n = —vy(8). Let (0,0, 3) be the ps-character over F
defined by the pair ([2,n,0,5],0). Hence, we can associate m with the endo-class
of (©,0,3). We denote this endo-class as Og().

Set ' = JL(7) € AY"(D). Then, again from Theorem 3.4, we have 7’ ~
mp(pA) for some p\ € pPr(1f,1vr). We also identify ' = wp(pA). Then, we
obtain

(31) DGZDA|DH}T(LB)G%(UD707L67¢F)

and consequently a pair ([op,n’,0,:0], pf), where n’ = —vp(18). Let (p©,0,:0)
be the ps-character over F' defined by the pair ([op,n’,0,:8], p#). Thus, we
can associate 7’ with the endo-class of (p®,0,:8). We denote this endo-class
as (")G/ (7T,).

In order to show the conjecture (2.2) that @g: (7') = O¢(), we shall show
that

(3.2) ([2,n,0,8],8) ~ ([op,n’,0,.8], pb)

in the sense of Definition 1.7.

3.4. Relationship between the quasicharacters
We retain the notation and assumptions of Section 3.2. We observe the relation-
ship between the quasicharacters A and pA in Theorem 3.4.

Assume that K is a finite unramified extension of F' of degree divisible by
p™. Set Ax =A®pr K and Dg =D ®p K. For the hereditary op-orders 2 and
op in A=Mpn(F') and D, respectively, we also set

A = Ao, 0k, DK =0p R0, 0K

Then, from [6, Lemma 2.5], there exists an isomorphism of K-algebras ¢: Ax —
Dy such that

Lﬁ S wa(UD), L(QLK) = DQlK-

We remark that 15 € G’ = D*. For the simple stratum [, n,0, 8] in A = Mpm (F),
from [6, Proposition 5.1], the stratum [Ax,n,0,3®1] in Ax = M= (K) is simple.
We identify 8= ® 1. The open subgroup of G = A}

Ix(B) = K[B]* I (B)

is defined in the same way as that of Ir(8). Here, since the extension K/F is
unramified and the extension F[8]/F is totally ramified, K[8] = K - F[f] is a
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totally ramified extension field of K of degree p™. Let ( be a level-one additive
character of K such that ¢ | F'=p. Then, we denote by 2k, 8,¢) = Zk(5,()
the set of certain quasicharacters of I () with respect to ¢, as above.

We obtain I (8) N A* = Ik(8) from [6, Proposition 1.5].

Let F,,./F be a maximal unramified extension, and let F be the completion of
F,,» with respect to the discrete valuation v. Hereafter, we fix a level-one character
U of F such that ¥ | F =1p. For K/F finite and contained in F},,., we set UX =
¥ | K. From this character WX, we obtain the sets of quasicharacters Zx (3, ¥X)
and pZxk (18, ¥X). Then, it follows from [6, Section 1.3.2] that, through the
K-isomorphism ¢ above, the map p+— p ot induces a bijection

@K(ﬁv ‘IIK) =~ D-@K(Lﬁv \IIK)a
denoted again by ¢.

PROPOSITION 3.5 ([6, SECTION 2.5])
Let A€ r(B,¢F) and p\ € pPr (18,9 F) be the quasicharacters in Theorem 3./.
Then, there erists a quasicharacter \(K) € P (B, ¥E) such that

/\(K) ‘IF(,B)Z/\, D)\Z)\(K)Obil |DIF(L,B).

Proof

The quasicharacters A(K) and p\ are replaced by A\ satisfying A< | Ir(8) =
A and A o 71| pIp(B) = (M) in [6, Section 2.5], respectively. Thus, the
equalities of this proposition follow and the proof is complete. O

In the proof of Proposition 3.5, we remark that the representation 7p(pA) defined
in Section 3.2 is replaced by pm(A) in [6, Section 2.5]. By the proof of [6, Sec-
tion 3.3 Lemma 2], we can identify

DK:AK, DA =AUk

and find a K-automorphism ¢ of D = Ak satisfying the conditions: (1) ¢(2x) =
2 and (2) «(F[B]) C D. Thus, we have ¢ = Ad(yo) for some yo € U(Ax) =Aj.

PROPOSITION 3.6
The group pIr(t8) and the quasicharacter pA in Proposition 3.5 may be replaced
by

pIr(yy ' Byo) =y Ik (B)yo N D™, AE) o Ad(yo) | pIr(yy ' Byo)-

Proof
This follows from the proof of [6, Section 3.3 Lemma 2]. The proof is complete. [

Since we have yo € A}, we obtain

Ik (18) = I (y5 " Byo) = vo Ik (B)yo-
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3.5. Simple and quasisimple characters

Let 2 be the minimal hereditary op-order in A =M,m (F), and let § € " ().
Then, the pair (0,5) is a simple pair over F. Set E = F[f]. Then, the field E
is a totally ramified extension of F' of degree p™. Let A(E) and A(F) be the
objects defined in Section 1.2. Then, through a basis of ' as an F-vector space,
we identify

A(E) =Mpm(F) = A.
Then, we may set A(F) =2l Thus, in A= A(FE), we identify
[A(E),n,0, 8] = [2,n,0, 8],
and

(33) %F(O,B):%(Q(E%Oaﬁﬂ/w)Z%(m,O,ﬁ,wF),

with respect to the fixed level-one additive character ¢ p of F'.

Let K/F be an unramified extension of degree divisible by p™, and let WX
be a character of K as before such that VX | F =¢p. Set Ax = A®p K,Ax =
A R, 0k, and E=Exr K. Then, we have E= E - K = K|[f] and this is a
totally ramified extension of K of degree p™, as seen in Section 3.3. Thus, we
can identify

AK(E):EndK(E):AK, mK(E):EHdgK({pZEz’LEZ}):ﬁK

Hence, we have [Ax(E),n,0,3] = [Ax,n,0,8] and
(3.4) x(0,8) =€ (Ax (E),0,8,V5) =€(Ax,0, 8, T5).
3.6. Descent of transfers

We come back to Section 3.4 and investigate the representation 7p(pA) of G' =
D*. From Proposition 3.5, we can set

0(K) = \(K) | HL(8) € €%, 0,8, 05)

as in Section 3.3. Then, we have 0(K) | Hj(53) = 0. Hereafter, set 18 =15 " Byo.
We can also set

pO(K) = A(K) o Ad(yo) | p Hfc (18) € € (p2k, 0,08, V7).
Since p/_Ax =Ax, we have
Hy (1) = H' (18,9 x) = H' (18, p2Ax) = pH (1)
and
pHi (1) N D* = pHp(f) = H' (18,0p).
Hence, from the equality (3.1), we obtain
p0=pO(K) | pHp(18) € €(0p,0,18,¢r).

To prove the equivalence (3.2), it is enough to prove the following condition.
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Condition C1. p0 is the transfer of 6.
From (3.3), (3.4), and the definition [14, Section 3.3], there exist canonical
bijections, referred to as the transfers,

T =T2,0,8: Cr(0,8) =C(A,0,8,¢r) = €(0p,0,8,¢F)
and
Ti =Tax,0,8 €k (0,8) = €Ak, 0,3, 9%) = € (pAk, 0,13, T5).
From [14, Theorem 3.53], we get the following commutative diagram:

%(Q{K, Oa ﬁa \I/K) T—K> %(DQlKv 07 Lﬁa \I/K)

I‘QSJ/ lres

‘5(2[,0,5,1/}1:) T—F> %(ODaOabﬁvwF)v

where the vertical maps are the restrictions. Hence, to prove Condition C1, it is
enough to prove the following condition.

Condition C2. T (0")=0"o Ad(yo), for 0’ € €(Ax,0, 3, ¥X).

In fact, if Condition C2 is satisfied, then by setting §’ = §(K), we obtain that

Tk (0(K)) = 0(K) o Ad(yo) = pO(K).
Thus, by the commutative diagram above, we obtain that
7p(0) = 7p (res(0(K))) =res(mx (0(K))) = res(DH(K)) = pb,

which means Condition C1 holds.

Since [Ax,n,0,5] is a simple stratum in Ag = Mpm(K) and K[f]/K is a
totally ramified extension of degree p™, we have

B=B®1e S (UAk).

Moreover, we have (5 =y, 13y for the element yo € 25 defined above.
Finally, in order to prove Condition C2, by replacing the base field K of
Condition C2 by the field F, it is enough to prove the following.

PROPOSITION 3.7

Let 2 be the minimal hereditary op-order in A= Mpym (F) and let § € 7" (A).
Let yo be an element of A and let v: F[B] — A be an F-embedding defined by
B = yo_lﬁyo. Then, the transfer

TF = T,0,8 %F(Oaﬂ) = (g(m70767¢F) — %(maOaLB7wF)
satisfies

Tr(0) =00 Ad(yo), 0€F(A0,5,¢p).

We devote the next section to a proof of this proposition.
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3.7. A proof of the auxiliary proposition
Hereafter, let V' be an F-vector space of dimension p™, m > 1, let A =Endp(V),
and let G = A*. If necessary, through an F-basis of V, we identify A =M, (F)
and G = GLpm (F).
Let 2 be the minimal hereditary op-order in A, and let g € #“"(2). Set
E = F[f]. Then, E is a totally ramified extension of F of degree p™, and 2 is
E-pure. Thus, V is a one-dimensional E-vector space. Identifying V = E, we
have A =Endr(V)=Endp(E) = A(E) and %A =End)_({p%:i€Z})=A(E), as
in Section 3.5. We set £ = {p%, :i € Z} and write 2 =A(L). We remark that the
element yo € A(L)* satisfies
Yo "A(L)yo = A(L).
We prove Proposition 3.7 by the method of [8, (3.6.14)]. Set B =Cy4(E) and
B8 = BN Then, we may identify B=FE and ‘B =o0pg. Set
V=VoV=EQE.

Then, V is a 2p™-dimensional F-vector space, and it can be viewed as a two-
dimensional E-vector space. Set

A=Endg(V).

We distinguish the factors V' of V oas follows: V=V &V =V, &V, Set A; =
Endp(V;), i =1,2. We view 2 as the op-order in A;. Then, the elements 8 and
yo belong to Aj, and L is the op-lattice chain in V3 = V. This £ can be also
viewed as the op-lattice chain in Vo = V. In the F-space V7, we set

Ly=yy ' L={yo Pr:i€L}.
Since yg € A(L)* = Ker vy, we have L1 = L and so
(3.5) vo PO yo=PB(L)*, k>0.
For 1 =1,2, we set
Li=py, jeZ,
and L; ={L}:je€Z}=L.
We define op-lattices in V =V, @ V5 by

Mj=Lj®L; jel,
and set M ={M;:j€Z}. Thenz M is an op-lattice chain in V of o p-period p™,
and also an og-lattice chain in V' of og-period one. Set

A=AM)={zc A:xM; C M;,j €L}

and P = PB(M). Then, 2l is a hereditary op-order in A, and B is the Jacobson
radical of 2. For i =1,2, let e; be the canonical projection V=V, & Vo — V.
Then, we have

A:Hei;lej.
2
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In particular, we identify A; = Endp(V;) = e;Ae;, i =1,2. Then, there exists a
canonical embedding A; X As < A. For € A, set

©(B) = (18, B) = (v *Buo, B) € A1 x Ay C A.

Then, the map 3 — ¢(8) defines an F-embedding E = F[3] — A, denoted again
by ¢. We identify E = F[5] = F¢o(8)] = ¢(E) C A. Thus, we can view V =

V1 @ V, as an E-vector space. By the definition of 2, we have E* C K(2(). Let
B=Cj;(¢(p)), let By =Ca, (1), and let By = Cy,(B). Then, through the iden-
tification A; = Ay = A, we have By = yngyo and By = B. In A; = Endp(V;),
set

for i =1,2. We have
E* ~e;EF*e; C R(,).
Set B =ANB and B; =A; N B;, for i =1,2. From (3.5), we obtain that
By = NBr=y; AL)yo Ny Byo =4y BYyo
and By = B. Since H*(¢(3),2) is a (B, B)-bimodule, by [8, (3.6.15)], we obtain
9*(p(B),A) NA; = e* (p(B),A)es, k>0,
for i =1,2. In fact, for £ > 0, we prove that
56) {sak«o(ﬂ),?}) N AL =", (L)) = yg 9" (8,4(L) o,
9*(p(8),2) N Az = 9*(8,A(L)).
It is enough to prove this for the case k = 0. We proceed by induction along f.
Assume that 3 is minimal over F. Then, we have $(p(8),2) = B + BL-7/2+1,
where v =vg(8). From [8, (3.6.15)], we obtain that
9 (Sﬁ(ﬂ)v él) NA; =e;Be; + eiq}hl’/zﬁlei =%B; + ‘BiL_V/QHl-
Moreover, we have that
B+ P = g By + g B e = 559 (8,2(0)) o
and By + P57/ =B 4 Pl-v/2+1 = 5(8,A(L)). Thus, (3.6) is proved.
In the general case, let
ro = —ko (8, A(L)) = —ko (18,A4(L)) = —ko (8, A(E)).

Then, there exists a simple stratum [A(E), —v,79,7] in A(E) that is equivalent
to [A(E), —v, 19, B]. Since v belongs to A(E) = A, we can define an F-embedding
p:Fly] = A by

©(7) = (17,7) = (5 " 0,7)-

The stratum [20y,—v,79,t7] is simple in A} = A = A(F) and is equivalent to
[2(y, —v, 70, ¢0]. Similarly, the stratum [y, —v,79,7] is simple in Ay = A = A(E)
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and is equivalent to [%s, —v,7q, 8]. Thus, we obtain
9(0(8),%) =B + 52 ((7), ).
Moreover, by induction, we obtain
H(p(8), %) N Ay =By +HL2H 1y, 20)
=y "Byo + 5 HHE (v, 24(L)) o
=5 9 (8,2(£)) o,

and similarly $(2(8),2) N Ay = $(6,2(L)). Hence, the proof of (3.5) is finished
and we have

vo VHM(B,2(L))yo x H*(8,24(L)) € H* (0(8),21),
for k> 0. Given 0 € €(2,0,¢(8),¢¥r), we set
01=0H" (1B, A(L)),  0=0|H"(B,A(L)).
We shall prove
(3.7) 01 =0 0 Ad(yo).-

We again proceed by induction along . For the fixed additive character v of
F, we set

¢:¢A :1/1F0tf,4/p, ¢1:¢A1 :wFotrAi/F7 1= ]-32
Then, we have
¢|Ai:wi7 22172

For a € A, define the character ¢, of A by tp,(z) =¢(a(z — 1)), z€ A. If a =
(a1,a2), a; € A;, then we have 9, | A; = ;. q4,, © = 1,2. We identify

B=¢(B) = (t8,8) = (y 'Byo. B) € A1 ® A, C A.

Assume that (3 is minimal over F. Let xo be a unique character of UL=*/21+1 (o)
such that

P | U/ATH(B) = ygodet 5.
Then, we also have

P18 | ULT2IPH(B1) = xg 0 det ,
2 | UL—u/2J+1(%2) = yoodetp, .

For B =2(L)N B in A= A(E) as before, we can identify
B1=yy Byo =y, Bayo-
Thus, we have
UL (By) = g UL/ (B,
and so

(3.8) U1.p | UL (B1) =g 5 0 Ad(yo) | UL/2H (By).
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In fact, for z € UL=¥/2141(B,), we obtain
U1.8(2) = ppotra, (1B(z—1)) =vrotra, (y5 ' Byo(z — 1))
=ypotra, (Byozyy ' — 1)) =v25(vozyy )

and hence obtain (3.8). Take 6 € €(2,0,0(8),¥r). When 0> [—r/2], we have
0 =1,p) and so

91 = wl,Lﬁy 62 = ¢27B'
Moreover, we have 6, € €((L),0,.0,vr), 6 € €(RA(L),0,5,¥F), and the map
6 — 0, is bijective. Since (3.8) implies (3.7), we obtain the bijection

92 — 91 = 92 o Ad(yo)

from €(A(L),0,8,¢r) to €(A(L),0,.6,%r). When |—v/2] >0, we can choose
a character yy of U'(og) such that

9|U1(%)=X90detB/E.

Then, as in the proof of [8, (3.6.1)], we obtain the bijection 6 — yg from %(2,0,
©(B),%r) to the set of characters y of U'(og) such that y | UL=*/241(0g) = x4.
Since 6; | U'(B;) = xp o detg,, we thus obtain the bijection 6+ 6;, i = 1,2. From
the equality

detp(x) =detp, (yglxyo), r€B

together with (3.8), we obtain (3.7) by [8, (3.2.1)], and hence obtain the bijection
02— 61 = 02 0 Ad(yo) as above.
In the general case, we set ro = —ko(13,2A(L)) = —ko(8,2(L)) and take an
element v € A= Ay = Ay and an F-embedding ¢ : F[y] — A, as before. Set
c=0(B) — ()= (B,8) — (t7.7) = (¥ (B —7)yo. B— ).

Suppose that 0> |r/2|. Take 6 € € (2,0, (8),%r). Then, this character can be
written in the form 0 =6y - 1,6y € € (2,0, 0(8),¥r), and we have

{91 = (00 | H'(18,%(£))) %1517,
02 = (0o | H' (7, A(L))) - th2,5—-
In this case, by induction and by [8, (3.3.18)], we see that 6 — 0; is bijective. We
also obtain
1= (60 | H (v7,2A(L))) - Y1815

=[(6 | H' (v,A(L))) o Ad(yo)] - [t2,8— © Ad(yo)]

= 92 o] Ad(y())
Hence, 05 — 01 = 020 Ad(yp) is the bijection from € (2((L),0, 58, ¥ r) to €(A(L),0,
tB,%F). The case |19/2] > 0 follows in a way quite similar to that of the proof in
the case where f3 is minimal over F. The assertion of Proposition 3.7 follows from

the uniqueness of the transfer 77 by [14, Theorem 3.53]. The proof is complete.
Finally, Proposition 3.7 confirms the conjecture of Remark 2.5.
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