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Abstract In this paper, we prove the “local ε-isomorphism” conjecture of Fukaya and

Kato for a particular class of Galois modules, obtained by interpolating the twists of a

fixed crystalline representation of GQp by a family of characters of GQp . This can be

regarded as a local analogue of the Iwasawa main conjecture for abelian p-adic Lie

extensions ofQp, extending earlier work of Kato for rank onemodules and of Benois and

Berger for the cyclotomic extension. We show that such an ε-isomorphism can be con-

structed using the 2-variable version of the Perrin-Riou regulator map constructed by

the first and third authors.
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1. Introduction

1.1. Aims
In this paper, we prove a special case of the “local ε-isomorphism conjecture”

of Fukaya and Kato [12, Conjecture 3.4.3]. This conjecture asserts the existence

of a canonical trivialization of the determinant of a cohomology complex asso-

ciated to any representation M of the Galois group GQp = Gal(Qp/Qp) with

coefficients in a p-adically complete local ring R. This trivialization is required

to be compatible with a specific “standard” trivialization of the corresponding

complex for representations with coefficients in finite extensions of Qp obtained

by specializing M at ideals, or more generally at representations, of R. This stan-

dard trivialization contains information about the ε-factor of the corresponding

Weil–Deligne representation, hence the terminology “ε-isomorphism.”
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The main result of this paper is a proof of this conjecture for a specific

class of modules M : we consider the case where M is obtained by tensoring

a lattice in a crystalline Galois representation with an R-linear representation

of the abelianization G = Gal(Qab
p /Qp). This specific instance of the local ε-

isomorphism conjecture can be thought of as a “local Iwasawa main conjecture”

for T over the extension Qab
p /Qp (cf. [24, Section 2]).

The key ingredient in the construction of the local ε-isomorphism is the

two-variable regulator map introduced by the first and third authors in [17].

Essentially, the local ε-isomorphism is obtained by taking the determinant of the

two-variable regulator and afterwards dividing out by certain correction factors

determined purely by the Hodge–Tate weights of the Galois representation. The

details of the construction are slightly tortuous, so we give an outline below.

In particular, our results generalize those of [2] (and contain independent

proofs of those): via the usual functorial properties of determinants, our results

imply the conjectures CIW (K(μp∞)/K,V ) and CEP (F/K,V ) of [2] for all finite

subextensions Qp ⊆ K ⊆ F ⊆ Qab
p . However, our approach gives compatibilty

with the standard ε-isomorphisms for twists by arbitrary unramified characters,

not just those of finite order as in [2].

We note also that, since the first draft of this paper was written, Nakamura

[18] has formulated a generalization of the Fukaya–Kato conjecture for (ϕ,Γ)-

modules over the Robba ring and proved this conjecture in many cases. His

conjecture is more general than the one considered here (since it applies also to

nonétale (ϕ,Γ)-modules), but in the cases where both conjectures apply it asserts

slightly less, as it predicts an equality of determinants over a ring in which p is

invertible.

1.2. Outline of the paper
In Sections 2.1–2.3 we fix notation, recall the formalism of determinants used in

the statement of the conjecture, and recall some definitions and results concerning

ε-factors of de Rham representations. In Section 2.4 we describe the “standard”

ε-isomorphism, for representations with coefficients in a finite extension of Qp,

with which the general ε-isomorphism is required to be compatible. In Section 2.5

we give an alternative, more convenient description of this isomorphism in the

cases that are relevant in the present work.

In Section 3 we recall the definition and properties of the cyclotomic regulator

map and of the two-variable version defined in [17]. Some of the formulae we need

for these maps are a little stronger than those that can be found in the literature,

so we give the proofs of these formulae in Appendix A.

In Section 4 we construct our determinant isomorphism for the “universal”

case when R is the Iwasawa algebra of an abelian p-adic Lie quotient G of GQp .

We begin (in Section 4.1) by constructing an isomorphism of determinants over a

rather enormous ring (the total ring of quotients of the distribution algebra of G);

in Section 4.2 we show that this descends to the Iwasawa algebra (but only after

inverting p). The final descent to an isomorphism over ΛO(G) is accomplished in
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Section 4.3. We then obtain isomorphisms for more general R by (derived) base

change.

Section 5 deals with the compatibility of our determinant isomorphism over

ΛO(G) with the “standard” ε-isomorphisms for V and all of its twists by de

Rham characters of G. We divide up the set of characters into classes depending

on V , which we refer to as good, somewhat bad, and extremely bad ; we deal with

each of these classes separately. The first two cases can be handled by direct

computation using the properties of the one-variable and two-variable regulator

maps; for the extremely bad characters, we use induction on the dimension and

the results of the second author in the case of one-dimensional representations

(cf. [24]).

2. Preliminaries

2.1. Notation
Let p be an odd prime. For H a p-adic analytic group, and L a complete discretely

valued extension of Qp with ring of integers O, we write ΛO(H) and ΛL(H) =

L ⊗O ΛO(H) for the Iwasawa algebras of H with O- and L-coefficients, and

HL(H) for the algebra of L-valued locally analytic distributions on H , which is

the completion of ΛL(H) in a certain Fréchet topology (cf. [23]). We shall only

use these constructions in cases where H is abelian and p-torsion-free, in which

case all of these algebras are reduced commutative semilocal rings and can be

interpreted as algebras of functions on the p-adic analytic space parameterizing

characters of H .

We shall also need the notation KL(H), signifying the total ring of quotients

of HL(H), which is a finite direct product of fields.

Let Qp,∞ = Qp(μp∞) and Γ = Gal(Qp,∞/Qp), and let χ : Γ → Z×
p be the

cyclotomic character. For j ∈Z, we define the element �j of HQp(Γ) by

�j =
log(γ)

logχ(γ)
− j

for any nontorsion element γ ∈ Γ. (The element �j is independent of this choice.)

We also fix a norm-compatible system of p-power roots of unity ξ = (ξn)n≥1 ∈
Qp,∞.

If μ ∈HL(Γ), and η is a character of Γ, we define μ′(η) by

μ′(η) = lim
s→0

μ(η〈χ〉s)− μ(η)

s
,

where 〈·〉 denotes the projection Z×
p → 1 + pZp. This limit exists for all μ, and

we have

(1) μ′(η) =

∫
Γ

η(τ) logχ(τ)dμ(τ).

If μ is not a zero divisor, we may define μ∗(η) to be the value of the lowest

nonvanishing derivative of μ at τ .

We write γ−1 for the unique element of Γ such that χ(γ−1) =−1.
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2.2. K-theory and determinants
Let R be a ring. We define K0(R) and K1(R) in the usual way, as in [12,

Section 1.1]. If R is commutative, then there is a canonical surjective map

K1(R)→R×, and the kernel of this is the special Whitehead group SK1(R).

The following statements are well known.

PROPOSITION 2.2.1

Let L be a complete discretely valued extension of Qp and let O be its ring of

integers. Then for any p-torsion-free abelian p-adic Lie group H , the Iwasawa

algebras ΛL(H) and ΛO(H) have trivial SK1.

REMARK 2.2.2

We do not know whether, in the above setting, the distribution algebra HL(H)

also has trivial SK1. If this were known, it would allow certain arguments below

to be shortened somewhat.

For R a ring, let Ch(R)perf denote the category of perfect complexes of R-modules

(chain complexes quasi-isomorphic to a bounded complex of finitely generated

projective R-modules). We denote by Det(R) the category denoted by CR in [12],

which is equivalent to the universal Picard category for the category of finitely

generated projective R-modules.

We denote by Det the canonical functor Ch(R)perf → Det(R). This factors

through the derived category D(R)perf of perfect complexes.

2.3. Epsilon factors
We recall the definition of ε-factors associated to representations of the Weil

group of Qp, for which the canonical reference is [9]. These are constants

εE(Qp,D,ψ,dx) ∈E×,

where E is a field of characteristic zero containing μp∞ , ψ is a locally constant E-

valued character ofQp, dx is a Haar measure onQp, and D is a finite-dimensional

E-linear representation of the Weil group W (Qp/Qp) which is locally constant

(i.e., the image of the inertia group I(Qp/Qp) is finite).

Following [12, Section 3.2], we shall restrict to the case when dx is the usual

Haar giving measure 1 to Zp, and ψ has kernel equal to Zp; the data of such a

character ψ is equivalent to the data of a compatible system of p-power roots of

unity ξ = (ξn)n≥1, via the map sending ψ to (ψ(p−n))n≥1. Since dx and Qp are

fixed, and ψ is determined by ξ, we shall drop them from the notation and write

the ε-factor as εE(D,ξ).

REMARK 2.3.1

Note that our conventions here, which were chosen for compatibility with [12],

differ slightly from the conventions of [17], which were chosen for compatibility
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with [7]: in [17] we defined ε-factors using the additive character mapping p−n

to ξ−1
n , which is more convenient for global purposes.

We are interested in the case when D =Dpst(W ) for a de Rham representation

W of GQp , with the linearized action of the Weil group given as in [11]. If W is

an L-linear representation of dimension d, for L a finite extension of Qp, then

Dpst(W ) is naturally a free module of rank d over Qnr
p ⊗Qp L, and we may

obtain the necessary roots of unity by extending scalars to Qp⊗Qp L; but this is,

of course, not a field but rather a finite product of fields indexed by embeddings

f : L ↪→Qp. Following [12, Section 3.3.4], we define

εL
(
Dpst(W ), ξ

)
=
(
εQp

(
Qp ⊗(L⊗Qnr

p ,f) Dpst(W ), ξ
))

f
∈ (Qp ⊗Qp L)

× =
∏
f

Q
×
p .

PROPOSITION 2.3.2

The functor Dpst has the following properties:

• it commutes with tensor products;

• if V is crystalline, then the linearized action of WQp on Dpst(V )∼=Qnr
p ⊗Qp

Dcris(V ) is unramified, and the action of arithmetic Frobenius σ ∈ WQp/IQp

coincides on Dcris(V ) with the inverse of the crystalline Frobenius;

• if η is finitely ramified, then WQp acts on Dpst(η) via the character η;

• if η = χ, then WQp acts on Dpst(η) via the unramified character mapping

arithmetic Frobenius to p.

Proof

The compatibility of Dpst with tensor products follows from the corresponding

statement for Dst, which is standard. The remaining statements follow immedi-

ately from the definition of the linearized action of the Weil group on Dpst. �

PROPOSITION 2.3.3

Let η be a de Rham character of GQp with values in L. Write η = η0η1χ
j for

some finite-order character η0 of Γ of conductor n, some unramified character

η1, and some j ∈Z. Then we have

εL
(
Dpst

(
L(η)

)
, ξ
)
= η1(σ)

−np−njτ(η0, ξ),

where σ denotes the arithmetic Frobenius of Gal(Qnr
p /Qp) and the Gauss sum

τ(η0, ξ) is defined by

τ(η0, ξ) :=
∑

γ∈Γ/Γn

η0(σ)
−1ξσn .

Proof

From Proposition 2.3.2, the action ofWQp onDpst(L(η)) is given by the character

of WQp whose restriction to Gal(Qp/Q
nr
p ) coincides with η0, and which takes the

value pjη1(σ) on the arithmetic Frobenius element of Gal(Qnr
p (μp∞)/Qp(μp∞)).
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Thus we may apply property (7) of local ε-factors in [12, Section 3.2.2] to

see that†

εL
(
Dpst

(
L(η)

)
, ξ
)
= η1(σ)

−np−njτ(η0, ξ) = η1(σ)
−np−njεL

(
L(η0), ξ

)
. �

We shall write εL(η, ξ) for εL(Dpst(L(η), ξ)); this should not cause confusion,

since the quantity εL(Dpst(L(η), ξ)) agrees with εL(L(η), ξ) whenever the latter

is defined.

PROPOSITION 2.3.4

Let V be a d-dimensional L-linear crystalline representation of GQp , and let

η be a de Rham character of GQp with values in L. Write η = η0η1χ
j as in

Proposition 2.3.3. Then we have

εL
(
Dpst

(
V (η)

)
, ξ
)
= εL(η, ξ)

d · detL
(
ϕ :Dcris(V )→Dcris(V )

)n
.

Proof

Using the property (5) of ε-factors stated in [12, Section 3.2.2], we have

εL
(
Dpst

(
V (η)

)
, ξ
)

= εL
(
Dpst(V )⊗Qnr

p ⊗L Dpst

(
L(η)

)
, ξ
)

= εL
(
Dpst

(
L(η)

)
, ξ
)d · det(Qnr

p ⊗L)

(
σ−1 :Dpst(V )→Dpst(V )

)n
= εL

(
Dpst

(
L(η)

)
, ξ
)d · detL(ϕ :Dcris(V )→Dcris(V )

)n
since the arithmetic Frobenius σ on Dpst(V ) acts as the inverse of the crystalline

Frobenius ϕ on Dcris(V ). �

2.4. Epsilon isomorphisms for de Rham representations
Let V be a de Rham representation of GQp with coefficients in a finite extension

L/Qp. Let L̃= L⊗Qp Q̂
nr
p , and let ξ = (ξn)n≥0 be a compatible system of p-power

roots of unity as before.

Then Fukaya and Kato have shown in [12, Section 3.3] how to construct a

canonical isomorphism

εL,ξ(V ) : DetL̃(0)
∼=� L̃⊗L

{
DetL

(
RΓ(Qp, V )

)
·DetL(V )

}
.

This isomorphism is defined as a product of three terms

(2) εL,ξ(V ) = ΓL(V ) · εL,ξ,dR(V ) · θL(V ),

† There appears to be a minor error in [12] in item (7) of Section 3.2.2: the factor χ(τ)n is not

well defined, since τ is chosen as an arbitrary element of W (Qp/Qp) such that v(τ) = 1, so τ

is only determined up to multiplication by an element of I(Qp/Qp); one needs to assume that
τ acts trivially on Qp,n. With this modification, the formula is correct modulo a sign error:

the factor χ(τ)n should be χ(τ)−n, as one sees by comparison with (5).
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where

θL(V ) : DetL(0)
∼=� DetL

(
RΓ(Qp, V )

)
·DetL

(
DdR(V )

)
,

εL,ξ,dR(V ) : L̃⊗L DetL
(
DdR(V )

) ∼=� L̃⊗L DetL(V ),

ΓL(V ) ∈Q×.

As it will be important for the remainder of the present paper, let us recall

in detail the definitions of these terms.

Firstly, we define ΓL(V ), which depends only on the Hodge–Tate weights

of V . For r ∈Z let

n(r) = dimL gr−rDdR(V ),

so nr is the multiplicity of r as a Hodge–Tate weight† of V . We define

Γ∗(r) =

{
(r− 1)! if r > 0,
(−1)r

(−r)! if r ≤ 0,

the leading coefficient of the Taylor series of Γ(s) at s= r. Then

ΓL(V ) =
∏
r∈Z

Γ∗(r)−n(r).

Secondly, we define εL,ξ,dR(V ). Let εL(Dpst(V ), ξ) ∈ Qp ⊗Qp L be the ε-

factor of Dpst(V ), as defined in Section 2.3. Then εL(Dpst(V ), ξ) clearly lies in

Qp,∞ ⊗Qp L, and it transforms under Γ via

σ · εL
(
Dpst(V ), ξ

)
= ε
(
Dpst(V ), ξσ

)
= η(σ̃)εL

(
Dpst(V ), ξ

)
,

where η is the finitely ramified character by which Gab
Qp

acts on det(V )(−w),

where w =
∑

ni, and σ̃ is the unique lifting of σ to Gal(Qnr
p (μp∞)/Qnr

p ).

If we let t denote the element log([ξ]) of BdR, then multiplying by

twεL(Dpst(V ), ξ) defines an isomorphism L̃⊗L DetL(DdR(V ))→ L̃⊗L DetL(V )

(regarding both as submodules of BdR ⊗Qp Det(V )), and we take this to be the

definition of εL,ξ,dR(V ).

Thirdly, we define θL(V ). The general definition is rather complicated. Let

C(Qp, V ) be the complex of continuous cochains with values in V (so RΓ(Qp, V )

is the image of C(Qp, V ) in the derived category). Then Cf (Qp, V ) is a certain

subcomplex of C(Qp, V ) which is nonzero only in degrees 0 and 1, and whose

cohomology in degree 0 is H0(Qp, V ) and in degree 1 is H1
f (Qp, V ). Hence

DetLCf (Qp, V ) =
{
DetLH0(Qp, V )

}
·
{
DetLH1

f (Qp, V )
}−1

.

The fundamental exact sequence

(3) 0→H0(Qp, V )→Dcris(V )
(1−ϕ,1)� Dcris(V )⊕ t(V )→H1

f (Qp, V )→ 0

† We adopt the convention in this paper that the Hodge–Tate weight of the cyclotomic char-

acter is 1.
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gives rise to a quasi-isomorphism

Cf (Qp, V )∼=
[
Dcris(V )

(1−ϕ,1)� Dcris(V )⊕ t(V )
]
,

where t(V ), the tangent space of V , is defined as DdR(V )/Fil0DdR(V ). This

gives an isomorphism of determinants

η(Qp, V ) : DetL(0)→
{
DetLCf (Qp, V )

}
·
{
DetL t(V )

}
.

We also have a corresponding isomorphism η(Qp, V
∗(1)). Furthermore, there is

an isomorphism

Ψf (Qp, V ) :Cf (Qp, V )∼=C
(
Qp, V

∗(1)
)
/
(
Cf

(
Qp, V

∗(1)
))∗

[−2].

On homology groups this says that

H0(Qp, V )∗ =H2
(
Qp, V

∗(1)
)
,

H1
f (Qp, V )∗ =

H1(Qp, V
∗(1))

H1
f (Qp, V ∗(1))

.

Also, there is a canonical exact sequence

(4) 0 � t
(
V ∗(1)

)∗ � DdR(V ) � t(V ) � 0,

arising from the compatibility of the functor DdR(−) with tensor products and

the canonical isomorphism DdR(L(1))∼= L. Putting all of these together, we have

an isomorphism

θL(V ) : DetL(0) � DetLRΓ(Qp, V ) ·DetLDdR(V )

defined by

η(Qp, V ) ·
{
η
(
Qp, V

∗(1)
)∗}−1 ·

{
DetLΨf

(
Qp, V

∗(1)
)∗}−1

.

This completes the definition of the Fukaya–Kato ε-isomorphism εL,ξ(V ) for

a de Rham representation V .

For future reference, we observe that the objects defined in this section are

well behaved in short exact sequences.

LEMMA 2.4.1

Suppose that we have a short exact sequence

0 � V ′ � V � V ′′ � 0

of crystalline representations of GQp with coefficients in a finite extension L of

Qp. Then we have the equalities

εL,ξ,dR(V ) = εL,ξ,dR(V
′) · εL,ξ,dR(V

′′),

θL(V ) = θL(V
′) · θL(V ′′),

and

ΓL(V ) = ΓL(V
′) · ΓL(V

′′).
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Proof

The equalities εL,ξ,dR(V ) = εL,ξ,dR(V
′) ·εL,ξ,dR(V

′′) andΓL(V ) = ΓL(V
′) ·ΓL(V

′′)

are true by construction. Recall that θL(V ) is defined as

η(Qp, V ) ·
{
η
(
Qp, V

∗(1)
)∗}−1 ·

{
DetLΨf

(
Qp, V

∗(1)
)∗}−1

.

It follows from tedious diagram chasing that each of the factors is multiplicative

in short exact sequences, which implies the result for θL(Qp, V ). �

REMARK 2.4.2

One can check that the above statement holds more generally for any short exact

sequence of de Rham representations, but we shall not use this here.

As a corollary, we obtain the following result.

PROPOSITION 2.4.3

Under the same assumptions as in Lemma 2.4.1, we have

εL,ξ(V ) = εL,ξ(V
′) · εL,ξ(V

′′).

Proof

This is immediate from Lemma 2.4.1 and (2). �

2.5. Two special cases
In this section we will give a different description of the isomorphism θL(V )

when V is either purely crystalline or purely noncrystalline, which are the only

two cases we shall need to consider.

Recall that the dual exponential map

exp∗Qp,V ∗(1) :H
1(Qp, V ) � Fil0DdR(V )

is defined by the commutativity of the following diagram:

H1(Qp, V )

exp∗
Qp,V ∗(1)

× H1
(
Qp, V

∗(1)
) ( , )V

L

DdR(V ) × DdR

(
V ∗(1)

)
expQp,V ∗(1)

[ , ]V

L

(5)

The pairings ( , )V and [ , ]V induce isomorphisms

ψV :H1(Qp, V )→H1
(
Qp, V

∗(1)
)∗
, h �→ (h,−)V ,

ψV,/f :H1(Qp, V )/H1
f (Qp, V )→H1

f

(
Qp, V

∗(1)
)∗
, [h] �→ (h,−)V ,

ψV,f :H1
(
Qp, V

∗(1)
)
/H1

f

(
Qp, V

∗(1)
)
→H1

f (Qp, V )∗, [h] �→ (−, h)V ,

ψDdR(V ) :DdR(V )→DdR

(
V ∗(1)

)∗
, d �→ [d,−]V ,
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and

ψFil0 DdR(V ) : Fil
0DdR(V )→ t

(
V ∗(1)

)∗
, d �→ [d,−]V .

Hence, exp∗Qp,V ∗(1) is the composite

H1(Qp, V )

H1
f (Qp, V )

ψV,/f� H1
f

(
Qp, V

∗(1)
)∗ (expQp,V ∗(1))

∗
� DdR

(
V ∗(1)

)∗
ψ−1

Fil0 DdR(V )� Fil0DdR(V ).

(6)

PROPOSITION 2.5.1

If V is a de Rham representation such that Dcris(V ) =Dcris(V
∗(1)) = 0, then we

have

H0(Qp, V ) =H2(Qp, V ) = 0,

H1
e (Qp, V ) =H1

f (Qp, V ) =H1
g (Qp, V ),

and the morphism θL(V ) is given by

DetL

(
logQp,V :H1

f (Qp, V )
∼=� DdR(V )

Fil0DdR(V )

)
·DetL

(
− exp∗Qp,V ∗(1) :

H1(Qp, V )

H1
f (Qp, V )

∼=� Fil0DdR(V )
)
.

Proof

Since the complex Cf (Qp, V ) is reduced to H1
f (Qp, V )[1], the isomorphism η(Qp,

V ) is the map induced by logQp,V . Similarly, η(Qp, V
∗(1))∗ ·DetLΨf (Qp, V

∗(1))∗

is induced by the map

ψ−1
Fil0 DdR(V )

◦ (expQp,V ∗(1))
∗ ◦ ψV ∗(1),f =− exp∗Qp,V ∗(1),

where the last equality follows from comparison with (6) and taking into account

that ψV ∗(1),f =−ψV,/f by the skew symmetry of the cup product. �

PROPOSITION 2.5.2

If V is a crystalline representation such that Dcris(V )ϕ=1 = Dcris(V )ϕ=p−1

=

0, then we again have H0(Qp, V ) = H2(Qp, V ) = 0,H1
e (Qp, V ) = H1

f (Qp, V ) =

H1
g (Qp, V ), and the morphism θL(V ) is given by

DetL
(
(1−ϕ)(1− p−1ϕ−1)−1 :Dcris(V ) � Dcris(V )

)
·DetL

(
logQp,V :H1

f (Qp, V )
∼=� Dcris(V )

Fil0Dcris(V )

)
·DetL

(
− exp∗Qp,V ∗(1) :

H1(Qp, V )

H1
f (Qp, V )

∼=� Fil0Dcris(V )
)
.
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Proof

Since (1−ϕ) is invertible on Dcris(V ), there is a natural morphism of complexes

between Cf (Qp, V ) and the corresponding complex with (1− ϕ,1) replaced by

(1 − ϕ,0), which is a chain homotopy and hence induces an isomorphism on

determinants; and similarly for Cf (Qp, V
∗(1)). The proof now concludes via the

same argument as in Proposition 2.5.1. �

To handle the bad cases when V is crystalline but the hypotheses of Proposi-

tion 2.5.2 are not satisfied, it will be convenient to introduce a slight modification

of the exponential and dual-exponential maps.

DEFINITION 2.5.3

For V a crystalline representation, let

ẽxpQp,V :
Dcris(V )

(1−ϕ)Fil0Dcris(V )

∼=� H1
f (Qp, V )

be the map obtained by restricting the boundary map of the fundamental exact

sequence (3) to the summand Dcris(V )⊆Dcris(V )⊕ t(V ), while we write l̃ogQp,V

for its inverse.

REMARK 2.5.4

The map

ẽxpQp,V ⊕ expQp,V :Dcris(V )⊕ t(V ) � H1
f (Qp, V )

(which is just the boundary map of (3)) is the map denoted by expV,f in [22,

p. 231].

It is clear that the kernel of ẽxpQp,V is exactly the subspace (1− ϕ)Fil0Dcris,

and we have

(7) ẽxpQp,V ◦ (1−ϕ) =− expQp,V .

However, ẽxpQp,V may be nontrivial even when expQp,V is the zero map, as the

following example shows.

PROPOSITION 2.5.5

If V = L is the trivial representation, then for any x ∈ V =Dcris(V ), ẽxpQp,V (x)

is the element of Hom(GQp ,L) which is trivial on inertia and maps the arithmetic

Frobenius to −x.

Proof

It suffices to assume x= 1. By Hensel’s lemma there exists y ∈ Õ =W (Fp) such

that (1 − ϕ)y = 1, where ϕ is the arithmetic Frobenius. Since Õ is (ϕ,GQp)-

equivariantly a submodule of B+
cris, the class ẽxpQp,V (x) is given by σ �→ (σ−1)y,

which is clearly unramified and maps the arithmetic Frobenius to −1. �



74 Loeffler, Venjakob, and Zerbes

We define

ẽxp
∗
Qp,V ∗(1) :

H1(Qp, V )

H1
f (Qp, V )

∼=� (1− p−1ϕ−1)−1Fil0Dcris(V )

to be the transpose of ẽxpQp,V ∗(1), by the analogue of diagram (5). By construc-

tion, we have

(8) exp∗Qp,V ∗(1) =−(1− p−1ϕ−1)ẽxp
∗
Qp,V ∗(1),

since (1− p−1ϕ−1) is the transpose of (1−ϕ).

DEFINITION 2.5.6

We define the following subspaces of H1(Qp, V ):

• The space H1
a(Qp, V ) is defined as{

x ∈H1(Qp, V ) : ẽxp
∗
Qp,V ∗(1)(x) ∈Dcris(V )ϕ=1

}
.

By construction, this contains the kernel of ẽxp
∗
Qp,V ∗(1), which is H1

f (Qp, V ).

• The space H1
b (Qp, V ) is defined as{

x ∈H1
f (Qp, V ) : l̃ogQp,V (x) ∈

(1− p−1ϕ−1)Dcris(V ) + (1−ϕ)Fil0Dcris(V )

(1−ϕ)Fil0Dcris(V )

}
.

We now note that ẽxp
∗
Qp,V ∗(1) defines an isomorphism

H1
a(Qp, V )

H1
f (Qp, V )

∼=� Dcris(V )ϕ=1 ∩ (1− p−1ϕ−1)−1Fil0Dcris(V )

=Dcris(V )ϕ=1 ∩Fil0Dcris(V )

=H0(Qp, V ).

On the other hand l̃ogQp,V gives an isomorphism

H1
f (Qp, V )

H1
b (Qp, V )

∼=� Dcris(V )

(1− p−1ϕ−1)Dcris(V ) + (1−ϕ)Fil0Dcris(V )

which Tate duality identifies with H0(Qp, V
∗(1))∗ =H2(Qp, V ).

We therefore have the following isomorphisms:

−(1−ϕ)ẽxp
∗
Qp,V ∗(1) :

H1(Qp, V )

H1
a(Qp, V )

∼=� (1− ϕ)(1− p−1ϕ−1)−1Fil0Dcris(V ),

(9a)

−ẽxp
∗
Qp,V ∗(1) :

H1
a(Qp, V )

H1
f (Qp, V )

∼=� H0(Qp, V ),(9b)

l̃ogQp,V :
H1

f (Qp, V )

H1
b (Qp, V )

∼=� H2(Qp, V ),(9c)
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(1− p−1ϕ−1)−1 l̃ogQp,V :H1
b (Qp, V )

∼=� Dcris(V )

(1− p−1ϕ−1)−1(1−ϕ)Fil0Dcris(V )
.

(9d)

As promised above, we can use the isomorphisms (9a)–(9d) to give a simpler

expression for θL(V ).

THEOREM 2.5.7

The isomorphism

DetL(0)
∼=� DetLRΓ(Qp, V ) ·DetLDcris(V )

defined by composing the determinants of (9a)–(9d) coincides with the isomor-

phism θL(V ) defined above up to the factor (−1)dimL(V ). In particular, if H0(Qp,

V ) =H2(Qp, V ) = 0, that is, H1
a(Qp, V ) =H1

b (Qp, V ) =H1
f (Qp, V ), then θL(V )

coincides with the isomorphism defined by

Det
[
(1−ϕ)ẽxp

∗
Qp,V ∗(1) :

H1(Qp, V )

H1
f (Qp, V )

∼=� (1−ϕ)(1− p−1ϕ−1)−1Fil0Dcris(V )
]

·Det
[
−(1− p−1ϕ−1)−1 l̃ogQp,V :H1

f (Qp, V )

∼=� Dcris(V )

(1− p−1ϕ−1)−1(1−ϕ)Fil0Dcris(V )

]
.

REMARK 2.5.8

Note that this result extends Proposition 2.5.2, because of equations (7) and

(8).

As the proof of this theorem requires some rather elaborate diagram chasing, we

shall not give it here but relegate it to Appendix B below.

3. Regulator maps

3.1. The cyclotomic regulator map
Let V be an L-linear p-adic representation of GQp . We define the Iwasawa coho-

mology

Hi
Iw(Qp,∞, V ) = L⊗O lim←−

n

H1(Qp,n, T ),

where T is any GQp -stable O-lattice in V . The group Hi
Iw(Qp,∞, V ) is a finitely

generated ΛL(Γ)-module, which is zero if i /∈ {1,2}, is torsion if i = 2, and has

rank d= dimL(V ) if i= 1.

For any continuous character η of Γ with values in L, we write πη : ΛL(Γ)→ L

for the L-algebra homomorphism which sends g ∈ Γ to η(g), and similarly for
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HL(Γ). Then we have the projection map

prη :H
1
Iw(Qp,∞, V ) � L⊗Λ(Γ),πη

H1
Iw(Qp,∞, V ) � H1

(
Qp, V (η−1)

)
arising from the inverse limit of the Hochschild–Serre spectral sequences asso-

ciated to the extension Qp,n/Qp for each n. We also write xη for the image of

x ∈H1
Iw(Qp, V ) under prη .

We now suppose that V is a crystalline representation, with all Hodge–Tate

weights ≥ 0. We shall write H1
Iw(Qp,∞, V )0 for the submodule of H1

Iw(Qp,∞, V )

whose image under the Fontaine isomorphism

H1
Iw(Qp,∞, V )

∼=� D(V )ψ=1

is contained in the Wach moduleN(V )⊂D(V ). By the results of [3, Appendix A],

if V has all Hodge–Tate weights ≥ 0, then the quotient H1
Iw(Qp,∞, V )/H1

Iw(Qp,∞,

V )0 is identified with

(π−1N(V ))ψ=1

N(V )ψ=1

∼=� Dcris(V )ϕ=1(−1),

and in particular if V has no quotient isomorphic to Qp, then H1
Iw(Qp,∞, V )0 =

H1
Iw(Qp,∞, V ).

THEOREM 3.1.1 (PERRIN-RIOU, BERGER)

Let V be a crystalline representation of GQp with all Hodge–Tate weights ≥ 0.

Then there is a homomomorphism of ΛL(Γ)-modules

LΓ
V,ξ :H

1
Iw(Qp,∞, V )0 � HL(G)⊗L Dcris(V )

whose values at de Rham characters η are given by the following formulae. Let

W = V (η−1), and let η = χjη0 with j ∈ Z and η0 a finite-order character of

conductor n.

(1) If η0 is nontrivial, with conductor n≥ 1, then

LΓ
V,ξ(x)(η)

= Γ∗(1 + j)εL(η
−1,−ξ)ϕn

{
exp∗Qp,W∗(1)(xη)⊗ t−jej if j ≥ 0,

logQp,W (xη)⊗ t−jej if j ≤−1.

(2) If η0 is trivial, so η = χj , then

(1− p−1−jϕ−1)LΓ
V,ξ(x)(η)

= Γ∗(1 + j)(1− pjϕ)

{
exp∗Qp,W∗(1)(xη)⊗ t−jej if j ≥ 0,

logQp,W (xη)⊗ t−jej if j ≤−1.

In the above theorem ej denotes the basis of Qp(j) given by [(ξn)n≥1]
⊗j , and t

denotes the element log([ξ]) of Bcris. (Thus both t and ej depend on the choice

of ξ, but t−jej ∈Dcris(Qp(j)) does not.)
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Proof

This is well known; for a proof of the special value formulae in this form see, for

example [17, Appendix B]. �

The presence of the factors (1 − pjϕ) and (1 − p−1−jϕ−1) is awkward for our

present purposes, since they may fail to be invertible. We will therefore use the

following strengthened version of the formulae of Theorem 3.1.1, using the map

ẽxp
∗
introduced in Section 2.5 above.

THEOREM 3.1.2

For any j ≥ 0 we have

LΓ
V,ξ(x)(χ

j) =−Γ∗(1 + j)(1− pjϕ)
[
ẽxp

∗
Qp,V ∗(1+j)(xχj )⊗ t−jej

]
.

Proof

See Theorem A.2.3 in the appendix. �

From the above results we see that if η has Hodge–Tate weight ≥ 0, then

LΓ
V,ξ(x)(η) = 0 if and only if xη ∈H1

f (Qp, V (η−1)) when η is noncrystalline, and

if and only if xη ∈H1
a(Qp, V (η−1)) when η is crystalline. In this case we have a

formula for the derivative of LΓ
V,ξ(x) at η.

THEOREM 3.1.3

Suppose that x ∈H1
Iw(Qp,∞, V )0 satisfies LΓ

V (x)(η) = 0, where η has Hodge–Tate

weight j ≥ 0 and conductor n.

(1) If n≥ 1, then we have

LΓ
V (x)

′(η) = Γ∗(1 + j)εL(η
−1,−ξ)ϕn

[
logQp,V (η−1)(xη)⊗ t−jej

]
(
modϕnFil−j Dcris(V )

)
.

(2) If n= 0, so η = χj , and H0(Qp, V (−j)) = 0, then we have

LΓ
V,ξ(x)

′(η) =−Γ∗(1 + j)(1− p−1−jϕ−1)−1
[
l̃ogQp,V (−j)(xη)⊗ t−jej

]
(
mod(1− p−1−jϕ−1)−1(1− pjϕ)Fil−j Dcris(V )

)
.

We note also the following twist-compatibility property.

PROPOSITION 3.1.4

The regulator maps for V and V (1) are related by

LΓ
V (1),ξ(x⊗ e1) = �0 ·

(
Twχ−1

(
LΓ
V,ξ(x)

)
⊗ t−1e1

)
.

Proof

Recall that the regulator is defined by

LΓ
V,ξ(y) =M−1

(
(1−ϕ)y

)
,
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where M is the Mellin transform H(Γ)→ (B+
rig,Qp

)ψ=0, and

y ∈
(
B+

rig,Qp
⊗Dcris(V )

)ψ=1 ∼=H1
Iw(Qp,∞, V )0.

We have the identity

�0(f) = t∂(f)

for f ∈B+
rig,Qp

, where ∂ is the differential operator (1 + π) d
dπ . Consequently we

have

x⊗ e1 = �0(∂
−1x)⊗ t−1e1

for any x ∈ (B+
rig,Qp

⊗ Dcris(V ))ψ=0. But ∂ corresponds under M to Twχ, so

applying M−1 to both sides of the above we have

M−1(x⊗ e1) = �0Twχ−1

(
M−1(x)

)
⊗ t−1e1.

Letting x= (1− ϕ)y for y ∈ (B+
rig,Qp

⊗Dcris(V ))ψ=1 gives the claimed formula.

�

REMARK 3.1.5

One can also see this twist compatibility as a consequence of the evaluation for-

mulae above, since the two sides of Proposition 3.1.4 must agree under evaluation

at χj for all but finitely many j ∈Z by Theorem 3.1.1.

3.2. The matrix of the cyclotomic regulator
We now state a formula for the matrix of the cyclotomic regulator map LΓ

V,ξ ,

which will be one of the main tools we use to attack the Fukaya–Kato conjecture.

We shall first define an element �(V ) ∈HQp(Γ), depending only on the Hodge–

Tate weights of V .

DEFINITION 3.2.1

(1) For n ∈Z, define the element μn ∈ FracHQp(Γ) by

μn =

⎧⎪⎪⎨⎪⎪⎩
�0 · · · �n−1 if n≥ 1,

1 if n= 0,

(�−1 · · · �n)−1 if n≤−1.

(2) For V a Hodge–Tate representation of GQp , with Hodge–Tate weights

n1, . . . , nd, let

�(V ) =

d∏
i=1

μni .

Our goal is the following proposition.

PROPOSITION 3.2.2

Let V be any d-dimensional crystalline L-linear representation of GQp . Let y1,
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. . . , yd ∈H1
Iw(Qp,∞, V ) be such that the quotient

Q=
H1

Iw(Qp,∞, V )

〈y1, . . . , yd〉ΛL(Γ)

is ΛL(Γ)-torsion. Then for any L-basis v1, . . . , vd of Dcris(V )∨, the determinant

of the matrix with (i, j)-entry 〈LΓ
V,ξ(yi), vj〉 is equal to

�(V )fQ
fH2

Iw(Qp,∞,V )

(
modHL(Γ)

×),
where fQ ∈ ΛL(Γ) is any characteristic element of the torsion ΛL(Γ)-module Q,

and similarly for fH2
Iw(Qp,∞,V ).

This theorem has a slightly tortous history: a conditional proof was given by

Perrin-Riou in [21] modulo her local reciprocity conjecture Rec(V ), which was

subsequently proved, independently, by Colmez [8] and Benois [1].

REMARK 3.2.3

(i) In [21] the theorem is formulated not in terms of the regulator map LΓ
V,ξ

but rather in terms of Perrin-Riou’s exponential map ΩV,h,ξ , for a suitable integer

h (see Appendix A for the definition of the latter). Since the regulator and the

exponential are related by an identity (equation (11) in Appendix A) the above

formulation is equivalent to Perrin-Riou’s.

(ii) Under the simplifying hypothesis that no eigenvalue of ϕ on Dcris(V ) is

a power of p, which forces H2
Iw(Qp,∞, V ) =H1

Iw(Qp,∞, V )tors = 0, a refinement of

this result is given by [16, Theorem D], which determines the elementary divisors

of the matrix of LΓ
V,ξ .

3.3. The two-variable regulator map
We now recall the main result from [17]. Let F be any finite unramified extension

of Qp, and let F∞ be the unramified Zp-extension of F . We set K∞ = F∞(μp∞),

U = Gal(K∞/Qp,∞), and G = Gal(K∞/Qp). We regard Γ as a subgroup of G

by identifying it with Gal(K∞/F∞), so we have G= U × Γ.

Let L̃= L⊗Qp Q̂
nr
p , as above.

THEOREM 3.3.1

Assume that V is crystalline with Hodge–Tate weights ≥ 0. Then there exists a

regulator map

LG
V,ξ :H

1
Iw(K∞, V ) � HL̃(G)⊗Dcris(V )

such that for any finite extension E/Qp contained in F∞, we have a commutative

diagram
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H1
Iw(K∞/Qp, V )

LG
V,ξ� HL̃(G)⊗Qp Dcris(V )

H1
Iw

(
E(μp∞), V

)� LG′
V,ξ� HL̃(G

′)⊗Qp Dcris(V )
�

Here G′ = Gal(E(μp∞)/Qp), the right-hand vertical arrow is the map on dis-

tributions corresponding to the projection G→ G′, and the map LG′

V is defined

by

LG′

V,ξ =
∑

σ∈Gal(E/Qp)

[σ] · LΓ
E,V,ξ(σ

−1 ◦ x),

where LΓ
E,V,ξ is the cyclotomic regulator map for E(μp∞)/E. Moreover, the map

LG
V,ξ is injective.

By abuse of notation we also write LG
V,ξ for the induced map with source HL̃(G)⊗

H1
Iw(K∞, V ).

We will need a twist-compatibility property which extends Proposition 3.1.4

to the two-variable regulator map. To state this, we need to introduce a map

relating Dcris for unramified twists.

DEFINITION 3.3.2

If η is a crystalline character of G, we let bη denote the unique isomorphism

L̃⊗L Dcris(V )⊗L L(η)
∼=� L̃⊗L Dcris

(
V (η)

)
such that extending scalars to Bcris gives a commutative diagram

Bcris ⊗Qp Dcris(V )⊗L L(η)
bη

∼=
� Bcris ⊗Qp Dcris

(
V (η)

)

Bcris ⊗Qp V ⊗L L(η)

can(V )⊗1

� ×t−j

∼=
� Bcris ⊗Qp V (η)

can(V (η))

�

where can(V ) is the canonical isomorphism Bcris⊗V ∼=Bcris⊗Dcris(V ), and the

bottom row denotes multiplication by t−j in Bcris.

The existence of such an isomorphism is not a priori obvious, but it follows from

the fact that we may write η = χjη1 for some unramified η1, and the periods of

η1 lie in L̃⊆ L⊗Bcris (see [17, Section 4.3]). Note that bη in fact depends on ξ

(since ξ determines the cyclotomic period t).

We can now state the twist compatibility of LG
V,ξ .
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PROPOSITION 3.3.3

Let V be crystalline with nonnegative Hodge–Tate weights, and let η be any crys-

talline L-valued character with Hodge–Tate weight j ≥ 0. Then we have a G-

equivariant commutative diagram:

H1
Iw(K∞/Qp, V )⊗L(η)

LG
V,ξ⊗1 � HL̃(G)⊗Dcris(V )⊗L(η)

H1
Iw

(
K∞/Qp, V (η)

)
∼=

�
(
0···
j−1)

−1LG
V (η),ξ� HL̃(G)⊗Dcris

(
V (η)

)
aη

�

Here the right-hand vertical map aη is given by

x⊗ y⊗ z �→Twη−1(x)⊗ bη(y⊗ z),

where bη is as in Definition 3.3.2.

REMARK 3.3.4

The diagram above is G-equivariant, if one equips H1
Iw(K∞/Qp, V )⊗L(η) with

the diagonal action of G, and HL̃(G) ⊗Dcris(V ) ⊗ L(η) with the action of G

given by

g · (x⊗ y⊗ z) =
(
[g]x
)
⊗ y⊗

(
η(g)z

)
.

Proof

It suffices to consider two cases separately: the case where η is an unramified

character (so j = 0) and the case where η = χj . In the unramified case, the

statement to be proven is [17, Proposition 4.13]. In the case of a power of the

cyclotomic character, the result follows from the twist compatibility of the cyclo-

tomic regulator (Proposition 3.1.4) and the compatibility of the cyclotomic and

two-variable regulator maps. �

We shall also need the following simple properties of the maps LG
V,ξ .

PROPOSITION 3.3.5

(1) Let c ∈Z×
p , and let γc denote the unique element of Γ such that χ(γc) = c.

Then we have

LG
V,cξ = [γc]

−1LG
V,ξ.

(2) If ϕL̃ denotes the L-linear automorphism of L̃ = L ⊗Qp Q̂nr
p given by

extending scalars from the arithmetic Frobenius automorphism of Q̂nr
p , then we

have

[LG
V,ξ]

ϕL̃ = [σp]LG
V,ξ

where σp is the arithmetic Frobenius element of Gal(K∞/Qp,∞).
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Proof

See Proposition 4.10 and Remark 4.17 of [17]. �

3.4. The matrix of the two-variable regulator
We now consider the two-variable regulator LG

V,ξ . The result we shall prove is

formally very close to Proposition 3.2.2.

PROPOSITION 3.4.1

Let x1, . . . , xd ∈H1
Iw(K∞, V ), and let v1, . . . , vd be an L-basis of Dcris(V )∨. If the

quotient

Q=H1
Iw(K∞, V )/〈x1, . . . , xd〉

is ΛL(G)-torsion, then the determinant of the matrix A whose i, j entry is

〈LG
V,ξ(xi), vj〉 lies in �(V ) · fQ · HL̃(G)×, where fQ is a characteristic element

of Q.

Since HL̃(G) is not an elementary divisor domain, we cannot directly adapt

Perrin-Riou’s proof of Proposition 3.2.2 to the two-variable setting. So we shall

prove the proposition indirectly, by reducing it to Proposition 3.2.2 applied to

the twist of V by every unramified character of G.

Let x1, . . . , xd ∈H1
Iw(K∞, V ) be as in the proposition, and denote by fQ a

generator of the characteristic ideal of the quotient Q. Define

C =
[
det
〈
LG
V,ξ(xi), vj

〉
/fQ
]
∈KL̃(G)×/HL̃(G)×

where as usual 〈LG
V,ξ(xi), vj〉 denotes the matrix of LG

V,ξ with respect to the bases

(xi) and (vi), respectively. So our goal is to prove that C = [�(V )]. Note that C

is independent of the choice of the xi.

PROPOSITION 3.4.2

Let τ be an unramified character of U . Then the image of C in KL̃(τ)(Γ)
×/

HL̃(τ)(Γ)
× is well defined, and equal to [�(V )].

Proof

By the twist compatibility of the regulator (Proposition 3.3.3), we may assume

that τ is the trivial character.

By [19, Section 8.4.8.3] there are short exact sequences

0 � Hi
Iw(K∞, V )U � Hi

Iw(Qp,∞, V ) � Hi+1
Iw (K∞, V )U � 0

for each i. In particular, the cokernel of H1
Iw(K∞, V )→H1

Iw(Qp,∞, V ) is ΛL(Γ)-

torsion, so we may assume that the images x′
i of xi in H1

Iw(Qp,∞, V ) span a

submodule of full rank d.

The exact sequences imply that the image of fQ in ΛL̃(Γ) is not a zero divisor,

and is equal to fQ′/fH2
Iw(Qp,∞,V ), where fQ′ denotes a characteristic element for
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the torsion ΛL(Γ)-module Q′ = H1(Qp,∞, V )/〈x′
1, . . . , x

′
d〉. On the other hand

the compatibility of LG
V,ξ and LΓ

V,ξ implies that the image of det〈LG
V,ξ(xi), vj〉 is

det〈LΓ
V,ξ(x

′
i), vj〉.

By Proposition 3.2.2, det〈LΓ
V,ξ(x

′
i), vj〉 is not a zero divisor, so the image of

C is well defined, and this image is given by

det〈LΓ
V,ξ(x

′
i), vj〉 · fH2

Iw(Qp,∞,V )

fQ′
=
[
�(V )

]
. �

DEFINITION 3.4.3

Denote by KL(G)◦ the set of f ∈KL(G)× with the property that for each char-

acter τ of U , we can find an expression for f in the form u/v where the images

of u and v in KL(τ)(Γ) under the evaluation-at-τ map are not zero divisors, so f

has a well-defined image in KL(τ)(Γ)
×.

PROPOSITION 3.4.4

For any coefficient field L, the natural map

KL(G)◦

HL(G)×
→
∏
τ

KL(τ)(Γ)
×

HL(τ)(Γ)×

is injective (where the product on the right is over all characters τ of U).

Proof

We identify HL(G) with the algebra of L[Δ]-valued rigid-analytic functions on

the product of two copies of the rigid-analytic open disc B(0,1), where Δ is

the torsion subgroup of G. By passing to Δ-isotypical components, it suffices to

replace HL(G) with O(B(0,1)2L).

Let Xn be an ascending family of open affinoid subdomains of B(0,1)2L.

Since O(B(0,1)2L) = lim←−n
O(Xn), we are reduced to proving the corresponding

statement for the rings O(Xn), which are isomorphic to Tate algebras (at least

after a suitable extension of the field L). However, Tate algebras are Jacobson

rings and unique factorization domains (see [5, Section 5.2.6]). Thus for any

nonunit f ∈ FracO(Xn), we may write f = u/v where (without loss of generality)

there exists some irreducible element h such that h | u but h � v. By the Jacobson

property, there exists a maximal ideal containing h but not containing v. This

maximal ideal must correspond to a point of Xn at which u vanishes but v does

not; since all points of Xn are of the form (τ, τ ′) for τ a character of U and τ ′ a

character of Γ, this shows that the image of f in KL(τ)(Γ)
× is not a unit either,

as required. �

Combining Propositions 3.4.2 and 3.4.4 completes the proof of Proposition 3.4.1.
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4. Construction of the isomorphism

The aim of this section is as follows. Let T be a O-lattice in a crystalline L-linear

Galois representation V . Let Õ = Ẑnr
p ⊗Zp O be the ring of integers of L̃. We shall

construct a canonical isomorphism of determinants over the ring ΛÕ(G),

ΘΛO(G),ξ(T ) : DetΛÕ(G)(0)

∼=� ΛÕ(G)⊗ΛO(G)

{
DetΛO(G)RΓIw(K∞, T )

·DetΛO(G)

(
ΛO(G)⊗O Dcris(T )

)}
,

where Dcris(T ) is a certain O-lattice in Dcris(V ) determined by T (see Section 4.3

below). Our construction is to descend step-by-step in the following tower of ring

extensions:

ΛÕ(G)⊂ ΛL̃(G)⊂KL̃(G)

where HL̃(G) is the algebra of locally analytic L̃-valued distributions on G, and

KL̃(G) its total ring of quotients.

4.1. Construction over KL̃(G)

Over KL̃(G), the construction of the isomorphism Θ is very simple.

PROPOSITION 4.1.1

The ΛL(G)-module Hi
Iw(K∞, V ) is finitely generated for any i, and it has rank

d for i= 1, is torsion for i= 2, and is zero for i �= {1,2}.

Proof

See [17, Proposition A.6]. �

PROPOSITION 4.1.2

The regulator LG
V,ξ induces an isomorphism

DetKL̃(G)(0)

∼=� DetKL̃(G)

(
KL̃(G)⊗ΛL(G) RΓIw(K∞, V )

)
·DetKL̃(G)

(
KL̃(G)⊗L Dcris(V )

)
.

Proof

From Proposition 4.1.1 we have

DetKL̃(G)

(
KL̃(G)⊗ΛL(G) RΓIw(K∞, V )

)
∼=DetKL̃(G)

(
KL̃(G)⊗ΛL(G) H

1
Iw(K∞, V )

)−1
.

However, the regulator map is injective on L̃ ⊗̂LH1
Iw(K∞, V ), so it is an isomor-

phism after tensoring with KL̃(G). �
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DEFINITION 4.1.3

Let ΘKL(G),ξ(V ) be the isomorphism

DetKL̃(G)(0)

∼=� KL̃(G)⊗ΛL(G)

{
DetΛL(G)RΓIw(K∞, V )

·DetΛL(G)

(
ΛL(G)⊗L Dcris(V )

)}
by

ΘKL̃(G),ξ(V ) = �(V )−1Det(LG
V,ξ)

where �(V ) ∈KL(G)× is as defined in Definition 4.1.3 above.

4.2. Descent to ΛL̃(G)

We now use Proposition 3.4.1 to show that the isomorphism ΘKL̃(G),ξ(V ) descends

to ΛL̃(G).

THEOREM 4.2.1

There exists a canonical isomorphism in Det(ΛL̃(G)),

ΘΛL(G),ξ(V ) : DetΛL̃(G)(0)

∼=� ΛL̃(G)⊗ΛL(G)

{
DetΛL(G)RΓIw(K∞, V )

·DetΛL(G)

(
ΛL(G)⊗L Dcris(V )

)}
with the property that the isomorphism in Det(KL̃(G)) obtained by extending

scalars is the isomorphism of Definition 4.1.3.

REMARK 4.2.2

By base change, we obtain a canonical isomorphism in Det(ΛL̃(Γ)),

ΘΛL(Γ),ξ(V ) : DetΛL̃(Γ)(0)

∼=� ΛL̃(Γ)⊗ΛL(Γ)

{
DetΛL(Γ)RΓIw(Qp,∞, V )(10)

·DetΛL(Γ)

(
ΛL(Γ)⊗L Dcris(V )

)}
.

Since this coincides with �(V )−1Det(LΓ
V,ξ) after base extension to KL̃(Γ), the

scalars descend from L̃ to L: the above isomorphism is the image of an isomor-

phism

DetΛL(Γ)(0)
∼=� DetΛL(Γ)RΓIw(Qp,∞, V ) ·DetΛL(Γ)

(
ΛL(Γ)⊗L Dcris(V )

)
,

in the category Det(ΛL(Γ)), which we denote also by ΘΛL(Γ),ξ(V ). Note that

ΘΛL(G),ξ(V ) does not descend to Det(ΛL(G)).

Since for i= 0 or 2 the module Hi
Iw(K∞, V ) is pseudonull, its class in Det(ΛL̃(G))

is canonically isomorphic to the trivial object, by [24, Lemma 2.2], and this

canonical isomorphism is compatible under base extension with the isomorphism
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arising from the fact that KL̃(G) ⊗ΛL̃(G) H
i
Iw(K∞, V ) = 0. Thus it suffices to

construct an isomorphism

DetΛL̃(G)

(
L̃ ⊗̂LH1

Iw(K∞, V )
) ∼=� DetΛL̃(G)

(
ΛL̃(G)⊗L Dcris(V )

)
.

To shorten our formulae, let us use the notation [P ] for the class of the R-

module P in Det(R); we will only use this in settings where there is no danger

of ambiguity which ring R is being considered.

We will need the following auxilliary result.

LEMMA 4.2.3

Let R ↪→ S be a morphism of commutative rings such that SK1(R) = SK1(S) = 0.

Let P,Q be free R-modules of equal rank d.

Then any choice of R-bases of P and Q determines isomorphisms

IsomDet(R)

(
[P ], [Q]

)∼=R×

and

IsomDet(S)

(
[S ⊗R P ], [S ⊗R Q]

)∼= S×,

and under these identifications, the map

IsomDet(R)

(
[P ], [Q]

)
→ IsomDet(S)

(
[S ⊗R P ], [S ⊗R Q]

)
given by base extension coincides with the inclusion R× ↪→ S×.

Proof

This is clear from the definitions of the categories Det(R) and Det(S) and of the

base-extension functor. �

REMARK 4.2.4

More generally, without the assumption on SK1 we can assert that the image

corresponds to the image of K1(R) in K1(S), but we shall not need this.

LEMMA 4.2.5

Let M be a torsion ΛL(G)-module, and let QL(G) = FracΛL(G). Then the mor-

phism

QL(G)× ×ΛL(G)× IsomDet(ΛL(G))

(
0, [M ]

)∼=AutDet(QL(G))(0)

given by the fact that QL(G)⊗ΛL(G)M = 0 identifies IsomDet(ΛL(G))(0, [M ]) with

the fractional ideal f−1
Q ΛL(G)×, where fQ is any characteristic element of M .

Proof

For pseudonull modules this is [24, Lemma 2.2], and since the statement is com-

patible with direct sums, it suffices to consider the case of M = ΛL(G)/f for

a single irreducible element f , but this follows immediately from tensoring the



Local epsilon isomorphisms 87

short exact sequence

0 � ΛL(G)
×f� ΛL(G) � M � 0

with QL(G). �

PROPOSITION 4.2.6

We have HL̃(G)× =ΛL̃(G)×.

Proof

This is standard (see, e.g., [14, (4.8)]). �

Proof of Theorem 4.2.1

We will consider the base-extension map corresponding to the ring extension

ΛL̃(G) ↪→KL̃(G). This gives a homomorphism (cf. [12, Section 1.2.5])

IsomDet(ΛL̃(G))

([
L̃ ⊗̂LH1

Iw(K∞, V )
]
,
[
ΛL̃(G)⊗L Dcris(V )

])

IsomDet(KL̃(G))

([
KL̃(G)⊗ΛL̃(G) H

1(K∞, V )
]
,
[
KL̃(G)⊗L Dcris(V )

])�

This map is injective, and �(V )−1Det(LG
V,ξ) evidently defines an element of the

latter group, so it suffices to show that it lies in the image of the base-extension

map. Moreover, both rings have trivial SK1.

Let us choose xi ∈ H1
Iw(K∞, V ) and vj ∈ Dcris(V ) satisfying the hypothe-

ses of Proposition 3.4.1. Writing Λ for ΛL(G) and Λ̃ for ΛL̃(G) to lighten the

notation, we have an exact sequence

0 � Λ̃⊕d � L̃ ⊗̂LH1
Iw(K∞, V ) � L̃ ⊗̂LQ � 0,

where Q is torsion, from which we deduce a commutative diagram of multiplica-

tion maps (where, for sanity, we let Λ = ΛL(G), Λ̃ = ΛL̃(G), and K̃=KL̃(G))⎛⎜⎝ IsomDet(Λ̃)([Q],0)

×
IsomDet(Λ̃)([Λ̃

d], [Λ̃⊗L Dcris(V )])

⎞⎟⎠ � IsomDet(Λ̃)

([
Λ̃⊗Λ H1

Iw(K∞, V )
]
,
[
Λ̃⊗L Dcris(V )

])

⎛⎜⎝ AutDet(K̃)(0)

×
IsomDet(Q̃)([K̃d], [K̃ ⊗L Dcris(V )])

⎞⎟⎠
�

∩

� IsomDet(K̃)

([
K̃ ⊗Λ H1

Iw(K∞, V )
]
,
[
K̃ ⊗L Dcris(V )

])�

∩

By Lemma 4.2.5, the image of IsomDet(Λ̃)(DetQ,0) in AutDet(K̃)(0)
∼= K̃×

is f−1
Q Λ̃×; but, on the other hand, Proposition 3.4.1 shows that the element

�(V )−1DetLG
V,ξ of IsomDet(K̃)([K̃ ⊗Λ H1

Iw(K∞, V )], [K̃ ⊗L Dcris(V )]) is fQ times

the image of an element of IsomDet(Λ̃)([Λ̃
d], [Λ̃⊗LDcris(V )]). Canceling the factors

of fQ and f−1
Q , it follows that �(V )−1DetLG

V,ξ is the image of an element of the

top right-hand corner, as required. �
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4.3. Integral coefficients
Let V be a crystalline representation with nonnegative Hodge–Tate weights. We

assume for now that H0(Qp,∞, V ) = 0. Let N(V ) be the Wach module of V (cf.

[4]). Then the inclusion

N(V )⊂B+
rig,Qp

⊗B+
Qp

Dcris(V )

induces an isomorphism of ϕ-modules

i :N(V )/πN(V )∼=Dcris(V ).

Let T be a Galois-stable lattice in V ; then there is a corresponding (O⊗A+
Qp

)-

lattice N(T ) ⊆ N(V ). We use this to define an O-lattice Dcris(T ) ⊆ Dcris(V ),

which is simply the image of N(T ) in Dcris(V ) under the map i.

PROPOSITION 4.3.1

The quotient (ϕ∗N(T ))ψ=0/(1−ϕ)N(T )ψ=1 is a finitely-generated O-module.

Proof

Let h be the largest Hodge–Tate weight of V , and let d= dimL V . By the defini-

tion of a Wach module (see [4, Definition II.4.1]), ϕ∗N(T )/N(T ) is annihilated

by qh, where q = ϕ(π)/π. Hence the module

M = ϕ(π)h
(
ϕ∗N(T )

)
satisfies ϕ(M)⊆M .

Suppose that x ∈ ϕ(π)M . Then by induction we see that ϕn(x) ∈ ϕn+1(π)M ;

but since ϕn(π)→ 0 as n→ +∞, this implies that the series
∑

n≥0ϕ
n(x) con-

verges to an element y ∈M satisfying (1− ϕ)y = x. Moreover, if ψ(x) = 0, then

we evidently have ψ(y) = y. This implies that the image of

(1−ϕ) :N(T )ψ=1 →
(
ϕ∗N(T )

)ψ=0

contains (ϕ(π)M)ψ=0 = ϕ(π)1+h(ϕ∗N(T ))ψ=0.

Now, as shown in the proof of [15, Proposition 3.11], for any k ≥ 0 we have

an isomorphism of Λ(Γ)-modules

ΛO(Γ)
⊕d/pkΛO(Γ)

⊕d ∼=
(
ϕ∗N(T )

)ψ=0
/ϕ(π)k

(
ϕ∗N(T )

)ψ=0
,

where

pk = (1− γ1)
(
1− χ(γ1)

−1γ1
)
· · ·
(
1− χ(γ1)

1−kγ1
)
,

with γ1 a generator of Γ1 ⊆ Γ. So if k ≥ 1 + h, the quotient (ϕ∗N(T ))ψ=0/(1−
ϕ)N(T )ψ=1 is a finitely generated ΛO(Γ)-module annihilated by the element pk.

However, ΛO(Γ)/pkΛO(Γ) is finitely generated over O; hence (ϕ∗N(T ))ψ=0/(1−
ϕ)N(T )ψ=1 must also be finitely generated over O. �
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COROLLARY 4.3.2

The characteristic ideal of the quotient

(ϕ∗N(T ))ψ=0

(1−ϕ)N(T )ψ=1

is equal to
∏d

i=1 pni , where ni are the Hodge–Tate weights of V as above.

Proof

The characteristic ideal of the ΛL(Γ)-module (ϕ∗N(V ))ψ=0

(1−ϕ)N(V )ψ=1 is known to be gen-

erated by
∏d

i=1 pni , by [16, Theorem 4.12]. Hence the characteristic ideal of
(ϕ∗N(T ))ψ=0

(1−ϕ)N(T )ψ=1 must be equal to this up to a power of p for each (Γ/Γ1)-isotypical

component. However, this module is finitely generated overO by Proposition 4.3.1,

so it has zero μ-invariant. �

We now recall a theorem (due to Laurent Berger) giving a convenient basis of

N(T ).

THEOREM 4.3.3 (BERGER, CF. [15, THEOREM 3.5])

There exists an O⊗A+
Qp

-basis (x1, . . . , xd) of N(T ) with the property that(
(1 + π)ϕ(x1), . . . , (1 + π)ϕ(xd)

)
is a ΛO(Γ)-basis of (ϕ∗N(T ))ψ=0.

REMARK 4.3.4

In fact the second author together with Peter Schneider and Ramdorai Sujatha

have recently shown that every O⊗A+
Qp

-basis of N(T ) has this property. How-

ever, this is not immediately obvious from the definitions (as is erroneously

claimed in [2]).

PROPOSITION 4.3.5

Let x1, . . . , xd be a basis of N(T ) as in Theorem 4.3.3. Then the images vi of

xi in Dcris(T ) =N(T )/πN(T ) are a basis of Dcris(T ) over O. Moreover, if we

define a matrix M ∈Md×d(HL(Γ)) by

(1 + π)ϕ(xj) =
d∑

i=1

mij · (1 + π)ϕ(vi),

then the determinant of M is

pm(V )�(V )∏d
i=1 pni

up to a unit in ΛO(Γ).

Proof

The fact that the vi span Dcris(T ) is clear, since Dcris(T ) =N(T )/πN(T ).
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For the second statement, we know that

det(M) ·
∏d

i=1 pni

pm(V )�(V )

is an element of ΛL(Γ)
×, as a consequence of Corollary 4.3.2 and Proposition 3.2.2

(or, alternatively, by [16, Theorem A]). Let us calculate its image under a char-

acter η of Γ that is trivial on Γ1. By construction, det(M)(η) = 1 since M is in

Mat2×2(HL(Γ1)) and is congruent to 1 modulo the trivial character.

On the other hand, (γ1 − 1) has a simple zero at η with derivative logχ(γ1),

which has valuation 1, and for i≥ 1, the valuation of 1− χi(γ1) is 1 + vp(i); so

the valuation of (
∏d

i=1 pk)
∗(η) is

m(V ) +
∑

1≤i≤d
ni≥1

vp
(
(ni − 1)!

)
.

On the other hand, �(V )∗(η) is
∏d

i=1(ni − 1)! up to a sign, so the value at η of
pm(V )
(V )∗(η)∏d

i=1 pk
lies in Z×

p . �

PROPOSITION 4.3.6

The determinant of ϕ :Dcris(V )→Dcris(V ) is p−m(V ) up to a p-adic unit.

Proof

It suffices to consider the case where V is 1-dimensional, in which case V is the

product of an unramified character (mapping Frobenius to a unit) and a power

of the cyclotomic character, for which the result is obvious. �

COROLLARY 4.3.7

If H0(Qp,∞, V ) = 0, then there is a unique isomorphism

ΘΛO(Γ),ξ(T ) : DetΛO(Γ)H
1
Iw(K∞, T ) � DetΛO(Γ)

(
ΛO(Γ)⊗Zp Dcris(T )

)
whose base extension to ΛL(Γ) is the morphism ΘΛL(Γ),ξ(V ) constructed in (10).

Proof

If η is a character of Γ/Γ1, denote by eη the idempotent corresponding to η

in ΛZp(Γ). It follows from Lemma 4.2.3 that for each such character η there is

a unique integer aη such that paηeηΘΛL(Γ),ξ(V ) lies in the image of the base-

extension map. Applying Propositions 4.3.5 and 4.3.6 shows that we must have

aη = 0 for all η. �

We can now pass to ΛO(G)-coefficients.

COROLLARY 4.3.8

Let V be an arbitrary L-linear crystalline representation of GQp . As before, let
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Λ=ΛO(G) and Λ̃ = ΛÕ(G). There is a unique isomorphism

ΘΛ,ξ(T ) : DetΛ̃(0)
� Λ̃⊗Λ

{
DetΛRΓIw(K∞, T ) ·DetΛ

(
Λ⊗O Dcris(T )

)}
whose base extension to ΛL̃(G) is the morphism ΘΛL(G),ξ(V ) constructed in The-

orem 4.2.1.

Proof

Since the isomorphisms ΘΛL(G),ξ(V ) are compatible under crystalline twists, we

can replace V with a suitable crystalline twist and assume without loss of gen-

erality that the Hodge–Tate weights of V are ≥ 0 and that H0(Qp,∞, V ) = 0.

As the morphism ΘΛL(Γ),ξ(V ) is obtained from ΘΛL(G),ξ(V ) by base change, the

result is now immediate from Corollary 4.3.7. �

4.4. Definition of the epsilon isomorphism
Having constructed the isomorphism ΘΛO(G),ξ(T ) of Corollary 4.3.8, it is an easy

step to define the epsilon isomorphism whose construction is the main purpose of

this paper. We need only the following result, which is essentially a restatement

of a theorem of Berger.

THEOREM 4.4.1

Let V be a crystalline L-linear Galois representation, let T ⊆ V be a GQp -stable

O-lattice, and let Dcris(T ) be the corresponding O-lattice in Dcris(V ) defined in

Section 4.3 above. Then there is a unique isomorphism from Õ to L̃ whose image

under base-extension L̃⊗Õ − is the isomorphism εL,ξ,dR(V ) of Section 2.4.

Proof

By Lemma 4.2.3, it suffices to check that for any O-bases of T and of Dcris(T ),

the matrix of the canonical isomorphism

canV :Bcris ⊗Qp Dcris(V )∼=Bcris ⊗Qp Dcris(V )

has determinant in tm(V )Õ×. This is precisely the result of [4, Proposition V.1.2].

�

DEFINITION 4.4.2

We define

εΛO(G),ξ(T ) : DetΛÕ(G)(0)

∼=� [
DetΛÕ(G)

(
Õ ⊗̂ORΓIw(K∞, T )

)][
DetΛÕ(G)

(
ΛÕ(G)⊗O T

)]
to be the isomorphism given by

(−γ−1)
d(−1)m(V ) ·ΘΛO(G),ξ(T ) · εO,ξ,dR(T ),

where we regard εO,ξ,dR(T ) as an isomorphism
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DetΛO(G)

(
ΛO(G)⊗O Dcris(T )

) ∼=� DetΛO(G)

(
ΛO(G)⊗O T

)
via base extension.

REMARK 4.4.3

Note that (−1)m(V )(−γ−1)
d = Det(−γ−1 : ΛO(G) ⊗ T ). The factor −γ−1 also

appears in the local reciprocity formula relating LG
V,ξ and LG

V ∗(1),ξ (cf. [17, Appen-

dix B]).

4.5. Properties of the epsilon isomorphism
We note for later use some properties of the isomorphisms ΘΛO(G),ξ(T ) and

εΛO(G),ξ(T ).

PROPOSITION 4.5.1 (COMPATIBILITY WITH SHORT EXACT SEQUENCES)

Let

0 � T ′ � T � T ′′ � 0

be a short exact sequence of O-linear crystalline representations of GQp . Then

ΘΛO(G),ξ(T ) = ΘΛO(G),ξ(T
′) ·ΘΛO(G),ξ(T

′′)

and

εΛO(G),ξ(V ) = εΛO(G),ξ(V
′) · εΛO(G),ξ(V

′′).

Proof

It suffices to check this after arbitrary base extension, but over KL̃(G) the result

is obvious, since the regulator map LG
V,ξ is compatible with short exact sequences,

as are the factors �(V ) and εL,ξ,dR(V ) (the latter by Lemma 2.4.1). �

PROPOSITION 4.5.2 (CHANGE OF COEFFICIENT FIELD)

Let L′ be a finite extension of L with ring of integers O′. Then

ΘΛO′ (G),ξ(O′ ⊗O T ) =O′ ⊗O ΘΛO(G),ξ(T )

and

εΛO′ (G),ξ(O′ ⊗O T ) =O′ ⊗O εΛO′ (G),ξ(T ).

Proof

This is clear from the definitions. �

The next compatibility property takes a little more notation to state. For brevity

let us write Λ for ΛO(G). For η a continuous L-valued (hence O-valued) charac-

ter of G, we have a twisting homomorphism Twη : Λ→ Λ which maps a group

element g ∈ G to η(g)g. Hence we obtain a pullback functor (Twη)
∗ from the



Local epsilon isomorphisms 93

category of Λ-modules to itself,

(Twη)
∗M =Λ⊗Λ,Twη M.

This can also be described in terms of tensoring with the Λ-bimodule Λ⊗Λ,Twη Λ,

which is free of rank one as a Λ-module; hence the twisting functor extends

to a functor from the category Det(Λ) to itself which is compatible with the

functor Det.

Note that we have an isomorphism

(Twη)
∗(Λ⊗O T )∼=Λ⊗O T (η−1), a⊗ b⊗ v �→ aTwη(b)⊗ (v⊗ tη−1)

as (Λ,GQp)-modules, if Λ acts on Λ⊗O T via left multiplication on the left factor,

while g ∈ GQp sends λ⊗ v to λḡ−1 ⊗ gv where ḡ denotes the image of g in G

(and analogously for the action on Λ⊗O T (η−1)).

We clearly have (Twη)
∗ ◦ (Twη−1)∗ = id. Similar definitions apply to other

coefficient rings than ΛO(G), including ΛL(G), HL(G) or ΛÕ(G).

Finally, note that for a Λ-module M we have a canonical isomorphism

Λ⊗Λ,Twη−1 M =M ⊗O Otη, λ⊗m �→Twη(λ)m⊗ tη,

of Λ-modules, where the Λ-module structure on the right-hand side is induced

by the diagonal action of G upon it.

PROPOSITION 4.5.3 (INVARIANCE UNDER CRYSTALLINE TWISTS)
If T ′ = T (η) for a crystalline character η with values in O, then

Tw
η−1

(
DetΛÕ(G)

(
Õ ⊗̂O RΓIw(K∞, T )

)−1) Tw
η−1 (ΘΛO(G),ξ(T ))�Tw

η−1
(
DetΛÕ(G)

(
ΛÕ(G) ⊗O Dcris(T )

))

DetΛÕ(G)

(
Õ ⊗̂O RΓIw

(
K∞, T (η)

))−1

∼=

�
ΘΛO(G),ξ(T (η)) �DetΛÕ(G)

(
ΛÕ(G) ⊗O Dcris

(
T (η)

))
∼=

�

where we take the left vertical map as natural identification while the right vertical

map is—up to interchanging the twist and determinant functors—DetΛÕ(G)(aη)

with the notation as in Proposition 3.3.3 above.

Proof

It suffices to check the statement after base extension to L. First note that

Twη−1(mλ) =mTwη−1 (λ),

where mλ denotes multiplication by λ ∈ Λ. In particular we have

Twη−1

(
�(V )

)
= �
(
V (η)

)
�
(
L(η)

)−d
,

where we omit the m for simplicity again. Hence we obtain, by applying the

determinant functor to the diagram in Proposition 3.3.3 and after base extension

to KL̃(G),
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Det(aη)Twη−1

(DetLG
V,ξ

�(V )

)
=Twη−1

( 1

�(V )

)
Det(aη)Twη−1(DetLG

V,ξ)

=
�(L(η))d

�(V (η))
�
(
L(η)

)−d
DetLG

V,ξ

= �
(
V (η)

)−1
Det(LG

V (η),ξ),

which is just the claimed statement. Here, for the second equality we used the

compatibility of twisting with taking determinants. �

PROPOSITION 4.5.4

If η is crystalline, then we have

Twη−1

(
(−γ−1)

d(−1)m(V )
)
= (−γ−1)

d(−1)m(V (η)),

where m(V ) denotes the sum of the Hodge–Tate weights of V (and similarly for

V (η)).

Proof

By the definition of the twisting map, we have Twη−1(γ−1) = η(γ−1)γ−1 =

(−1)jγ−1 (since η is χj times an unramified character), so

Twη−1

(
(−γ−1)

d(−1)m(V )
)
= (−1)jd(−γ−1)

d(−1)m(V ) = (−γ−1)
d(−1)m(V )+jd.

Since m(V (η)) =m(V ) + jd we are done. �

Since the map Det(aη) also evidently gives the twist compatibility of the maps

εL,ξ,dR(V ) and εL,ξ,dR(V (η)), we obtain the compatibilty of εΛO(G),ξ(T ) and

εΛO(G),ξ(T (η)); that is,

Twη−1

(
εL,ξ,dR(V )

)
= εL,ξ,dR

(
V (η)

)
up to the indicated identifications. We use these results to extend the definition of

εL,ξ,dR and ΘΛO(G),ξ to lattices T in arbitrary crystalline Galois representations

V by tensoring the corresponding maps for T (j) with Qp(−j), where j � 0 is

such that V (j) has nonnegative Hodge–Tate weights.

4.6. Epsilon isomorphisms for more general modules
We recall the following definition from [12, Section 1.4].

DEFINITION 4.6.1

A ring R is of

(type 1) if there exists a two-sided ideal I of R such that R/In is finite of

order a power of p for any n≥ 1, and such that R∼= lim←−n
R/In;

(type 2) if R is the matrix algebra Mn(F ) of some finite extension E over

Qp and some dimension n≥ 1.



Local epsilon isomorphisms 95

By [12, Lemma 1.4.4], R is of type 1 if and only if the defining condition above

holds with I equal to the Jacobson ideal J = J(R). Such rings are always semilo-

cal, and R/J is a finite product of matrix algebras over finite fields. For a ring

R of type (1) or (2) we define

R̃ := Ẑnr
p ⊗̂Zp R

where Ẑnr
p denotes the completion of the ring of integers of the maximal unram-

ified extension of Qp.

Now let T ⊆ V be a Galois-stable O-lattice of a crystalline representation of

GQp with coefficients in some finite extension L/Qp. We set T(T ) := ΛO(G)⊗O
T , which we consider as a Λ(G)-module by multiplication on the left tensor

factor and as a GQp -module via g(λ⊗ t) = λḡ−1⊗ gt. The following isomorphism

(essentially a version of Shapiro’s lemma) is well known.

PROPOSITION 4.6.2

We have

RΓ
(
Qp,T(T )

)∼=RΓIw(K∞, T )

as Λ(G)-modules.

Proof

See, for example, [19, Proposition 8.4.4.2]. �

Let Λ = ΛO(G), which is a ring of type 1, with Λ̃ = ΛÕ(G). Then we have con-

structed an isomorphism

εΛ,ξ(T ) : DetΛ̃(0)
∼=� Λ̃⊗Λ

{
DetΛRΓ

(
Qp,T(T )

)
·DetΛT(T )

}
.

We shall establish that this satisfies the properties predicted by [12, Conjec-

ture 3.4.3] for the module T(T ). For that purpose it is convenient to write also

εΛ,ξ(T(T )) for the above ε-isomorphism, and to extend it to a slightly more

general class of modules.

We consider quadruples (R,Y,T, ξ) where

• R is a p-torsion-free O-algebra which is also a ring of type (1) or (2) above,

• ξ is a compatible system of pnth roots of unity (as before),

• T is a GQp -stable O-lattice in a crystalline L-linear representation of GQp ,

• Y is a finitely generated projective left R-module, equipped with a contin-

uous R-linear action of G.

Given such a quadruple, we define T = Y ⊗O T , which we equip with the

obvious left R-module structure and an action of GQp via g · (y⊗ t) = yḡ−1 ⊗ gt.

Then (R,T, ξ) is a triple satisfying the conditions of [12, Section 3.4.1]. Moreover,

the action of G on Y extends to a Λ-module structure, and we have

T= Y ⊗Λ T(T ),
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where T(T ) is as above. So we may define

εR,ξ(T) := Y ⊗Λ εΛ,ξ

(
T(T )

)
,

which is an isomorphism

DetR̃(0)
∼=� R̃⊗R

{
DetRRΓ(Qp,T) ·DetRT

}
;

here we have used the fact that

Y ⊗L
Λ RΓ

(
Qp,T(T )

)∼=RΓ
(
Qp, Y ⊗Λ T(T )

)
by [12, Proposition 1.6.5].

REMARK 4.6.3

Note that R need not be commutative and that Y need not be either projective

or finitely generated as a Λ-module.

PROPOSITION 4.6.4

Suppose R = OF for some finite extension F/L, and suppose that the finite-

dimensional F -vector space F ⊗R Y is de Rham as a representation of G. Then

F ⊗OF
T is also de Rham, and F ⊗OF

εR,ξ(T) coincides with the canonical iso-

morphism εF,ξ(F ⊗OF
T) of Section 2.4.

Proof

Since our ε-isomorphisms commute with base change in L, it suffices to assume

F = L. We may also assume that L is sufficiently large that all the Jordan–

Hölder constituents of Y are one-dimensional. By the compatibility with short

exact sequences, it suffices to assume that Y is itself one-dimensional, so Y = L(η)

for a de Rham character η of G. This reduces the result to Theorem 5.1.1, which

we shall establish in the next section. �

COROLLARY 4.6.5

Suppose that the pair (R,T) satisfies the following condition:

• if ΦT is the set of all O-algebra homomorphisms ρ : R → Mn(F ) (where

F/L is a finite extension and n an integer, both depending on ρ) such that

Fn ⊗R,ρ T is de Rham, then

K1(R)→
∏

ρ∈ΦT

F×

is injective.

Then εR,ξ(T) depends only on ξ and on the isomorphism class of T as an

R[GQp ]-module.

Proof

This is clear from Proposition 4.6.4, since the isomorphism εR,ξ(T) must be

consistent with the de Rham ε-isomorphisms εF,ξ(F
n⊗R,ρT), which are uniquely

determined by (R,T, ξ). �
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REMARK 4.6.6

We suspect that the statement of the corollary is true for arbitrary type 1 O-

algebras R, but this is much more difficult to prove. For instance, if T1, T2 are two

O-lattices in crystalline L-linear representations such that T1/�
n ∼= T2/�

n for

some n≥ 1, then on taking R=O/�n this would imply that the ε-isomorphisms

for T1 and T2 are congruent modulo �n. This should certainly be true, but at

present we can only prove it under the assumption that the Hodge–Tate weights

of the Ti all lie in some interval [a, b] with b− a < p− 1; we hope to return to

this problem in a subsequent paper.

We shall now show that the association (R,Y,T, ξ)→ εR,ξ(T) satisfies properties

corresponding to conditions (i)–(iv) and (vi) of [12, Conjecture 3.4.3].

Property (i) (additivity)

The first condition of [12, Conjecture 3.4.3] states that for any three triples

(R,Ti, ξ), i= 1,2,3, with common R and ξ, and an exact sequence

0 � T1
� T2

� T3
� 0,

we have

εR,ξ(T2) = εR,ξ(T1)εR,ξ(T3).

By assumption our Ti are of the form Yi ⊗ Ti, for crystalline O-representations

Ti and R-modules Yi with G-action. We shall consider only the cases when the

exact sequence arises from an exact sequence of Yi’s with a common T , or an

exact sequence of Ti’s with a common Y . The first case is obvious from the

construction of εR,ξ(−). The latter case follows from Proposition 2.4.3.

Property (ii) (base change)

The second condition is a compatibility with base change in R; this is immediate

from our construction.

Property (iii) (change of ξ)

Let c ∈ Z×
p , and let γc be any element of GQp acting trivially on Qnr

p and such

that χ(γc) = c. Then we must show that

εR,cξ(T) = [T,γc]εR,ξ(T),

where [T,γc] is the class in K1(R) of the R-linear automorphism of T given

by γc. (This is well defined, as γc is uniquely determined up to conjugation in

GQp .) It suffices to check this when R=Λ and T=T(T ); but this is immediate

from the corresponding property of the regulator map LG
V,ξ , which is part (1) of

Proposition 3.3.5, and of the de Rham ε-isomorphism εL,ξ,dR(V ).

Property (iv) (Galois equivariance)

Let ϕ denote the arithmetic Frobenius automorphism of O. Then we must show

that
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εR,ξ(T) ∈ Isom
(
DetR(0),DetRRΓ(Qp,T) ·DetRT

)
×K1(R)

{
x ∈K1(R̃) : ϕ(x) = [T,σp]

−1x
}
,

where σp is the arithmetic Frobenius element of Gal(Qab
p /Qp,∞). Again, it suf-

fices to assume (R,T) = (Λ,T(T )), and the result is now clear from the Galois-

equivariance properties of the map LG
V,ξ (cf. Proposition 3.3.5(2)) and of the de

Rham ε-isomorphism εL,ξ,dR(V ) (cf. [12, Proposition 3.3.7]).

Property (v) (compatibility with de Rham ε-isomorphisms)

If R is the ring of integers of a finite extension F/L, and F ⊗RT is de Rham, we

must check that εR,ξ(T) is consistent with εF,ξ(F ⊗RT) as defined in Section 2.4

above. This is exactly Proposition 4.6.4.

Property (vi) (local duality)

Let T be a free R-module with compatible GQp -action as above. Then

T∗ := HomR(T,R)

is a free R◦-module—for the action h �→ h(−)r, r in the opposite ring R◦ of

R—with compatible GQp -action given by h �→ h ◦ σ−1. Recall that in Iwasawa

theory we have the canonical involution ι : Λ◦ → Λ, induced by g �→ g−1, which

allows us to consider (left) Λ◦-modules again as (left) Λ-modules; for example,

one has T∗(T )ι ∼=T(T ∗) as a (Λ,GQp)-module, where M ι := Λ⊗ι,Λ◦ M denotes

the Λ-module with underlying abelian group M , but on which g ∈G acts as g−1

for any Λ◦-module M .

Given εR◦,−ε(T
∗(1)) we may apply the dualizing functor −∗ to obtain an

isomorphism

εR◦,−ξ

(
T∗(1)

)∗
:
(
DetR◦

(
RΓ
(
Qp,T

∗(1)
))

R̃◦

)∗(
DetR◦

(
T∗(1)

)
R̃◦

)∗ → 1
R̃◦ ,

while the local Tate duality isomorphism (see [12, Section 1.6.12])

ψ(T) :RΓ(Qp,T)∼=RHomR◦
(
RΓ
(
Qp,T

∗(1)
)
,R◦)[−2]

induces an isomorphism

DetR
(
ψ(T)

)
R̃

−1
:
((
DetR◦

(
RΓ
(
Qp,T

∗(1)
))

R̃◦

)∗)−1

∼=DetR
(
RHomR◦

(
RΓ
(
Qp,T

∗(1)
)
,R◦))−1

R̃
→DetR

(
RΓ(Qp,T)

)−1

R̃
.

Here, for a map f : A→ B in Det(R), we write f : B → A for its inverse with

respect to composition, while f−1 =: idB−1 · f · idA−1 :A−1 →B−1 for its inverse

with respect to the multiplication in Det(R), that is, f · f−1 = idDetR(0).

Consider the product

εR,ξ(T) · εR◦,−ξ

(
T∗(1)

)∗ ·DetR
(
ψ(T)

)
R̃

−1
: DetR

(
T(−1)

)
R̃

∼=DetR
(
T∗(1)∗

)
R̃
→DetR(T)R̃

and the isomorphism T(−1)
·ξ

T which sends t⊗ ξ⊗−1 to t.
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PROPOSITION 4.6.7 (DUALITY)

Let T be as above such that T∼= Y ⊗Λ T(T ) for some (R,Λ)-bimodule Y , which

is projective as an R-module. Then

εR,ξ(T) · εR◦,−ξ

(
T∗(1)

)∗ ·DetR
(
ψ(T)

)
R̃

−1
=DetR

(
T(−1)

·ξ
T
)
R̃
.

Proof

First note that the statement is stable under applying Y ′⊗R−, for some (R′,R)-

bimodule Y ′ which is projective as a R′-module, by the functoriality of local Tate

duality and the lemma below. Thus we are reduced to the case (R,T) = (Λ,T(T ))

where T is a Galois stable lattice in some crystalline representation V .

Since the morphisms between DetR(T(−1))R̃ and DetR(T)R̃ form a K1(Λ̃)-

torsor and the kernel

SK1(Λ̃) := ker
(
K1(Λ̃)→

∏
ρ∈Irr(G)

K1(L̃ρ)
)
= 1

is trivial, as G is abelian, it suffices to check the statement for all (L,V (ρ)), which

is nothing else than the content of [12, Proposition 3.3.8]. Here Irr(G) denotes

the set of Qp-valued irreducible representations of G with finite image. �

LEMMA 4.6.8

Let Y be an (R′,R)-bimodule such that Y ⊗R T ∼= T′ as an (R′,GQp)-module,

and let Y ∗ =HomR′(Y,R′) be the induced (R′◦,R◦)-bimodule. Then there are

(1) a natural equivalence of functors

Y ⊗R HomR◦(−,R◦)∼=HomR′◦(Y ∗ ⊗R◦ −,R′◦)

on P (R◦);

(2) a natural isomorphism Y ∗ ⊗R◦ T∗ ∼= (T′)∗ of (R′◦,GQp)-modules.

Proof

This is easily checked using the adjointness of Hom and ⊗. �

5. Evaluation at characters

5.1. Setup
For any de Rham character η of G (which we assume to take values in L), we

write evη : ΛÕ(G) → Õ for the Õ-linear ring homomorphism which sends g to

η(g), and we abbreviate the functor

Õ ⊗L
ΛÕ(G),evη

(−) by spη(−),

where the tensor product is formed via evη as indicated.

We want to study the image under spη of the isomorphism εΛO(G),ξ(T ) con-

structed above. We have

spη
(
RΓIw(K∞, T )

)
=RΓ

(
Qp, T (η

−1)
)
,
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by [12, Proposition 1.6.5], and

spη
(
ΛÕ(G)⊗O T

)
= T (η−1),

(since clearly T (η−1) is canonically isomorphic to T as a O-module, although

obviously not as a Galois representation). So spη is an isomorphism

DetÕ(0)
∼=� Õ ⊗O

{
DetORΓ

(
Qp, T (η

−1)
)
·DetO T (η−1)

}
.

THEOREM 5.1.1

Let V be a crystalline representation of GQp with coefficients in a finite extension

L of Qp, let T be an O-lattice in V , and let η be an L-valued de Rham character

of G, as above. Then the isomorphism

spη
(
εΛO(G),ξ(T )

)
coincides with εL,ξ(W ) after extending scalars to L̃, where W is the de Rham rep-

resentation V (η−1) and εL,ξ(W ) is the canonical ε-isomorphism of Section 2.4.

It is clear that evη extends to a homomorphism ΛL̃(G)→ L̃ and that the compo-

sition of the exact functor L̃⊗Õ (−) with spη coincides with the derived tensor

product

L̃⊗L
ΛL̃(G),evη

(−),

which (in a slight abuse of notation) we shall also denote by spη . So it suffices to

show that

spη
(
εΛL(G),ξ(V )

)
= εL,ξ(W );

this implies Theorem 5.1.1 for all lattices T ⊂ V . By the invariance of εΛL(G),ξ

under twists by crystalline characters, it suffices to prove the theorem under the

additional hypothesis that V has nonnegative Hodge–Tate weights.

We shall divide the de Rham characters of G into the following three classes.

Suppose that h is the largest Hodge–Tate weight of V .

• Good characters: these are characters of G whose Hodge–Tate weights are

≥ h or ≤ −1, and such that the twisted representation W = V (η−1) satisfies

H0(Qp, V (η−1)) =H2(Qp, V (η−1)) = 0.

• Somewhat bad characters: these are characters whose Hodge–Tate weights

lie in [0, h− 1] but are still such that H0(Qp, V (η−1)) =H2(Qp, V (η−1)) = 0.

• Extremely bad characters: η is extremely bad if Hi(Qp, V (η−1)) �= 0 for

i= 0 or i= 2.

Note that somewhat bad characters almost always exist (they exist unless V

has all Hodge–Tate weights 0, in which case V is unramified), but extremely bad

characters are rarer; in particular, there are none if V is irreducible and d > 1.
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5.2. Evaluation of the Gamma factor
As a preliminary to the proof of Theorem 5.1.1, we need to compare the factor

ΓL(V (η−1)) defined in Section 2.4 with the factor �(V ) arising in the definition

of ΘΛL(G),ξ(V ).

PROPOSITION 5.2.1

Let η be an L-valued character of G which is de Rham, with Hodge–Tate weight

j, and let W = V (η−1). Then we have

Γ∗(1 + j)d

�(V )∗(η)
= (−1)

∑
ni+jd+rΓL(W ),

where r =#{i : ni > j}= dimL t(W ).

Proof

For any n≥ 0, we have

(�0 · · · �n−1)
∗(η) =

∏
0≤k≤n−1

k �=j

(j − k) =

⎧⎪⎪⎨⎪⎪⎩
j!

(j−n)! if j ≥ n,

j!(n− 1− j)!(−1)n−1−j if 0≤ j ≤ n− 1,

(−1)n (n−1−j)!
(−1−j)! if j ≤−1.

Hence

1

Γ∗(1 + j)
(�0 · · · �n−1)

∗(η) =

{
1

(j−n)! if j ≥ n,

(−1)n−1−j(n− 1− j)! if j ≤ n− 1,

=

{
(−1)n−jΓ∗(n− j) if j ≥ n,

(−1)n−1−jΓ∗(n− j) if j ≤ n− 1.

Taking n to be each of the Hodge–Tate weights of V in turn and multiplying,

we obtain

1

Γ∗(1 + j)d
�(V )∗(η) = (−1)

∑
ni+jd+r

d∏
i=1

Γ∗(ni − j) = (−1)
∑

ni+jd+rΓL(W )−1,

since the Hodge–Tate weights of W are {ni − j}i=1,...,d. �

5.3. The good characters
In this section, we prove Theorem 5.1.1 for good characters of G. As remarked

above, it suffices to assume that V has nonnegative Hodge–Tate weights, and

that the character η takes values in L×. We write W = V (η−1).

PROPOSITION 5.3.1

Let η be an L-valued de Rham character of G whose Hodge–Tate weight j does

not lie in [0, h− 1], and such that H0(Qp,W ) =H2(Qp,W ) = 0.

Then we have the following.
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(i) The corestriction map H1
Iw(K∞, V )G=η → H1(Qp,W ) is an isomor-

phism of L-vector spaces, so

DetLRΓ(Qp,W )∼=
(
DetLH1

Iw(K∞, V )G=η

)−1
;

(ii) composing the regulator with the evaluation map evη induces an iso-

morphism of free L̃-modules

evη ◦ LG
V,ξ : L̃⊗L H1

Iw(K∞, V )G=η

∼=� L̃⊗L Dcris(V );

(iii) the isomorphism

L̃⊗L DetLH1
Iw(K∞, V )G=η

� L̃⊗L DetL(V )

coming from spη(εΛL(G),ξ(V )) via (i) is given by the map(
−η(γ−1)

)d
�(V )(η)−1DetL̃(evη ◦ L

G
V,ξ) · εL,ξ,dR(V );

(iv) the isomorphism of (iii) coincides with the canonical isomorphism

εL,ξ(W ) of Section 2.4 above, so Theorem 5.1.1 holds for η.

Proof

For (i), we have the exact sequence

0→H1
(
G,H1

Iw(K∞,W )
)
→H0(Qp,W )→H2

Iw(K∞,W )G

→H1
Iw(K∞,W )G

cores� H1(Qp,W )→H1
(
G,H2

Iw(K∞,W )
)
→ 0

given by the Tor spectral sequence for spη . By Tate duality, H2
Iw(K∞,W )G ∼=

H0(Qp,W
∗(1)), which is zero by assumption. However, since H2

Iw(K∞,W ) is

finite-dimensional, it decomposes as a finite direct sum of primary submod-

ules corresponding to characters of G; if the G-invariants are zero, then the

trivial character cannot appear, and any other direct summands have zero G-

cohomology in all degrees, so we also have H1(G,H2
Iw(K∞,W )) = 0. Thus core-

striction is an isomorphism H1
Iw(K∞,W )G ∼= H1(Qp,W ), and since W and V

are isomorphic as GK∞ -representations, we have

H1
Iw(K∞,W )G =

(
H1

Iw(K∞, V )(η−1)
)
G
=H1

Iw(K∞, V )G=η.

Now let us suppose that n≥ 1, where n is the conductor of η. By [17, The-

orem 4.16] we have a commutative diagram of free L̃-modules:

L̃⊗L H1
Iw(Qp, V )G=η

evη◦LG
V � L̃⊗L Dcris(V )

Qp,n ⊗Qp L̃⊗L DdR(W )

�

Γ∗
(1+j)εL(η−1

,−ξ)Φn{ exp∗
log

�

Here the vertical map is given by the isomorphism

bη−1 :Qp,n ⊗Qp L̃⊗L Dcris(V )∼=Qp,n ⊗Qp L̃⊗L DdR(W )
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given by multiplication by tj in BdR⊗V (which depends on the choice of ξ, since

ξ determines t); Φ is the unique BdR-linear endomorphism of BdR⊗V coinciding

with the crystalline Frobenius on Dcris(V ); and the bracket in the diagonal map

denotes either exp∗Qp,W∗(1) (if j ≥ h) or logQp,W (if j ≤−1).

In either case, the diagonal map is clearly an isomorphism, which proves

(ii). Part (iii) now follows from the definition of εΛL(G),ξ(V ) together with the

compatibility of determinant functors and Tor spectral sequences (since the Tor

spectral sequence for spη collapses in this case; cf. [25]). Let us prove (iv). By

Proposition 2.5.1, for j ≥ h the determinant of log is θL(W ), and for j ≤−1 the

determinant of exp∗ is (−1)dθL(W ). We write this as (−1)d−rθL(W ), where r =

dim t(W ) as in Proposition 5.2.1. Passing to determinants and dividing through

by the factor �(V )(η) ∈ L×, the diagonal arrow becomes

Γ∗(1 + j)d

�(V )(η)
εL(η

−1,−ξ)det(ϕ)d(−1)d−rθL(W )

= (−1)(j+1)d+
∑

niΓL(W )εL(W,ξ−1)θL(W )

= (−1)d+m(W )ΓL(W )εL(W,ξ−1)θL(W ),

where we have used the formula for �(V )(η) from Section 5.2 and written m(W )

for the sum of the Hodge–Tate weights of W .
Hence the following diagram commutes:

Det(BdR⊗L)

(
BdR

⊗QpH
1(Qp,W )

) spη ΘΛL(G)(V )� Det(BdR⊗L)

(
BdR

⊗QpDcris(V )
) tm(V )·can � DetBdR⊗L(BdR

⊗QpV )

DetL̃
(
BdR

⊗QpDdR(W )
)�

tm(W )·can�

(−1)d+m(W
)
Γ
L (W )

×ε
L (W,ξ)θ

L (W )

�
DetBdR⊗L(BdR

⊗QpW )

%%%%%%

where the middle vertical map is multiplication by tdj . Both the left-hand triangle

and the right-hand square clearly commute. But tm(V ) can = εL,ξ,dR(V ), since V

is crystalline and hence the ε-factor εL(W,ξ) is 1. So the composition of the two

arrows on the top row is

spη
(
ΘΛL(G)(V )

)
εL,ξ,dR(V ) = (−1)m(V )

(
−η(γ−1)

)d
spη
(
εΛL(G),ξ(V )

)
by definition. On the other hand, the composition of the diagonal arrow and

tm(W ) · can is

(−1)d+m(W )ΓL(W )εL(W,−ξ)θL(W )tm(W ) · can

= (−1)d+m(V )η(γ−1)
dΓL(W )εL(W,ξ)θL(W )tm(W ) · can

= (−1)m(V )
(
−η(γ−1)

)d
ΓL(W )θL(W )εL,ξ,dR(W ).

Canceling out the factor (−1)m(V )(−η(γ−1))
d, we deduce that spη(εΛL(G),ξ(V )) =

εL,ξ(W ) as required.

We now consider the case n = 0, so η is ηj times an unramified character.

In this case one obtains a diagram very similar to the above, but with Φn in the
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diagonal map replaced by the operator(
1− pjη(σp)Φ

)(
1− p−1−jη(σp)

−1Φ−1
)−1

.

Since pjη(σp)Φ coincides with the Frobenius ϕ of Dcris(W ), the determinant of(
1− pjη(σp)Φ

)(
1− p−1−jη(σp)

−1Φ−1
)−1
{
exp∗

log

is the base extension to L̃ of (−1)d−rθL(W ), by Proposition 2.5.2, and the proof

goes through as before. �

5.4. The somewhat bad characters
Let us now suppose η is “somewhat bad” in the sense above (recall that “some-

what bad” excludes “extremely bad,” so H0(Qp,W ) = H2(Qp,W ) = 0). By

the twist compatibility of the ε-isomorphisms we may assume that η factors

through Γ. Let p be the ideal of ΛL(Γ) corresponding to η, and define

� =
γ − η(γ)

η(γ) logχ(γ)
,

so � is the unique uniformizer of p such that �′(η) = 1. Note that � is not a

zero divisor in Λ(Γ).

We also denote by p the ideal of HL(Γ) above η. The inclusion ΛL(Γ) ↪→
HL(Γ) induces an isomorphism after localization at p and completion. (Both

completions are isomorphic to L[[�]].)

Since η is not “extremely bad,” we know that the localization ofH2
Iw(Qp,∞, V )

at the prime ideal p corresponding to η is zero; the localization of H1
Iw(Qp,∞, V )

at p is free of rank d; and reduction modulo p determines an isomorphism

Λ(Γ)/p⊗Λ(Γ) H
1
Iw(Qp,∞, V )∼=H1(Qp,W ).

Let y1, . . . , yr be any basis of H1
f (Qp,W ), and let yr+1, . . . , yd be any basis of the

quotient
H1(Qp,W )

H1
f (Qp,W )

. Then there exists a lifting x1, . . . , xd of y1, . . . , yd to a basis

of the localization H1
Iw(Qp,∞, V )p.

By Theorem 3.1.1 (resp., Theorem 3.1.2 if η is crystalline) we know that for

1≤ i≤ r we have LΓ
V,ξ(xj)(η) = 0, and hence (by the definition of �) we have

LΓ
V,ξ(xj) =�LΓ

V,ξ(xj)
′(η) mod p2.

Let A denote the unique Λ(Γ)p-linear map

H1
Iw(Qp,∞, V )p � Λ(Γ)p ⊗Dcris(V )

such that

A(xj) =

{
1
�LΓ

V,ξ(xj) if 1≤ j ≤ r,

LΓ
V,ξ(xj) if r+ 1≤ j ≤ d.
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This is well defined, since x1, . . . , xd are a free basis of H1
Iw(Qp,∞, V )p over Λ(Γ)p.

We write B for the morphism obtained by reducing modulo p.

PROPOSITION 5.4.1

The determinant of A is equal to the image of �−rDet(LΓ
V,ξ) under localization

at p.

Proof

This is clear from the definition of the map A. �

We shall show that the reduction B is an isomorphism; it follows that A is also

an isomorphism and that the image of the determinant of Det(A) modulo p is

just Det(B).

PROPOSITION 5.4.2

The image of H1
f (Qp,W ) under B is a subspace of Dcris(V ) complementary to

the subspace

M :=

{
ϕnFil−j Dcris(V ) if n≥ 1,

(1− pjϕ)(1− p−1−jϕ−1)−1Fil−j Dcris(V ) if n= 0.

Moreover, the induced morphism H1
f (Qp,W )

B� Dcris(V ) � Dcris(V )
M is an

isomorphism, and it is given explicitly by

Γ∗(1 + j)ε(η−1,−ξ) ·
{
ϕn[logQp,W ⊗ t−jej ] if n≥ 1,

−(1− p−1−jϕ−1)−1[l̃ogQp,W ⊗ t−jej ] if n= 0.

Proof

The fact that the composite map is given by the formula above follows directly

from Theorem 3.1.3, since the uniformizer � is chosen such that �′(η) = 1. It

remains to check that the composite is an isomorphism. For n≥ 1, the map

x �→ Γ∗(1 + j)ε(η−1,−ξ)ϕn(t−jx⊗ ej)

defines an isomorphism t(W ) ∼= Dcris(V )
M , and the map of the proposition is the

composite of this and

logQp,W :H1
f (Qp,W )

∼=� t(W ).

Similarly, in the case n= 0 the map H1
f (Qp,W )

B� Dcris(V ) � Dcris(V )
M is

the composite of the twisting isomorphism s(W ) ∼= Dcris(V )
M given by tensoring

with t−jej and the morphism

−(1− p−1ϕ−1)−1 l̃ogQp,W :H1
f (Qp,W )→ s(W )

of (9d) above. �
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PROPOSITION 5.4.3

The image of the subspace N ⊆H1(Qp,W ) spanned by yr+1, . . . , yd under B is

M , and the composite isomorphism

H1(Qp,W )

H1
f (Qp,W )

∼=� N
B� M

is given by

Γ∗(1 + j)ε(η−1,−ξ) ·
{
ϕn[exp∗Qp,W∗(1) ⊗ t−jej ] if n≥ 1,

−(1− pjϕ)[ẽxpQp,W∗(1) ⊗ t−jej ] if n= 0.

Proof

The explicit formula follows from Theorems 3.1.1 and 3.1.2, and it follows from

equation (9a) that the composite morphism is an isomorphism (via an argument

very similar to Proposition 5.4.2). �

Combining these two propositions we have the following.

PROPOSITION 5.4.4

The image of Det(A) modulo p is

Γ∗(1 + j)dεL(η
−1,−ξ)d ·DetL

(
ϕ :Dcris(V )→Dcris(V )

)n
·DetL

(
log :H1

f (Qp,W )→ t(W )
)
·DetL

(
exp∗ :

H1(Qp,W )

H1
f (Qp,W )

→ Fil0DdR(W )
)

if n≥ 1; and if n= 0 it is

Γ∗(1 + j)dDetL

(
−(1− p−1ϕ−1)−1 l̃og :H1

f (Qp,W )

→ Dcris(W )

(1−ϕ)(1− p−1ϕ−1)−1Fil0Dcris(W )

)
·DetL

(
−(1− ϕ)ẽxp

∗
:
H1(Qp,W )

H1
f (Qp,W )

→ Fil0DdR(W )
)
.

We now combine this with the result of Proposition 5.2.1, which shows that �(V )

has a zero of degree r at η, and

Γ∗(1 + j)d

�(V )(η)
= (−1)m(V )+jd+rΓL(W )�−r mod �1−r.

This shows that for n≥ 1, the image of ΘΛL(G),ξ(V ) = Det
LΓ

V,ξ


(V ) modulo p is

(−1)m(V )+jd+rΓL(W )εL(η
−1,−ξ)d ·DetL

(
ϕ :Dcris(V )→Dcris(V )

)n
DetL

(
log :H1

f (Qp,W ) � t(W )
)

·DetL

(
exp∗ :

H1(Qp,W )

H1
f (Qp,W )

� Fil0DdR(W )
)
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or (grouping the (−1)’s differently)

(−1)d+m(W )ΓL(W )εL(W,−ξ) ·DetL
(
log :H1

f (Qp,W ) � t(W )
)

·DetL

(
− exp∗ :

H1(Qp,W )

H1
f (Qp,W )

� Fil0DdR(W )
)
.

In the case n= 0 the result becomes

(−1)d+m(W )ΓL(W )εL(W,−ξ)

·DetL

(
−(1− p−1ϕ−1)−1 log :H1

f (Qp,W )

� Dcris(W )

(1−ϕ)(1− p−1ϕ−1)−1Fil0Dcris(W )

)
·DetL

(
(1−ϕ) exp∗ :

H1(Qp,W )

H1
f (Qp,W )

� (1−ϕ)(1− p−1ϕ−1)−1Fil0Dcris(W )
)
.

Using Proposition 2.5.1 for n≥ 1, and Theorem 2.5.7 in the case n= 0, and

invoking again the compatibility of determinants with Tor spectral sequences, we

see that in both cases the specialization of �(V )−1DetK(Γ)LΓ
V,ξ at η is

(−1)d+m(W )ΓL(W )εL(W,−ξ)θL(W ),

as in the case of good characters in Section 5.3. The remainder of the proof

continues exactly as before, and we deduce that

spη
(
εΛL(G),ξ(V )

)
= εL,ξ(W ).

5.5. The extremely bad characters
Let η be an extremely bad character of G, and let W = V (η−1). Recall that our

aim is to prove the following statement.

PROPOSITION 5.5.1

We have

spη
(
ΘΛL(G),ξ(V )

)
· εL,ξ,dR(V ) = εL(η),ξ(W ),

where spη denotes specialization at η.

We prove the proposition by induction on d = dimLW . If d = 1, then W = L

or W = L(1), and the result is the content of [24, Theorem 2.13], once having

checked that the epsilon isomorphisms defined in [24] and here agree. This can

be seen from the fact that both agree with the Fukaya–Kato ε-isomorphism after

specialization at any good (or somewhat bad) character, together with the fact

that good characters are Zariski-dense in SpecΛL(G); however, we give a more

direct proof in Appendix C.
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Now assume that d > 1 and that the proposition is true for all d′ < d. Then

the assumption that Hi(Qp,W ) �= 0 for i= 0 or i= 2 implies that we can find a

subrepresentation W ′ of dimension < d such that we have a short exact sequence

0 � W ′ � W � W/W ′ � 0.

After twisting, this induces a short exact sequence

0 � W ′(η) � V � V/W ′(η) � 0.

Note that as V is crystalline, so are W ′(η) and V/W ′(η). By induction hypoth-

esis and the results in Sections 5.3 and 5.4, Proposition 5.5.1 is true for the

representations W ′(η) and V/W ′(η). As we know that

ΘΛL(G),ξ(V ) = ΘΛL(G),ξ

(
W ′(η)

)
·ΘΛL(G),ξ

(
V/W ′(η)

)
,

εL,ξ,dR(V ) = εL,ξ,dR

(
W ′(η)

)
· εL,ξ,dR

(
V/W ′(η)

)
,

εL(η),ξ(W ) = εL(η),ξ(W
′) · εL(η),ξ(W/W ′)

by Proposition 4.5.1, Lemma 2.4.1, and Proposition 2.4.3, this finishes the proof.

Appendix A: A formulary for the p-adic regulator map

In this appendix, we will prove a strengthening of the explicit formulae of [17,

Appendix B] which determines, loosely speaking, the “leading term” of the p-

adic regulator map at every de Rham character of Γ, including the case of “bad”

characters where there are Frobenius eigenvalues equal to 1 or p.

A.1 The big exponential map
We will begin by quoting results regarding Perrin-Riou’s big exponential map

and its relation to the regulator map LΓ
V,ξ introduced in Section 3 above.

Let V be a crystalline representation whose Hodge–Tate weights lie in [−∞, h]

for some integer h≥ 1. Define a map

Δ :H(Γ)⊗Dcris(V )→
h⊕

k=0

Dcris(V )

(1− pkϕ)Dcris(V )
(k)

as the direct sum of the obvious projection maps.

Then the Perrin-Riou exponential map is the map

ΩV,h,ξ :
(
H(Γ)⊗Qp Dcris(V )

)Δ=0 � H(Γ)⊗ΛQp (Γ)
H1

Iw(Qp, V )

defined by

ΩV,h,ξ(z) = (�h−1 ◦ · · · ◦ �0)(1−ϕ)−1(z̃),

where z̃ denotes the image of z under the isomorphism

H(Γ)⊗Qp Dcris(V )→
(
B+

rig,Qp
⊗Dcris(V )

)ψ=0

which sends
∑

fi ⊗ di to
∑

fi(1 + π)⊗ di.
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(This is not quite the definition of ΩV,h,ξ originally given in [21], but it is

shown in [3, Theorem II.13] that the above formula does give a well-defined map

and that this map agrees with Perrin-Riou’s original definition, modulo choices

of signs.)

THEOREM A.1.1 (PERRIN-RIOU, CF. [22, THEORÉME 3.3])

There exists an extension of ΩV,h,ξ to a morphism of H(Γ)-modules

H(Γ)⊗Qp Dcris(V ) � H(Γ)⊗ΛQp (Γ)
H1

Iw(Qp, V )

H1
Iw(Qp, V )tors

,

coinciding on ker(Δ) with the map defined above.

Moreover, the values of ΩV,h,ξ(z) at all de Rham characters η of Hodge–Tate

weights j ≤ h − 1 are given by the following formulae, which hold modulo the

image of H1
Iw(Qp, V )tors in H1(Qp, V (η−1)).

(1) If η has positive conductor n≥ 1, then

prη
(
ΩV,h,ξ(z)

)
= (−1)h−j−1(h− j − 1)! expQp,V (η−1)

(
τ(η0, ξ) · p−nϕ−n

(
z(η)⊗ tje−j

))
,

where the Gauss sum τ(η0, ξ) is as in Proposition 2.3.3 above.

(2) If η = χj , then we have

prη
(
ΩV,h,ξ(z)

)
=−(−1)h−j−1(h− j − 1)! ẽxpQp,V (η−1)

[
(1− p−1ϕ−1)

(
z(η)⊗ tje−j

)]
,

where ẽxp is as defined in Section 2.5 above.

Proof

If n≥ 1 or if z(η) ∈ (1−p−jϕ)Dcris(V ), then we may assume that z ∈ ker(Δ) and

this is then a standard formula, equivalent to the commutative diagram relating

ΩV,h to the exponential maps (see, e.g., page 121 of [3]).† The awkward case

when z(η)⊗ tje−j is not in the image of 1−ϕ is covered in [22]. �

A.2 The regulator at bad characters
We shall use Theorem A.1.1 to study the values of the regulator map at those

characters where the factor on the left-hand side of formula (2) in Theorem 3.1.1

is not injective. We relate these values to the extended dual exponential map

ẽxp
∗
; given the indirect nature of the definition of this map, we have no choice

but to exploit the duality between V and V ∗(1).

† Sadly, there seems to be a recurring ambiguity in the literature regarding the signs (cf.
[3, Remark II.17]). We use Berger’s conventions, but we note that there are two errors in

the commutative diagram on page 121 of [3]: firstly, the map ΩV (j),h in the top row should

be ΩV (j),h+j ; secondly, the sign (−1)h+j−1 is missing. We believe the signs above to be the

correct ones.
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PROPOSITION A.2.1

The regulator map LΓ
V,ξ and the exponential ΩV,h,ξ satisfy the formula

(11) ΩV,h,ξ

(
LV (x)

)
= �h−1 ◦ · · · ◦ �0(x)

(
modH1

Iw(Qp,∞, V )tors
)

for all x ∈H(Γ)⊗Λ(Γ) H
1
Iw(Qp, V ).

Proof

If LΓ
V,ξ(x) lies in ker(Δ), then this is obvious from Berger’s redefinition of ΩV,h,ξ

given above. However, since the target of Δ is a torsion Λ(Γ)-module, and we

have quotiented out by the torsion in H1
Iw(Qp,∞, V ), this implies that the formula

holds for all x. �

By [20, Section 2.1], there is a pairing (the Perrin-Riou pairing)

〈−,−〉Iw :H1
Iw(Qp, V )⊗ΛL(Γ) H

1
Iw

(
Qp, V

∗(1)
)ι � ΛL(Γ),

where the superscript ι indicates that the pairing is antilinear in the second

variable, with the property that for any character η of Γ we have

〈x, y〉Iw(η) = 〈xη, yη−1〉Tate,

where

〈−,−〉Tate :H1
(
Qp, V (η−1)

)
⊗H1

(
Qp, V

∗(1)(η)
)
→ L

is the local Tate duality pairing.

We may extend the Perrin-Riou pairing to a pairing of H(Γ)-modules in

the obvious way. We also define a pairing 〈−,−〉Iw,cris by extending the natural

pairing Dcris(V )×Dcris(V
∗(1))→Dcris(L(1))∼= L to a pairing(

H(Γ)⊗Dcris(V )
)
×
(
H(Γ)⊗Dcris(V )

)ι � H(Γ).

PROPOSITION A.2.2

For any x ∈H1
Iw(Qp, V ) and w ∈H(Γ)⊗Dcris(V ), we have〈

LΓ
V (x),w

〉
Iw,cris

= γ−1 ·
〈
x,ΩV ∗(1),1,ξ(w)

〉
Iw
.

Proof

This is one of many possible forms of the Perrin-Riou reciprocity law. Since all

the modules involved are torsion-free it suffices to prove this after inverting �j
for all j. An application of equation (11) then reduces the statement to that of

[17, Theorem B.6]. �

THEOREM A.2.3 (THEOREM 3.1.2)

For any j ≥ 0, we have

LΓ
V,ξ(x)(χ

j) =−j!(1− pjϕ)
[
ẽxp

∗
Qp,V ∗(1+j)(xχj )⊗ t−jej

]
.
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Proof

Let v ∈ Dcris(V
∗(1 + j)), and choose some w ∈ H(Γ) ⊗Dcris(V

∗(1)) such that

v =w(χ−j)⊗ t−jej . Then we have〈
LΓ
V,ξ(x)(χ

j)⊗ tje−j , v
〉
cris

=
〈
LΓ
V,ξ(x),w

〉
Iw,cris

(χj).

By Proposition A.2.2 this is equal to

(−1)j
〈
x,ΩV ∗(1),1,ξ(w)

〉
Iw
(χj) = (−1)j

〈
xχj ,prχ−j

(
ΩV ∗(1),1,ξ(w)

)〉
Tate

.

The term prχ−j (ΩV ∗(1),1,ξ(w)) is only defined modulo the image of H1
Iw(Qp,∞,

V ∗(1))tors in H1(Qp, V
∗(1 + j)), but this image is the orthogonal complement

of the image of H1
Iw(Qp,∞, V ) in H1(Qp, V (−j)), which by assumption contains

xχj . We know that

prχ−j

(
ΩV ∗(1),1,ξ(w)

)
= (−1)j+1j!ẽxpQp,V ∗(1+j)

[
(1− p−1ϕ−1)v

]
modulo the image of the torsion. Substituting this in, we have〈

LΓ
V,ξ(x)(χ

j), v
〉
cris

=−j!
〈
xχj , ẽxpQp,V ∗(1+j)

[
(1− p−1ϕ−1)v

]〉
Tate

.

Since ẽxp
∗
is, by definition, the adjoint of ẽxp, the right-hand side is equal to

−j!
〈
ẽxp

∗
Qp,V ∗(1+j)(xχj ), (1− p−1ϕ−1)v

〉
cris

=−j!
〈
ẽxp

∗
Qp,V ∗(1+j)(xχj ), (1− p−1ϕ−1)v

〉
cris

=−j!
〈
(1−ϕ)ẽxp

∗
Qp,V ∗(1+j)(xχj ), v

〉
cris

.

We deduce that〈
LΓ
V,ξ(x)(χ

j), v
〉
cris

=−j!
〈
(1−ϕ)ẽxp

∗
Qp,V ∗(1+j)(xχj ), v

〉
cris

for every v ∈Dcris(V
∗(1 + j)), so we must have

LΓ
V,ξ(x)(χ

j)⊗ tje−j =−j!(1−ϕ)ẽxp
∗
Qp,V ∗(1+j)(xχj )

as elements of Dcris(V (−j)), which is the claimed formula. �

A.3 The derivative of the regulator
We now use Theorem A.1.1 to study the derivative of the regulator map LΓ

V,ξ at

its trivial zeros.

PROPOSITION A.3.1

Let V be a crystalline L-linear representation of GQp with all Hodge–Tate weights

≥ 0, and let η be a de Rham character of Γ whose Hodge–Tate weight j is ≥ 0 and

whose conductor is n. Let W = V (η−1), and let x be an element of H1
Iw(Qp,∞, V )

such that LΓ
V,ξ(x)(η) = 0. Then

(1) if η has conductor n≥ 1, then

xη =
1

j!
expQp,W

[
τ(η, ξ) · p−nϕ−n

(
LΓ
V,ξ(x)

′(η)⊗ tje−j

)]
;



112 Loeffler, Venjakob, and Zerbes

(2) if η = χj , then

xη =− 1

j!
ẽxpQp,W

×
[
(1− p−1ϕ−1)

(
LΓ
V,ξ(x)

′(η)⊗ tje−j

)]
modH1(Γ,H0

(
Qp, V (−j)

))
.

Moreover, H1(Γ,H0(Qpi, V (−j))) is nonzero if and only if H0(Qpi, V (−j)) is.

Proof

Since LV (x)(η) = 0, we may write

(12) LV (x) =
(
γ − η(γ)

)
g

for some g ∈H(Γ)⊗Dcris(V ). Using equation (1), one checks that this implies

(13) LV (x)
′(η) = g(η)η(γ) logχ(γ).

We shall now find a formula for expQp,V (η−1)(g(η)) (resp., ẽxp(g(η)) if n= 0);

comparing this with (13) will then give the proposition. We choose an integer

h > j such that all Hodge–Tate weights of V lie in [0, h], so the Perrin-Riou

exponential map ΩV,h is well defined. By enlarging h if necessary, we may also

assume that Dcris(V )ϕ=p−h

= 0.

Applying ΩV,h to both sides of equation (12) and using equation (11), we

obtain

(14) ΩV,h(g) =Ah,η(x) modulo torsion,

where the element

Ah,η =
�h−1 ◦ · · · ◦ �0

γ − η(γ)
∈H(Γ),

since 0 ≤ j < h. Crucially, Ah,η does not vanish at η, although it vanishes at

every other locally algebraic character of degree ≤ h− 1.

We now apply Theorem A.1.1 to the element z = g, which is valid since

h− j ≥ 1. This tells us that the image of ΩV,h(g) in H1(Qp, V (η−1)) is given,

modulo the image of the torsion in H1
Iw(Qp,∞, V ), by

prη
(
ΩV,h(g)

)
= (−1)h−j−1(h− j − 1)!eη

(
g(η)

)
,

where we write eη(v) as a shorthand for{
expQp,V (η−1)[τ(η0, ξ) · p−nϕ−n(v⊗ tje−j)] if n≥ 1,

−ẽxpQp,V (η−1)[(1− p−1ϕ−1)(v⊗ tje−j)] if n= 0.

Plugging in equation (14), this becomes

prη(Ah,η · x) = (−1)h−j−1(h− j − 1)!eη
(
g(η)

) (
modH1

Iw(Qp,∞, V )tors
)
.

The left-hand side is easy to deal with: it is simply Ah,η(η)xη , where Ah,η(η) is

a nonzero constant (which we shall evaluate shortly), and xη is the image of x

in H1(Qp, V (η−1)) as before. Thus we have

Ah,η(η)

(−1)h−j−1(h− j − 1)!
xη = eη

(
g(η)

) (
modH1

Iw(Qp,∞, V )tors
)
.
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Let us now evaluate the “fudge factor” Ah,η(η). We have �r(η) = j − r for

r �= j, while for j = r, we obtain( �j
γ − η(γ)

)
(η) = lim

s→0

log(η(γ)χ̃(γ)s)
logχ(γ) − j

η(γ)χ̃(γ)s − η(γ)
.

The denominator is easily seen to be sη(γ) logχ(γ)+O(s2), while the numerator

is simply s.

Hence

Ah,η(η) =
1

η(γ) logχ(γ)

h−1∏
r=0
r �=j

(j − r) =
(−1)h−j−1(h− j − 1)!j!

η(γ) logχ(γ)
.

Putting all the pieces together, we have shown that

j!

η(γ) logχ(γ)
xη = eη

(
g(η)

)
=

1

η(γ) logχ(γ)
eη
(
LΓ
V,ξ(x)

′(η)
) (

modH1
Iw(Qp,∞, V )tors

)
,

so

xη =
1

j!
eη
(
LΓ
V,ξ(x)

′(η)
)

=
1

j!

{
expQp,V (η−1)[τ(η0, ξ) · p−nϕ−n(v⊗ tje−j)] if n≥ 1,

−ẽxpQp,V (η−1)[(1− p−1ϕ−1)(v⊗ tje−j)] if n= 0,

again modulo the image of H1
Iw(Qp,∞, V )tors in H1(Qp, V (η−1)).

We now analyze the torsion term. We know that H1
Iw(Qp,∞, V )tors is iso-

morphic as a Γ-module to H0(Qp,∞, V ), and in particular it is crystalline as a

GQp -representation and thus contains no noncrystalline characters in its support.

Thus its image in H1(Qp, V (η−1)) is zero if n≥ 1. If η = χj , then the image of

H1
Iw(Qp,∞, V )tors in H1(Qp, V (−j)) is precisely H1(Γ,H0(Qp,∞, V )(−j)), which

has the same dimension asH0(Γ,H0(Qp,∞, V )(−j)) =H0(Qp, V (−j)). This com-

pletes the proof. �

Appendix B: Proof of Theorem 2.5.7

In this appendix, we prove Theorem 2.5.7. We start with some remarks on signs.

REMARK B.0.2

Recall that by [10, Section 4.3], to any exact sequence C : 0→X1 →X →X2 → 0

of L-vector spaces there is attached a canonical isomorphism

Det(C) : Det(X)∼=Det(X1) ·Det(X2),

which is compatible with the commutativity in Det(L) in the following sense. If

X =X1⊕X2 and if C1 : 0→X1 →X →X2 → 0 and C2 : 0→X2 →X →X1 → 0



114 Loeffler, Venjakob, and Zerbes

are the natural exact sequences, then we have a commutative triangle

Det(X)

Det(C2)Det(C1)

Det(X1)Det(X2)
ψDet(X1)Det(X2)

Det(X2)Det(X1)

where

ψDet(X1),Det(X2) : Det(X1)Det(X2)→Det(X2)Det(X1)

denotes the commutativity constraint.† Hence, usually these commutativity con-

straints do not give rise to any sign ambiguities—and we often suppress them

from the notation—except in the case where X1 =X2 or if inverses Det(X)−1

are involved, for the latter (see, e.g., (4.1.1) and 4.11(b) in [10]). In particular, for

every L-vector space X , the symmetry automorphism Det(SX) : Det(X ⊕X)∼=
Det(X ⊕X) corresponds to DetL(−1|X) = (−1)dimL(X) under the isomorphism

AutDet(L)(DetL(X ⊕X)) ∼= AutDet(L)(DetL(0)) ∼= AutDet(L)(DetL(X)), see Sec-

tion 4.9 of (loc. cit.), and one immediately checks the commutativity of the

following diagram:

Det(X ⊕X)
Det(C1)� Det(X) ·Det(X)

Det(X ⊕X)

Det(SX)

�
Det(C1)� Det(X) ·Det(X)

ψDet(X),Det(X)

�

Det(C
2 )

�

where Ci correspond to the above short exact sequences for X1 =X2 =X .

Upon replacing dimL(V ) by the Euler–Poincaré characteristic χ(C) :=∑
i(−1)i dimL(C

i) these remarks extend immediately to (perfect) complexes C

of L-vector spaces.

Let V be a crystalline L-linear representation of GQp . Consider the four filtered

L-vector spaces Di = (Di, Fi), with Di =Dcris(V ) for each i, and consider the

† Recall that by [10, Example in Section 4.1] over a field L we can take the category of
(graded) line bundles, that is, one-dimensional vector spaces (plus a dimension parameter), for

the Picard category Det(L) in which the determinant functor DetL takes its values. Then the
commutativity constraint is given as

ψDetL(V ),DetL(W ) : DetL(V )DetL(W )→DetL(W )DetL(V ), νω �→ (−1)dimL(V ) dimL(W )ων.

Moreover, by the natural isomorphism

DetL(V )DetL(V
∗)∼=DetL(V )DetL(V )∗ ∼=DetL(0)

we may identify the inverse DetL(V )−1 of DetL(V ) with DetL(V
∗). But note that it differs

from the identification using the natural isomorphism

DetL(V
∗)DetL(V )∼=DetL(V )∗DetL(V )∼=DetL(0)

by the sign (−1)dim(V )idDetL(0).
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subspaces Fi defined by

F3 =Fil0Dcris(V ),

F1 = h−1(F3),

F4 = g(F3),

F2 = g(F1) = h−1(F4),

where g = 1−ϕ and h= 1−p−1ϕ−1. We obtain a commutative square of filtered

L-vector spaces

(15)

D1
g � D2

D3

h

�
g � D4

h

�

LEMMA B.0.3

(1) Let

A′

hA

g′

B′

hB

A
g

B

be a commutative square of K-vector spaces considered also as complexes (con-

centrated in degree 0). Then this can be extended to a (3 × 3)-diagram in the

derived category of K-vector spaces

A′

hA

g′

B′

hB

u
C(g′)

H

v
TA′

ThA

A
g

ν

B C(g) TA

Tν

C(hA)

ω

G
C(hB) C(G)

−

TC(hA)

Tω

TA′
Tg′

TB′ Tu
TC(g′)

Tv
T 2A′
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such that the following diagram of determinants commutes (with the obvious com-

mutativity and associativity constraints which we have suppressed)

[B] [B′]
[
C(hB)

]

[A]
[
C(g)

]
[A′]
[
C(g′)

][
C(hA)

]
[C]

Here C(f) denotes the mapping cone of a map f , T is the shift by one functor,

and the right lower square above anticommutes. Equivalently the following natural

diagram commutes:

[B′] [A′]
[
C(g′)

]

[B]
[
C(hB)

]−1
[A]
[
C(g)

]([
C(hA)

]
[C]
)−1

Moreover, in the above diagram all solid arrows arise naturally from the cone

construction, while the dotted arrows arise from the isomorphism of complexes

between

C(H) :A′ (hA,−g′)� A⊕B
〈g,hB〉� B

starting in degree −2 on the left and

C(H) :A′ (g′,−hA)� B′ ⊕A
〈hB ,g〉� B

which is given by idA′ in degree −2 and by the identity (and permutation of

summands) otherwise. Alternatively, one can replace C(G) by C(H) and instead

adjust the horizontal arrows ending or starting in it.

(2) Applying the first item to each of the squares occurring in the (2×2×2)-

cube (15) we obtain an (anti)commutative (3 × 3 × 3)-cube, some faces/sheets

(consisting of distinguished triangles) of which are given as follows:

F1

g

D1

g

D1/F1

F2 D2 D2/F2

F12 D12 (D/F )12

(16a)
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D1/F1

g

h
D3/F3

g

(D/F )13

D2/F2

h
D4/F4 (D/F )24

(D/F )12 (D/F )34 0

(16b)

F3

g

D3

g

D3/F3

F4 D4 D4/F4

F34 D34 (D/F )34

(16c)

F1

h

g

F2

h

F12

F3

g

F4 F34

F13 F24 0

(16d)

Moreover we have canonical isomorphisms

F12
h

∼=
� F34,

F13
g

∼=
� F24,

D34
id

∼=
� D12,

(D/F )12
h

∼=
� (D/F )34.

Proof

A statement similar to that in (i) can be found in [6, Lemma 3.9] (see also

[13, Corollary 1.10]) for general triangular categories, but with mapping cones

possibly replaced by quasi-isomorphic complexes. This is usually proved using

the octahedral axiom. In our specific simple setting one can alternatively verify

both statements explicitly. The zeros in (ii) are the consequence of the specific

choice of the Fi’s. �
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PROPOSITION B.0.4

Using canonical isomorphisms induced by the above cube we obtain the commu-

tative diagram

1 [F34][F1]
[
(D/F )13

]−1
[F4]

−1

1 [F12][F1]
[
(D/F )24

]−1
[F4]

−1

where the isomorphism in the first line arises by using the first lines of the above

faces (16a), (16b), (16c), and the second line of (16d) while the isomorphism in

the second line arises by using the second lines of the above faces (16a), (16b),

(16c), and the first line of (16d).

Proof

Applying Lemma B.0.3 to each of the four involved faces gives the following

commutative diagrams:

[D1] [F1][D1/F1]

[D2]
(
[D12]

)−1
[F2][D2/F2]

(
[F12]

[
(D/F )12

])−1

[D3/F3]
−1

[
(D/F )13

]−1
[D1/F1]

−1

[D4/F4]
−1
([
(D/F )34

]) [
(D/F )24

]−1
[D2/F2]

−1
([
(D/F )12

])
[F3][D3/F3] [D3]

[F4][D4/F4]
(
[F34]

[
(D/F )34

])−1
[D4]

(
[D34]

)−1

[F3]
−1[F34]

−1 [F4]
−1

[F1]
−1[F12]

−1
(
[F13]

)−1
[F2]

−1
(
[F24]

)−1
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Multiplying all the diagrams up and canceling corresponding objects leads

in the first line to the isomorphism

[D1][F34]
−1 ∼= [F1]

[
(D/F )13

]−1
[D3][F4]

−1,

while in the second line we obtain

[D2][F4][F1]
−1[F12]

−1 ∼=
[
(D/F )24

]−1
[D4]

times the error terms in parentheses

[D12]
−1[F34]

−1[F13]
−1 ∼= [F12]

−1[D34]
−1[F24]

−1.

Multiplication with the inverse of the left vertical map and cancelation of the

[Di] = [Dcris(V )] among each other using the identity map leads to the commu-

tative diagram

1 � [F34][F1]
[
(D/F )13

]−1
[F4]

−1

1
�

� [F12][F1]
[
(D/F )24

]−1
[F4]

−1
(
[D12]

−1[D34][F34]
−1[F12][F13]

−1[F24]
)−1

�

Using the canonical identities

[D12]
−1[D34] = [F34]

−1[F12] = [F13]
−1[F24]∼= 1

we see that this error term is canonically isomorphic to the unit object 1, whence

the claim. �

COROLLARY B.0.5

The isomorphism 1∼= [RΓ(Qp, V )][Dcris(V )] given by isomorphisms (9a)–(9d) in

Section 2.5 above coincides with

(−1)dimV θ(V ).

Proof

Using the canonical isomorphism [F4] ∼= [D4][D4/F4]
−1 the proposition induces

also a commutative diagram

1 [F34][F1]
[
(D/F )13

]−1
[D4]

−1[D4/F4]

1 [F12][F1]
[
(D/F )24

]−1
[D4]

−1[D4/F4]

(17)

Now we claim that the (inverse of the) upper line defines θ(V ) times [−idDcris(V )]

while the (inverse of the) lower one corresponds to the isomorphism in the con-

jecture. Indeed, first note that we have natural isomorphisms
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TF12
h

∼=
� TF34

∼=H0(Qp, V ),

(D/F )13
g

∼=
� (D/F )24 ∼=H2(Qp, V ),

−ẽxp
∗
Qp,V ∗(1) : H

1(Qp, V )/H1
f (Qp, V )∼= F1

(the sign has the same origin as that in Proposition 2.5.1), and

l̃ogV : H1
f (Qp, V )∼=D4/F4.

Secondly, up to the identification ẽxp
∗
Qp,V ∗(1), the exact sequence

Σ(Qp, V ) : 0 � H0(Qp, V ) � H1(Qp, V )

H1
f (Qp, V )

−(1−ϕ)◦ẽxp∗
� Dcris(V ) � Dcris(V )

s(V )
� 0

(where s(V ) = (1−ϕ)(1− p−1ϕ−1)−1Fil0Dcris(V )) corresponds to the combina-

tion of the triangles

F1
g� F2

� F12

and

F2 ↪→D2 →D2/F2

using F2 = s(V ). Similarly, the exact sequence

Σ
(
Qp, V

∗(1)
)∗

: 0 � s(V ) � Dcris(V )

ẽxp◦(1−p−1ϕ−1)� H1
f (Qp, V ) � H2(Qp, V ) � 0

corresponds to

D2/F2
h� D4/F4

� (D/F )24.

Altogether we just obtain the identifications used for the second line. Concerning

the first line, consider the following commutative diagram:

0 � H0(Qp, V ) � F3
1−ϕ � D4

ẽxp � H1
f (Qp, V ) � 0

0 � H0(Qp, V )

id

�
� Dcris(V )

�
(1−ϕ,īd)� Dcris(V )⊕ t(V )

(id,0)

�
ẽxp⊕exp� H1

f (Qp, V )

id

�
� 0

t(V )
�

id � t(V )

〈0,id〉

�
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or in the derived category

(C3) : (C4) :

(C1) : F3
1−ϕ � D4

� C(1−ϕ) �

(C2) : Dcris(V )
�

(1−ϕ,īd)� Dcris(V )⊕ t(V )

(id,0)

�
� C

(
(1−ϕ, īd)

)
ẽxp

�
�

t(V )
�

id � t(V )

〈0,id〉

�
� 0

�
�

� � �

For simplicity we identify C(1 − ϕ) ∼= C((1 − ϕ, īd)). It follows again from
Lemma B.0.3 that there is a commutative diagram[

Dcris ⊕ t(V )
] [C4] � [Dcris]

[
t(V )

] [C1]id[t(V )]� [F3]
[
C(1− φ)

][
t(V )

]

[Dcris]
[
C(1− φ)

]
[C2]

�
[C3]id[C(1−φ)] �

�

id [D
]
θ1

[F3]
[
t(V )

][
C(1− φ)

]
id[F3]ψ[C(1−φ)],[t(V )]

�

where θ1 is defined by the commutativity of the left and right subdiagrams. Now

it is easy to check that the right half of the diagram can be described also by

[Dcris]
[
t(V )

] ψ[Dcris],[t(V )] � [
t(V )

]
[Dcris]

[Dcris]
[
C(1− φ)

]
id[D]θ1

�
[C3]id[C(1−φ)]� [F3]

[
t(V )

][
C(1− φ)

] ψ[F3],[t(V )]id[C(1−φ)]�

(ψ
[F

3 ],[t(V )] ◦[C
3 ])θ

1

� [
t(V )

]
[F3]

[
C(1− φ)

]
id[t(V )][C1]

�

that is, by looking at the diagonal we see that id[t(V )][F3]θ1 equals the composite

of the left vertical column in the following commutative diagram:
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[
t(V )

]
[F3]
[
t(V )

]

[F3]
[
t(V )

][
t(V )

]
ψ[t(V )],[F3]id[t(V )]

�
id[F3]ψ[t(V )],[t(V )]� [F3]

[
t(V )

][
t(V )

]

[Dcris]
[
t(V )

]
[C3]

−1id[t(V )]

�

[
t(V )

]
[Dcris]

ψ[Dcris],[t(V )]

�
id[t(V )][C3] � [

t(V )
]
[F3]
[
t(V )

]

ψ[F3],[t(V )]id[t(V )]

�

[
t(V )

]
[F3]
[
C(1− φ)

]
id[t(V )][C1]

�

Since on the other hand the following diagram commutes by Remark B.0.2,[
t(V )

]
[F3]
[
t(V )

]
==
[
t(V )

]
[F3]
[
t(V )

]

[F3]
[
t(V )

][
t(V )

]
ψ[t(V )],[F3]id[t(V )]

�

[F3]
[
t(V )

][
t(V )

]
id[F3]ψ[t(V )],[t(V )]

�

[
t(V )

]
[F3]
[
t(V )

]
ψ[F3],[t(V )]id[t(V )]

�
==
[
t(V )

]
[F3]
[
t(V )

]

[−idt(V )]

�

we see that id[t(V )][F3]θ1 is just given by[
t(V )

]
[F3]
[
t(V )

] id[t(V )][C3]
−1

� [
t(V )

]
[D]

id[t(V )][C1]� [
t(V )

]
[F3]
[
C(1− φ)

]
;

that is, upon identifying D3 and D4 the map θ1 is induced by the triangles



Local epsilon isomorphisms 123

F3 →D3 →D3/F3 →,

F3 → F4 → F34 →,

F4 →D4 →D4/F4 →,

and the factor [−idt(V )]. Dually there exists a map θ2 : [F3]→ [C(1− p−1φ−1)∗]

which is induced by

F3 →D3 →D3/F3 →,

D1/F1 →D3/F3 → (D/F )13 →,

F1 →D1 →D1/F1 →,

and the factor [−idt(V ∗(1))∗ ] and such that θ(V ) is induced by θ1 and θ2 together

with the canonical exact sequence

0→H1
f (Qp, V )→H1(Qp, V )→H1(Qp, V )/H1

f (Qp, V )→ 0

and cancellation of the Dcris’s. Altogether we see that θ(V ) equally can be

expressed upon canceling the various Di’s by the combination of the triangles

F1 →D1 →D1/F1 →,

D1/F1 →D3/F3 → (D/F )13 →,

F3 →D3 →D3/F3 →,

F3 → F4 → F34 →,

F4 →D4 →D4/F4 →,

which altogether just define the first line of (17), times [−idt(V ∗(1))∗ ][−idt(V )] =

[−idDcris(V )]. This completes the proof. �

Appendix C: Comparison with Kato’s rank one epsilon isomorphisms

In this section we explain why the construction of the epsilon isomorphism in [24]

actually turns out to be the same as that in this paper. This relies on the fact that

roughly speaking both the regulator map in [17] and the epsilon isomorphism in

[24] arise by taking inverse limits in the unramified direction from objects defined

over cyclotomic Zp-extensions.
Let K be a finite, unramified extension of Qp, and let K∞ :=K(μp∞) and

G=G(K∞/Qp), H = 〈τp〉=Gal(K/Qp), Γ =G(Qp,∞/Qp), Zp(r) =Zptr, er :=
t−r⊗ tr ∈Dcris(Qp(r)), r ≥ 0. Then we have the following commutative diagram:
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U(K∞)(r − 1)

D log gK

Kummer(r−1)

H
1(

Qp,TK

(
Zp(r)

))
∼=

(
OK [[X]]⊗ tr

)ψ=1

(1−ϕ)⊗id

(
X

−rOK [[X]]⊗ tr
)ψ=1

(1−ϕ)⊗id

N
(
Zp(r)

)ψ=1

1−ϕ

OK [[X]]
ψ=0 ⊗ tr

∂−r⊗t−r

ϕ(X)
−rOK [[X]]

ψ=0 ⊗ tr

tr⊗t−r

ϕ
∗(

N
(
Zp(r)

))ψ=0

comp

OK [[X]]
ψ=0 ⊗ er

M−1⊗id

=tr∂r⊗id

	0···	r−1⊗id ( t

ϕ(X)

)r
OK [[X]]

ψ=0 ⊗ er (B
+
rig,K)

ψ=0 ⊗Dcris

(
Qp(r)

)
M−1⊗id

HK(Γ)⊗Qp Dcris

(
Qp(r)

)
μ−1
r =	(Qp(r))−1

OK [[Γ]]⊗ er

Θr

HK(Γ)⊗Qp Dcris

(
Qp(r)

)
ω⊗id

H(Γ)⊗ SK ⊗Qp Dcris

(
Qp(r)

)
εQp,ξ,dR(Qp(r))⊗(H(Γ)⊗SK )

T
(
Zp(r)

)
⊗Λ Λτp T

(
Zp(r)

)
⊗Λ H(Γ)⊗ SK

where �i := t∂ − i, ∂ = (1+X) d
dX , t= log(1 +X), and the twisted ring

Λτp =
{
x ∈ Λ(G) ⊗̂ OK : (τp ⊗ 1) · x= (id⊗ τp)(x)

}
= SK

should be compared to Sn in [17]. Furthermore,

T
(
Zp(r)

)
=Λ(G)� ⊗Zp Zp(r),

and the map Θ is defined by

Θr(λ⊗ er) = (1⊗ tr)⊗
#H−1∑
i=0

τ ipτ
−i
p (λ)

while

ω :HK(Γ) =H(Γ)⊗OK
∼=H(Γ)⊗ SK

sends h⊗ o to h⊗
∑#H−1

i=0 τ ipτ
−i
p (o). Finally the map

comp : ϕ∗(N(Zp(r)
))ψ=0 → (B+

rig,K)ψ=0 ⊗K Dcris

(
Qp(r)

)
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is induced from the inverse of Berger’s comparison isomorphism

B+
rig,K

[1
t

]
⊗K Dcris

(
Qp(r)

)
=B+

rig,K

[1
t

]
⊗B+

K
N
(
Qp(r)

)
,

(cf. [4]), where B+
K =OK [[X]][ 1p ].

Taking the limit over K within some unramified extension K ′/Qp with

G(K ′(μ(p))/Qp) being of dimension 2 and embedding H(Γ) ⊗̂S∞ into HK̂′(G)

we obtain the commutative diagram

U(K ′
∞)(r− 1)

Kummer(r−1)

∼=
� H1

(
Qp,TK′

(
Zp(r)

))

TK′
(
Zp(r)

)
⊗Λ Λτp

L̃ξ(TK′ (Zp(r)))

�
� TK′

(
Zp(r)

)
⊗Λ HK̂′(G)


(Qp(r))
−1LG

Qp(r),ξ

·(εQp,ξ,dR(Qp(r))⊗H
K̂′ (G))

�

In particular

εQp,ξ,dR

(
Qp(r)

)
· �
(
Qp(r)

)−1LG
Qp(r),ξ

=−ε′Λ(Γ),ξ−1

(
T
(
Zp(r)

))
,

where the latter ε-isomorphism is the one defined in [24, Definition 2.5]. For this

we use also [24, Lemma A.4], note the signs −Lξ−1 in the definition (2.13) in [24,

(11)]. Multiplying by (−1)rγ−1, which gives the action of γ−1 on TK′(Zp(r)),

has the effect of replacing ξ with −ξ on the right-hand side, and thus we obtain

(−1)r+1(γ−1)
rεQp,ξ,dR

(
Qp(r)

)
· �
(
Qp(r)

)−1LG
Qp(r),ξ

= ε′Λ(Γ),ξ

(
T
(
Zp(r)

))
.

The quantity (−1)r+1(γ−1)
r is precisely the factor appearing in the definition

of the ε-isomorphism εΛL(G),ξ(V ) in the present paper for V = Qp(r), so the

isomorphisms in the present paper and in [24] coincide as required.

Acknowledgments. We are grateful to Marco Schlichting for his explanations of

K1 and SK1.
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