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Abstract Let A,B be square irreducible matrices with entries in {0,1}. We will show

that if the one-sided topologicalMarkov shifts (XA, σA) and (XB , σB) are continuously

orbit equivalent, then the two-sided topological Markov shifts (X̄A, σ̄A) and (X̄B , σ̄B)

are flow equivalent, and hence det(id−A) = det(id−B). As a result, the one-sided topo-

logical Markov shifts (XA, σA) and (XB , σB) are continuously orbit equivalent if and

only if the Cuntz–Krieger algebras OA and OB are isomorphic and det(id−A) =

det(id−B).

1. Introduction

The interplay between the orbit equivalence of topological dynamical systems and

the theory of C∗-algebras has been studied by many authors. Giordano, Putnam,

and Skau [7] have proved that two minimal homeomorphisms on a Cantor set are

strongly orbit equivalent if and only if the associated C∗-crossed products are

isomorphic. Boyle and Tomiyama [3] and Tomiyama [20] have studied relation-

ships between orbit equivalence and C∗-crossed products for topologically free

homeomorphisms on compact Hausdorff spaces.

In this paper, we classify one-sided irreducible topological Markov shifts up

to continuous orbit equivalence and show that there exists a close connection with

the Cuntz–Krieger algebras. The class of one-sided topological Markov shifts is

an important class of topological dynamical systems on Cantor sets, though they

are not homeomorphisms but local homeomorphisms. The first author [11] intro-

duced the notion of continuous orbit equivalence for one-sided topological Markov

shifts (see Definition 2.1) and proved that one-sided topological Markov shifts

(XA, σA) and (XB , σB) for irreducible matrices A and B with entries in {0,1} are

continuously orbit equivalent if and only if there exists an isomorphism between

the Cuntz–Krieger algebras OA and OB preserving their canonical Cartan sub-

algebras DA and DB . The second author in [15] and [16] studied the associ-

ated étale groupoids GA and their homology groups Hn(GA) and topological full

groups [[GA]]. In fact, the two shifts are continuously orbit equivalent if and only
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if GA is isomorphic to GB (see Theorem 2.3). In [12] it was also shown that if OA

is isomorphic to OB and det(id−A) = det(id−B), then there exists an isomor-

phism Ψ :OA →OB such that Ψ(DA) =DB , and hence the one-sided topological

Markov shifts (XA, σA) and (XB , σB) are continuously orbit equivalent. Since

there were no known examples of irreducible matrices A,B such that (XA, σA)

and (XB , σB) are continuously orbit equivalent and det(id−A) �= det(id−B), the

first author [12, Section 6] presented the following conjecture: the determinant

det(1−A) is an invariant for the continuous orbit equivalence class of (XA, σA).

In the present article we confirm this conjecture. In other words, we show that

(XA, σA) and (XB , σB) are continuously orbit equivalent if and only if OA is

isomorphic to OB and det(id−A) = det(id−B) (see Theorem 3.6).

Our proof is closely related to another notion of equivalence for shifts, namely,

flow equivalence for two-sided topological Markov shifts. Two-sided topological

Markov shifts (X̄A, σ̄A) and (X̄B, σ̄B) are said to be flow equivalent if there

exists an orientation-preserving homeomorphism between their suspension spaces

(see [17]). Two characterizations of the flow equivalence are known. One is due

to Boyle and Handelman [2] and the other is due to Parry and Sullivan [17],

Bowen and Franks [1], and Franks [6] (see Theorems 2.4 and 2.6). By using the

former characterization and the groupoid approach, we show that if (XA, σA)

and (XB , σB) are continuously orbit equivalent, then (X̄A, σ̄A) and (X̄B , σ̄B) are

flow equivalent (see Theorem 3.5). This, together with the second characteriza-

tion, implies that det(id−A) = det(id−B), and so the conjecture is confirmed.

It is known that flow equivalence has a close relationship to stable isomorphisms

of Cuntz–Krieger algebras (see [4], [5], [6], [8], [9], [19]). As a corollary of the

main result, we also prove that two-sided irreducible topological Markov shifts

(X̄A, σ̄A) and (X̄B , σ̄B) are flow equivalent if and only if there exists an isomor-

phism between the stable Cuntz–Krieger algebras OA⊗K and OB⊗K preserving

their canonical maximal abelian subalgebras (see Corollary 3.8).

2. Preliminaries

We write Z+ =N∪ {0}. The transpose of a matrix A is written At. The charac-

teristic function of a set S is denoted by 1S . We say that a subset of a topological

space is clopen if it is both closed and open. A topological space is said to be

totally disconnected if its topology is generated by clopen subsets. By a Cantor

set, we mean a compact, metrizable, totally disconnected space with no isolated

points. It is known that any two such spaces are homeomorphic. A good intro-

duction to symbolic dynamics can be found in the standard textbook [10] by

Lind and Marcus.

Let A = [A(i, j)]Ni,j=1 be an N × N matrix with entries in {0,1}, where

1 < N ∈ N. Throughout the paper, we assume that A has no rows or columns

identically equal to zero. Define

XA =
{
(xn)n∈N ∈ {1, . . . ,N}N

∣∣A(xn, xn+1) = 1 ∀n ∈N
}
.
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It is a compact Hausdorff space with natural product topology on {1, . . . ,N}N.
The shift transformation σA on XA defined by σA((xn)n) = (xn+1)n is a contin-

uous surjective map on XA. The topological dynamical system (XA, σA) is called

the (right) one-sided topological Markov shift for A. We henceforth assume that

A satisfies condition (I) in the sense of [5]. The matrix A satisfies condition (I)

if and only if XA has no isolated points, that is, XA is a Cantor set.

We let (X̄A, σ̄A) denote the two-sided topological Markov shift. Namely,

X̄A =
{
(xn)n∈Z ∈ {1, . . . ,N}Z

∣∣A(xn, xn+1) = 1 ∀n ∈ Z
}

and σ̄A((xn)n∈Z) = (xn+1)n∈Z.

A subset S in XA (resp., in X̄A) is said to be σA-invariant (resp., σ̄A-

invariant) if σA(S) = S (resp., σ̄A(S) = S).

2.1. Continuous orbit equivalence
For x= (xn)n∈N ∈XA, the orbit orbσA

(x) of x under σA is defined by

orbσA
(x) =

∞⋃
k=0

∞⋃
l=0

σ−k
A

(
σl
A(x)

)
.

DEFINITION 2.1 ([11, SECTION 5])

Let (XA, σA) and (XB, σB) be two one-sided topological Markov shifts. If there

exists a homeomorphism h :XA →XB such that h(orbσA
(x)) = orbσB

(h(x)) for

x ∈XA, then (XA, σA) and (XB , σB) are said to be topologically orbit equivalent.

In this case, there exist k1, l1 :XA → Z+ such that

σ
k1(x)
B

(
h
(
σA(x)

))
= σ

l1(x)
B

(
h(x)

)
∀x ∈XA.

Similarly there exist k2, l2 :XB → Z+ such that

σ
k2(x)
A

(
h−1

(
σB(x)

))
= σ

l2(x)
A

(
h−1(x)

)
∀x ∈XB.

Furthermore, if we may choose k1, l1 :XA → Z+ and k2, l2 :XB → Z+ as contin-

uous maps, then the topological Markov shifts (XA, σA) and (XB , σB) are said

to be continuously orbit equivalent.

If two one-sided topological Markov shifts are topologically conjugate, then they

are continuously orbit equivalent. For the two matrices

A=

[
1 1

1 1

]
and B =

[
1 1

1 0

]
,

the topological Markov shifts (XA, σA) and (XB , σB) are continuously orbit

equivalent, but not topologically conjugate (see [11, Section 5]).

Let [σA] denote the set of all homeomorphisms τ of XA such that τ(x) ∈
orbσA

(x) for all x ∈XA. It is called the full group of (XA, σA). Let ΓA be the

set of all τ in [σA] such that there exist continuous functions k, l : XA → Z+

satisfying σ
k(x)
A (τ(x)) = σ

l(x)
A (x) for all x ∈XA. The set ΓA is a subgroup of [σA]

and is called the continuous full group for (XA, σA). We note that the group ΓA
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has been written as [σA]c in the earlier paper [11]. It has been proved in [14] that

the isomorphism class of ΓA as an abstract group is a complete invariant of the

continuous orbit equivalence class of (XA, σA) (see [16] for more general results

and further studies).

2.2. Étale groupoids
By an étale groupoid we mean a second countable locally compact Hausdorff

groupoid such that the range map is a local homeomorphism. We refer the reader

to [18] for background material on étale groupoids. For an étale groupoid G,

we let G(0) denote the unit space, and we let s and r denote the source and

range maps, respectively. For x ∈G(0), r(Gx) is called the G-orbit of x. When

every G-orbit is dense in G(0), G is said to be minimal. For x ∈G(0), we write

Gx = r−1(x)∩ s−1(x) and call it the isotropy group of x. The isotropy bundle is

G′ = {g ∈G | r(g) = s(g)}=
⋃

x∈G(0) Gx. We say that G is principal if G′ =G(0).

When the interior of G′ is G(0), we say that G is essentially principal. A subset

U ⊂G is called a G-set if r|U,s|U are injective. For an open G-set U , we let πU

denote the homeomorphism r ◦ (s | U)−1 from s(U) to r(U).

We would like to recall the notion of topological full groups for étale groupoids.

DEFINITION 2.2 ([15, DEFINITION 2.3])

Let G be an essentially principal étale groupoid whose unit space G(0) is com-

pact.

(a) The set of all α ∈Homeo(G(0)) such that for every x ∈G(0) there exists

g ∈ G satisfying r(g) = x and s(g) = α(x) is called the full group of G and is

denoted by [G].

(b) The set of all α ∈ Homeo(G(0)) for which there exists a compact open

G-set U satisfying α= πU is called the topological full group of G and is denoted

by [[G]].

Obviously [G] is a subgroup of Homeo(G(0)) and [[G]] is a subgroup of [G].

For α ∈ [[G]] the compact open G-set U as above uniquely exists, because G is

essentially principal. Since G is second countable, it has countably many compact

open subsets, and so [[G]] is at most countable. For minimal groupoids on Cantor

sets, it is known that the isomorphism class of [[G]] is a complete invariant of G

(see [16, Theorem 3.10]).

Let (XA, σA) be a topological Markov shift. The étale groupoid GA for

(XA, σA) is given by

GA =
{
(x,n, y) ∈XA ×Z×XA

∣∣ ∃k, l ∈ Z+, n= k− l, σk
A(x) = σl

A(y)
}
.

The topology of GA is generated by the sets{
(x,k− l, y) ∈GA

∣∣ x ∈ V, y ∈W,σk
A(x) = σl

A(y)
}
,

where V,W ⊂XA are open and k, l ∈ Z+. Two elements (x,n, y) and (x′, n′, y′)

in GA are composable if and only if y = x′, and the multiplication and the inverse
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are

(x,n, y) · (y,n′, y′) = (x,n+ n′, y′), (x,n, y)−1 = (y,−n,x).

The range and source maps are given by r(x,n, y) = (x,0, x) and s(x,n, y) =

(y,0, y), respectively. We identify XA with the unit space G
(0)
A via x �→ (x,0, x).

The groupoid GA is essentially principal. The groupoid GA is minimal if and

only if (XA, σA) is irreducible. It is easy to see that the topological full group

[[GA]] is canonically isomorphic to the continuous full group ΓA.

2.3. Cuntz–Krieger algebras
Let A= [A(i, j)]Ni,j=1 be an N ×N matrix with entries in {0,1}, and let (XA, σA)

be the one-sided topological Markov shift. The Cuntz–Krieger algebra OA, intro-

duced in [5], is the universal C∗-algebra generated by N partial isometries S1, . . . ,

SN subject to the relations

N∑
j=1

SjS
∗
j = 1 and S∗

i Si =

N∑
j=1

A(i, j)SjS
∗
j .

The subalgebra DA of OA generated by elements Si1Si2 · · ·SikS
∗
ik
· · ·S∗

i1
is nat-

urally isomorphic to C(XA), and is a Cartan subalgebra in the sense of [18]. It

is also well known that the pair (OA,DA) is isomorphic to the pair (C∗
r (GA),

C(XA)), where C∗
r (GA) denotes the reduced groupoid C∗-algebra and C(XA) is

regarded as a subalgebra of it. Thus, there exists an isomorphism Ψ :OA →C∗
r (G)

such that Ψ(DA) =C(XA).

THEOREM 2.3

Let (XA, σA) and (XB , σB) be two irreducible one-sided topological Markov shifts.

The following conditions are equivalent.

(a) (XA, σA) and (XB, σB) are continuously orbit equivalent.

(b) The étale groupoids GA and GB are isomorphic.

(c) There exists an isomorphism Ψ :OA →OB such that Ψ(DA) =DB .

Proof

The equivalence between (a) and (c) follows from [11, Theorem 1.1]. The equiv-

alence between (b) and (c) follows from [18, Proposition 4.11] (see also [15, The-

orem 5.1]). �

2.4. Flow equivalence
In this section, we would like to recall Boyle–Handelman’s theorem, which says

that the ordered cohomology group is a complete invariant for flow equivalence

between irreducible shifts of finite type.

Let A= [A(i, j)]Ni,j=1 be an N ×N matrix with entries in {0,1}, and consider

the two-sided topological Markov shift (X̄A, σ̄A). Set

H̄A =C(X̄A,Z)/
{
ξ − ξ ◦ σ̄A

∣∣ ξ ∈C(X̄A,Z)
}
.
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The equivalence class of a function ξ ∈C(X̄A,Z) in H̄A is written [ξ]. We define

the positive cone H̄A
+ by

H̄A
+ =

{
[ξ] ∈ H̄A

∣∣ ξ(x)≥ 0 ∀x ∈ X̄A

}
.

The pair (H̄A, H̄A
+ ) is called the ordered cohomology group of (X̄A, σ̄A) (see [2,

Section 1.3]). Boyle and Handelman proved the following theorem, which plays

a key role in this paper.

THEOREM 2.4 ([2, THEOREM 1.12])

Suppose that (X̄A, σ̄A) and (X̄B, σ̄B) are irreducible two-sided topological Markov

shifts. Then the following are equivalent.

(a) (X̄A, σ̄A) and (X̄B, σ̄B) are flow equivalent.

(b) The ordered cohomology groups (H̄A, H̄A
+ ) and (H̄B , H̄B

+ ) are isomor-

phic; that is, there exists an isomorphism Φ : H̄A → H̄B such that Φ(H̄A
+ ) = H̄B

+ .

We also recall the following from [2] for later use.

PROPOSITION 2.5 ([2, PROPOSITION 3.13(A)])

Let (X̄A, σ̄A) be a two-sided topological Markov shift, and let ξ ∈C(X̄A,Z). Then

[ξ] is in H̄A
+ if and only if ∑

x∈O

ξ(x)≥ 0

holds for any finite σ̄A-invariant set O ⊂ X̄A.

In the same way as above, we introduce (HA,HA
+ ) for the one-sided topological

Markov shift (XA, σA) as follows:

HA =C(XA,Z)/
{
ξ − ξ ◦ σA

∣∣ ξ ∈C(XA,Z)
}

and

HA
+ =

{
[ξ] ∈HA

∣∣ ξ(x)≥ 0 ∀x ∈XA

}
.

We will show that (H̄A, H̄A
+ ) and (HA,HA

+ ) are actually isomorphic (see Lem-

ma 3.1).

2.5. The Bowen–Franks group
Let A = [A(i, j)]Ni,j=1 be an N ×N matrix with entries in {0,1}. The Bowen–

Franks group BF(A) is the abelian group Z
N/(id−A)ZN . Bowen and Franks

[1] have proved that the Bowen–Franks group is an invariant of flow equiva-

lence. Parry and Sullivan [17] have proved that the determinant of id−A is also

an invariant of flow equivalence. Evidently, if BF(A) is an infinite group, then

det(id−A) is zero. If BF(A) is a finite group, then |det(id−A)| is equal to the

cardinality of BF(A). Therefore it is sufficient to know the Bowen–Franks group
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and the sign of the determinant in order to find the determinant. The following

theorem by Franks shows that these invariants are complete.

THEOREM 2.6 ([6, THEOREM])

Suppose that (X̄A, σ̄A) and (X̄B , σ̄B) are irreducible two-sided topological Markov

shifts. Then (X̄A, σ̄A) and (X̄B, σ̄B) are flow equivalent if and only if BF(A)∼=
BF(B) and sgn(det(id−A)) = sgn(det(id−B)).

In what follows, we consider BF(At) = Z
N/(id−At)ZN . Although BF(At) is iso-

morphic to BF(A) as an abelian group, there does not exist a canonical isomor-

phism between them, and so we must distinguish them carefully.

We denote the equivalence class of (1,1, . . . ,1) ∈ Z
N in BF(At) by uA. By [4,

Proposition 3.1], K0(OA) is isomorphic to BF(At) and the class of the unit of OA

maps to uA under this isomorphism. And K1(OA) is isomorphic to Ker(id−At)

on Z
N . In [15], it has been shown that these groups naturally arise from the

homology theory of étale groupoids.

Let G be an étale groupoid whose unit space G(0) is a Cantor set. One

can associate the homology groups Hn(G) with G (see [15, Section 3] for the

precise definition). The homology group H0(G) is the quotient of C(G(0),Z) by

the subgroup generated by 1r(U) − 1s(U) for compact open G-sets U . We denote

the equivalence class of ξ ∈ C(G(0),Z) in H0(G) by [ξ]. For the étale groupoid

GA, we have the following.

THEOREM 2.7 ([15, THEOREM 4.14])

Let (XA, σA) be a one-sided topological Markov shift. Then

Hn(GA)∼=

⎧⎪⎪⎨
⎪⎪⎩
BF(At) = Z

N/(id−At)ZN , n= 0,

Ker(id−At), n= 1,

0, n≥ 2.

Moreover, there exists an isomorphism Φ : H0(GA) → BF(At) such that

Φ([1XA
]) = uA.

In particular, it follows from Theorem 2.3 that the pair (BF(At), uA) is an invari-

ant for continuous orbit equivalence of one-sided topological Markov shifts (see

also [13, Theorem 1.3]). Thus, if (XA, σA) and (XB, σB) are continuously orbit

equivalent, then there exists an isomorphism Φ : BF(At) → BF(Bt) such that

Φ(uA) = uB .

3. Classification up to continuous orbit equivalence

Let (XA, σA) be an irreducible one-sided topological Markov shift. As in the

previous section, (X̄A, σ̄A) denotes the two-sided topological Markov shift corre-

sponding to (XA, σA). Define ρ : X̄A →XA by ρ((xn)n∈Z) = (xn)n∈N. Clearly we

have that σA ◦ ρ= ρ ◦ σ̄A.
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LEMMA 3.1

The map C(XA,Z) � ξ �→ ξ ◦ ρ ∈ C(X̄A,Z) gives rise to an isomorphism ρ̃ from

HA to H̄A satisfying ρ̃(HA
+ ) = H̄A

+ .

Proof

For any η ∈ C(XA,Z), one has that (η − η ◦ σA) ◦ ρ= η ◦ ρ− η ◦ ρ ◦ σ̄A, and so

[ξ] �→ [ξ ◦ ρ] is a well-defined homomorphism ρ̃ from HA to H̄A.

Let ζ ∈ C(X̄A,Z). Then ζ(x) depends only on finitely many coordinates of

x ∈ X̄A. Hence, for sufficiently large n ∈ N, there exists ξ ∈ C(XA,Z) such that

ζ ◦ σ̄n
A = ξ ◦ ρ. Thus ρ̃ is surjective.

Clearly ρ̃(HA
+ ) ⊂ H̄A

+ . It follows from the argument above that H̄A
+ is con-

tained in ρ̃(HA
+ ).

It remains for us to show the injectivity. Let ξ ∈ C(XA,Z). Suppose that

there exists ζ ∈C(X̄A,Z) such that ξ ◦ ρ= ζ − ζ ◦ σ̄A. In the same way as above,

for sufficiently large n ∈ N, there exists η ∈ C(XA,Z) such that ζ ◦ σ̄n
A = η ◦ ρ.

Then

ξ ◦ σn
A ◦ ρ= ξ ◦ ρ ◦ σ̄n

A = ζ ◦ σ̄n
A − ζ ◦ σ̄n+1

A = (η− η ◦ σA) ◦ ρ.

Hence ξ ◦ σn
A = η− η ◦ σA. Thus [ξ] = [ξ ◦ σn

A] = 0 in HA. �

LEMMA 3.2

For ξ ∈C(XA,Z), [ξ] is in HA
+ if and only if

∑
x∈O ξ(x)≥ 0 holds for every finite

σA-invariant set O ⊂XA.

Proof

Suppose that [ξ] is in HA
+ . By the lemma above, ρ̃([ξ]) = [ξ ◦ ρ] is in H̄A

+ . Let

O ⊂XA be a finite σA-invariant set. There exists a finite σ̄A-invariant set Ō ⊂ X̄A

such that ρ | Ō is a bijection from Ō to O. It follows from Proposition 2.5 that∑
x∈Ō ξ(ρ(x))≥ 0. Hence

∑
x∈O ξ(x)≥ 0.

Suppose that
∑

x∈O ξ(x)≥ 0 holds for every finite σA-invariant set O ⊂XA.

For any finite σ̄A-invariant set Ō ⊂ X̄A, O = ρ(Ō)⊂XA is a finite σA-invariant

set and ρ | Ō is injective. Therefore
∑

x∈Ō ξ(ρ(x)) =
∑

x∈O ξ(x)≥ 0. By Proposi-

tion 2.5, [ξ ◦ ρ] is in H̄A
+ . By the lemma above, [ξ] is in HA

+ as desired. �

Let G be an étale groupoid. We denote by Hom(G,Z) the set of continuous

homomorphisms ω :G→ Z. We think of Hom(G,Z) as an abelian group by point-

wise addition. For ξ ∈ C(G(0),Z), we can define ∂(ξ) ∈Hom(G,Z) by ∂(ξ)(g) =

ξ(r(g)) − ξ(s(g)). The cohomology group H1(G) =H1(G,Z) is the quotient of

Hom(G,Z) by {∂(ξ) | ξ ∈C(G(0),Z)}. The equivalence class of ω :G→ Z is writ-

ten [ω] ∈H1(G).

Let g ∈G be such that r(g) = s(g), that is, g ∈G′. Since ∂(ξ)(g) = 0 for any

ξ ∈C(G(0),Z), [ω] �→ ω(g) is a well-defined homomorphism from H1(G) to Z. We

say that g is attracting if there exists a compact open G-set U such that g ∈ U ,
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then r(U)⊂ s(U) and

lim
n→+∞

(πU )
n(y) = r(g)

holds for any y ∈ s(U).

Let (XA, σA) be a one-sided topological Markov shift, and consider the étale

groupoid GA (see Section 2.2 for the definition). We say that x ∈XA is eventually

periodic if there exist k, l ∈ Z+ such that k �= l and σk
A(x) = σl

A(x). This is equiv-

alent to saying that {σn
A(x) ∈XA | n ∈ Z+} is a finite set. When x is eventually

periodic, we call

min
{
k− l

∣∣ k, l ∈ Z+, k > l, σk
A(x) = σl

A(x)
}

the period of x.

LEMMA 3.3

Let x ∈XA.

(a) If x is not eventually periodic, then the isotropy group (GA)x is trivial.

(b) If x is eventually periodic, then (GA)x = {(x,np,x) ∈ GA | n ∈ Z} ∼= Z,

where p is the period of x.

(c) When x is eventually periodic and has period p, (x,np,x) is attracting if

and only if n is positive.

Proof

Both (a) and (b) are obvious. We prove (c). Suppose that x is an eventually

periodic point whose period is p. Let (x,np,x) ∈ (GA)x. Assume that n is pos-

itive. Choose k, l ∈ Z+ so that σk
A(x) = σl

A(x) and pn = k − l. Define a clopen

neighborhood V and W of x by

V =
{
(yn)n ∈XA

∣∣ yi = xi ∀i= 1,2, . . . , k+ 1
}

and

W =
{
(yn)n ∈XA

∣∣ yi = xi ∀i= 1,2, . . . , l+ 1
}
.

We have that V ⊂W and σk
A(V ) = σl

A(W ). Then

U =
{
(y,np, z) ∈GA

∣∣ y ∈ V, z ∈W,σk
A(y) = σl

A(z)
}

is a compact open GA-set such that (x,np,x) ∈ U , r(U) = V , s(U) = W , and

πU = (σk
A | V )−1 ◦ (σl

A |W ). It is easy to see that

lim
m→+∞

(πU )
m(z) = x

holds for any z ∈ s(U). Thus (x,np,x) is attracting.

Suppose that U ⊂ GA is a compact open GA-set containing (x,0, x). Then

πU (y) = y for any y sufficiently close to x, and so (x,0, x) is not attracting.

Assume that n is negative. Let U ⊂GA be a compact open GA-set containing

(x,np,x). By the argument above, (x,−np,x) is attracting. Hence there exists
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a clopen neighborhood V of x such that V ⊂ s(U) and V ⊂ πU (V ). This means

that (x,np,x) cannot be an attracting element. �

PROPOSITION 3.4

There exists an isomorphism Φ :H1(GA)→HA such that Φ([ω]) is in HA
+ if and

only if ω(g)≥ 0 for every attracting g ∈GA.

Proof

Let ω ∈Hom(GA,Z). Define ξ ∈C(XA,Z) by

ξ(x) = ω
((
x,1, σA(x)

))
.

Let us verify that the map ω �→ ξ is surjective. For a given ξ ∈ C(XA,Z), we

can define ω ∈Hom(GA,Z) as follows. Take (x,n, y) ∈GA. There exists k, l ∈ Z+

such that k− l= n and σk
A(x) = σl

A(y). Put

ω
(
(x,n, y)

)
=

k−1∑
i=0

ξ
(
σi
A(x)

)
−

l−1∑
j=0

ξ
(
σj
A(y)

)
.

Clearly this gives a well-defined continuous homomorphism from GA to Z. If

there exists η ∈C(XA,Z) such that ω = ∂(η), then ξ = η− η ◦σA, that is, [ξ] = 0

in HA. It is also easy to see that the converse holds. Therefore Φ : [ω] �→ [ξ] is an

isomorphism from H1(GA) to HA.

We would like to show that [ξ] is in HA
+ if and only if ω(g) ≥ 0 for every

attracting g ∈GA. Let x ∈XA be an eventually periodic point whose period is p,

and let g = (x,np,x) be an attracting element. By the lemma above, n is positive.

There exists k, l ∈ Z+ such that k− l= np and σk
A(x) = σl

A(x). Then one has

ω(g) =

k−1∑
i=0

ξ
(
σi
A(x)

)
−

l−1∑
j=0

ξ
(
σj
A(x)

)

=

k−1∑
i=l

ξ
(
σi
A(x)

)

= n

l+p−1∑
i=l

ξ
(
σi
A(x)

)
.

Notice that O = {σl
A(x), σ

l+1
A (x), . . . , σl+p−1

A (x)} is a finite σA-invariant set. By

Lemma 3.2, [ξ] belongs to HA
+ if and only if∑

y∈O

ξ(y)≥ 0

for any finite σA-invariant set O ⊂XA, thereby completing the proof. �

Consequently we have the following.
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THEOREM 3.5

Let (XA, σA) and (XB , σB) be two irreducible one-sided topological Markov shifts.

If (XA, σA) is continuously orbit equivalent to (XB , σB), then there exists an

isomorphism Φ :HA →HB such that Φ(HA
+ ) =HB

+ . In particular, (X̄A, σ̄A) is

flow equivalent to (X̄B, σ̄B).

Proof

Consider the étale groupoids GA and GB . By Theorem 2.3, GA and GB are

isomorphic. Let ϕ : GA → GB be an isomorphism. For g ∈ GA, g is attracting

in GA if and only if ϕ(g) is attracting in GB . It follows from Proposition 3.4

above that (HA,HA
+ ) is isomorphic to (HB ,HB

+ ). Then, Lemma 3.1 implies that

(H̄A, H̄A
+ ) is isomorphic to (H̄B , H̄B

+ ). By Theorem 2.4, (X̄A, σ̄A) is flow equiva-

lent to (X̄B, σ̄B). �

THEOREM 3.6

Let (XA, σA) and (XB , σB) be two irreducible one-sided topological Markov shifts.

The following conditions are equivalent.

(a) (XA, σA) and (XB, σB) are continuously orbit equivalent.

(b) The étale groupoids GA and GB are isomorphic.

(c) There exists an isomorphism Ψ :OA →OB such that Ψ(DA) =DB .

(d) OA is isomorphic to OB and sgn(det(id−A)) = sgn(det(id−B)).

(e) There exists an isomorphism Φ : BF(At)→ BF(Bt) such that Φ(uA) =

uB and sgn(det(id−A)) = sgn(det(id−B)).

Proof

The equivalence between (a), (b), and (c) is already known (see Theorem 2.3).

As mentioned in Section 2.5, (K0(OA), [1]) is isomorphic to (BF(At), uA), and so

(d)⇒ (e) holds. The implication (e)⇒ (a) follows from [12, Theorem 1.1].

Suppose that (XA, σA) and (XB , σB) are continuously orbit equivalent. It

follows from the theorem above that the two-sided topological Markov shifts

(X̄A, σ̄A) and (X̄B , σ̄B) are flow equivalent. Therefore, by [17], we have that

det(id−A) = det(id−B) (see Theorem 2.6). Since (a)⇒ (c) is already known, OA

is isomorphic to OB . Thus we have obtained (d). This completes the proof. �

As mentioned in Section 2.5, det(id−A) = 0 when BF(At) is infinite, and

|det(id−A)| equals the cardinality of BF(At) when BF(At) is finite. Hence,

our invariant of the continuous orbit equivalence consists of a finitely gener-

ated abelian group F , an element u ∈ F , and s ∈ {−1,0,1} such that F is an

infinite group if and only if s= 0. Conversely, for any such triplet (F,u, s), there

exists an irreducible one-sided topological Markov shift whose invariant is equal

to (F,u, s). This is probably known to experts, but the authors are not aware of

a specific reference and thus include a proof for completeness.
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LEMMA 3.7

Let F be a finitely generated abelian group, and let u ∈ F . Let s= 0 when F is

infinite, and let s be either −1 or 1 when F is finite. There exists an irreducible

one-sided topological Markov shift (XA, σA) such that (F,u)∼= (BF(At), uA) and

the sign of det(id−A) equals s ∈ {−1,0,1}.

Proof

Suppose that we are given (F,u, s). It suffices to find a square irreducible matrix

A with entries in Z+ satisfying the desired properties (see [10, Section 2.3]

or [5, Remark 2.16]). Let A = [A(i, j)]Ni,j=1 be an N × N matrix with entries

in Z+ such that A(1,1) = 2, A(i, i)≥ 2, and A(i, j) = 1 for all i, j with i �= j. Let

di = A(i, i) − 2, and let r = |{i | di = 0}| − 1. Then it is straightforward to see

that

BF(At)∼= Z
r ⊕

⊕
di≥2

Z/diZ and det(id−A) = (−1)N
N∏
i=2

di.

Therefore we can construct such A so that BF(At)∼= F and the sign of det(id−A)

equals s. In what follows, we identify BF(At) with F . Note that uA ∈BF(At) is

zero. Choose (c1, c2, . . . , cN ) ∈ Z
N whose equivalence class in BF(At) equals u.

Since uA is zero, we may assume that ci ∈ Z+ for all i. We now construct a new

matrix B as follows. Set

Σ =
{
(i, j) ∈ Z+ ×Z+

∣∣ 1≤ i≤N,0≤ j ≤ ci
}
.

Define B = [B((i, j), (k, l))](i,j),(k,l)∈Σ by

B
(
(i, j), (k, l)

)
=

⎧⎪⎪⎨
⎪⎪⎩
A(i, k), j = ci, l= 0,

1, i= k, j + 1= l,

0, otherwise.

The group BF(At) is the abelian group with generators e1, . . . , eN and rela-

tions

ei =
N∑
j=1

A(i, j)ej ,

and u equals
∑

ciei. The group BF(Bt) is the abelian group with generators

{fi,j | (i, j) ∈Σ} and relations

fi,j = fi,j′ and fi,ci =

N∑
k=1

A(i, k)fk,0,

and uB equals
∑

fi,j . Hence (BF(A
t), u) is isomorphic to (BF(Bt), uB). It is also

easy to see that det(id−A) = det(id−B). The proof is completed. �

For i= 1,2, let Gi be a minimal essentially principal étale groupoid whose unit

space is a Cantor set. It has been shown that the following conditions are mutually
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equivalent (see [16, Theorem 3.10]). For a group Γ, we let D(Γ) denote the

commutator subgroup.

• G1 and G2 are isomorphic as étale groupoids.

• [[G1]] and [[G2]] are isomorphic as discrete groups.

• D([[G1]]) and D([[G2]]) are isomorphic as discrete groups.

The étale groupoid GA arising from (XA, σA) is minimal, essentially princi-

pal, and purely infinite (see [16, Lemma 6.1]). Hence D([[GA]]) is simple by

[16, Theorem 4.16]. Moreover, D([[GA]]) is finitely generated (see [16, Corol-

lary 6.25]), [[GA]] is of type F∞ (see [16, Theorem 6.21]), and [[GA]]/D([[GA]]) is

isomorphic to (H0(GA)⊗ Z2)⊕H1(GA) (see [16, Corollary 6.24]). Theorem 3.6

tells us that the isomorphism class of [[GA]] (and D([[GA]])) is determined by

(H0(GA), [1XA
],det(id−A)) (see also Theorem 2.7). By Lemma 3.7, for each

triplet (F,u, s) there exists (XA, σA) whose invariant agrees with it. In partic-

ular, the simple finitely generated groups D([[GA]]) are parameterized by such

triplets (F,u, s).

We conclude this article by giving a corollary. We denote by K the C∗-

algebra of all compact operators on 
2(Z). Let C ∼= c0(Z) be the maximal abelian

subalgebra of K consisting of diagonal operators.

COROLLARY 3.8

Let (X̄A, σ̄A) and (X̄B , σ̄B) be two irreducible two-sided topological Markov shifts.

The following conditions are equivalent.

(a) (X̄A, σ̄A) and (X̄B, σ̄B) are flow equivalent.

(b) There exists an isomorphism Ψ :OA ⊗K→OB ⊗K such that Ψ(DA ⊗
C) =DB ⊗C.

Proof

From [5, Theorem 4.1], we know that (a) ⇒ (b). Let us assume (b). In what

follows, we identify the Bowen–Franks group with the K0-group of the Cuntz–

Krieger algebra. We have the isomorphism K0(Ψ) : BF(At)→BF(Bt). By Lem-

ma 3.7, there exists an irreducible one-sided topological Markov shift (XC , σC)

such that (BF(Bt),K0(Ψ)(uA))∼= (BF(Ct), uC) and det(id−B) = det(id−C). It

follows from Theorem 2.6 that (X̄B , σ̄B) is flow equivalent to (X̄C , σ̄C). More-

over, by Huang’s theorem (see [8, Theorem 2.15]) and its proof, there exists

an isomorphism Φ : OB ⊗ K → OC ⊗ K such that Φ(DB ⊗ C) = DC ⊗ C and

K0(Φ)(K0(Ψ)(uA)) = uC . Then Φ◦Ψ is an isomorphism from OA⊗K to OC ⊗K

such that (Φ ◦Ψ)(DA ⊗C) =DC ⊗C and K0(Φ ◦Ψ)(uA) = uC . In the same way

as the proof of [12, Theorem 4.1], we can conclude that (OA,DA) is isomorphic to

(OC ,DC). By virtue of Theorem 3.6, we get that det(id−A) = det(id−C). There-

fore det(id−A) = det(id−B). Hence, by Theorem 2.6, (X̄A, σ̄A) and (X̄B , σ̄B) are

flow equivalent. �
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