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Abstract In this paperwe study the discrete spectrumof tensor products of irreducible

unitary representations of the universal covering group of SU(1,1). As a consequence of

these results, we show that the set of smooth vectors of the tensor product intersects

trivially some of the representations in the discrete spectrum. These results illustrate

aspects of the much larger program of branching laws for reductive groups.

1. Introduction

Understanding a unitary representation π of a Lie group G often involves under-

standing its restriction to suitable subgroups H . In physics, this is referred to as

breaking the symmetry, and it often means exhibiting a nice basis of the represen-

tation space of π. Similarly, decomposing a tensor product of two representations

of G is also an important branching problem, namely, the restriction to the diag-

onal in G×G. This kind of branching law plays a prominent role in quantum

mechanics. The most classical situation is that of the group SU(2). The set of

irreducible unitary representations of SU(2) (up to isomorphism) is in bijection

with the set of nonnegative integers n. The decomposition

πn ⊗ πm = πn+m ⊕ πn+m−2 ⊕ · · · ⊕ π|n−m|+2 ⊕ π|n−m|

is well known (see, e.g., [11]) and leads to the so-called Clebsch–Gordan coeffi-

cients.

Generally speaking, the more branching laws we know for a given represen-

tation, the more we know about its structure. An important example is given by

using the maximal compact subgroup K of a semisimple Lie group G. The K-

spectrum of a representation π is an important invariant which serves to describe

the structure of π. It is also important to give good models of both π and its

explicit K-types. There has been much progress in recent years (and of course a

large number of more classical works), both for abstract theory and for concrete

examples of branching laws.

The aim of this paper is to study carefully tensor products of irreducible

unitary representations of SU(1,1) and its universal cover. Indeed, the Lie group
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SU(1,1) has the same complexified Lie algebra as SU(2), namely, sl(2,C). There-

fore, the algebraic picture is quite simple and well known. Nevertheless, since irre-

ducible unitary representations of SU(1,1) are infinite-dimensional, the decom-

position of tensor products usually involves both a discrete and a continuous

spectrum. There already exist effective methods to deal with the continuous

spectrum (see, e.g., [27]). Unfortunately, the analysis of the discrete spectrum

seems more tedious. Hence, our specific goal here is to determine when a discrete

spectrum does occur in the restriction of a given tensor product, and then to

describe explicitly the representations arising in this discrete spectrum.

Here our results should be seen in the light of the larger program of T.

Kobayashi, in particular, the papers [12], [13], and [14], which treat in a very gen-

eral framework branching laws for unitary representations for reductive groups.

Note especially the theorem that a continuous spectrum appears only if none

of the K ′-finite vectors are K-finite, where these are the maximal compact sub-

groups for the reductive pair of groups in question. In [13] there is a very general

criterion for discrete decomposability of restrictions, and in [12] and [14] there

are further conditions that ensure admissibility, that is, finite multiplicity in the

branching law. In the present paper we consider the very special case of weight

modules of degree 1, so that the subalgebra is a Cartan algebra, and the corre-

sponding multiplicities are all at most one.

Let us now review the main results of this paper. Let G denote the uni-

versal covering group of G0 = SU(1,1). Let H = ( 1 0
0 −1 ). Then {eitH ,0≤ t < 2π}

generates a maximal compact subgroup K0 of G0. Its covering group is K =

{exp(itH), t ∈ R}. The center of G is generated by exp(2iπH). Let ρ denote an

irreducible unitary representation of G. From Schur’s lemma we conclude that

ρ(exp(2iπH)) = e−2iπτ0I . Therefore, ρ̃(exp(itH)) := eiτ0tρ(exp(itH)) is a unitary

representation of R, with period 2π, and hence is completely reducible. As a con-

sequence, H possesses a complete system of eigenelements. In other words, the

corresponding representation of the complexified Lie algebra sl(2,C) is a weight

module (see Definition 2.1). We review the basics of weight modules in Section 2.

Section 3 deals with unitarizable weight modules for su(1,1). Recall that a

unitarizable module is a module defined on a Hilbert space which is the differ-

ential of a unitary module for the universal covering group G. Using the explicit

action of sl(2,C) given in Section 2, we recover the classification due to Pukansky

of the unitary dual of G, which falls into three series: the principal series πε,it

(0< ε≤ 1, t ∈R), the complementary series πc
σ,τ (0< σ, τ < 1), the (continuation

of the) discrete series π±
λ (λ > 0), and the extra trivial representation.

In Sections 4 and 5, we study a tensor product V of the form π1 ⊗π+
λ where

π1 is πε,it, π
c
σ,τ , or π

−
μ . The main result in Section 4 is Theorem 4.4.

THEOREM 4.4′

Every simple weight sl(2,C)-module W whose support is included in the support

of V appears as a quotient of the algebraic tensor product V .
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One should think of this result as an algebraic counterpart for the notion of

continuous spectrum.

Then Section 5 is devoted to the study of the discrete part in the Hilbert

space V (the completion of the algebraic tensor product V ). The main result is

Theorem 5.17. Let us state a particular case of this theorem.

THEOREM 5.17′

(1) If 0 < μ+ λ < 1, then the Hilbert representation π−
μ ⊗ π+

λ contains the

representation πc
λ,μ, belonging to the complementary series.

(2) If 0< σ + τ + λ < 1, then the Hilbert representation πc
σ,τ ⊗ π+

λ contains

the representation πc
σ+λ,τ , belonging to the complementary series.

(3) If 1< σ + τ − λ < 2, then the Hilbert representation πc
σ,τ ⊗ π+

λ contains

the representation πc
σ,τ−λ, belonging to the complementary series.

The discrete spectrum in item (1) is well known (see [26], [6], [17], [18], [28]),

but even in this case our method yields new insight, in particular, giving explicit

expressions.

In proving Theorem 5.17′, we provide an explicit generator for all modules

in the discrete spectrum of V . This yields results about the smooth vectors.

PROPOSITION 5.19′

If 0< λ+μ < 1 (resp., 0< σ+ τ +λ < 1 and 1< σ+ τ −λ < 2), then the Hilbert

submodule πc
λ,μ (resp., πc

σ+λ,τ and πc
σ,τ−λ) of the Hilbert representation π−

μ ⊗π+
λ

(resp., πc
σ,τ ⊗π+

λ ) intersects trivially the set of smooth vectors in π−
μ ⊗π+

λ (resp.,

πc
σ,τ ⊗ π+

λ ).

The proofs involve the algebraic structure of weight modules and asymptotic

analysis of hypergeometric functions. Also, we give some new results about dis-

crete analogues of the hypergeometric equation, for example, (5.12) and the dis-

cussion there. It should be noted that the existence of a continuous spectrum

in a branching law seems to give interesting restrictions on the regularity of the

discrete spectrum; thus, we may see here a deep connection with Kobayashi’s

criteria in [12], [13], and [14] involving K-finite vectors.

2. Weight modules

In this section, we recall the definition of a weight module, and the construction

of those weight modules which are of degree 1.

Let g denote a reductive Lie algebra, and let U(g) denote its universal

enveloping algebra. Let h be a fixed Cartan subalgebra, and denote by R the

corresponding set of roots. For α ∈ R, we denote by gα the root space for the

root α.
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2.1. The category of weight modules
DEFINITION 2.1

A g-module M is a weight module if it is finitely generated and h-diagonalizable

in the sense that

M =
⊕
λ∈h∗

Mλ, where Mλ =
{
m ∈M :H ·m= λ(H)m,∀H ∈ h

}
,

with weight spaces Mλ of finite dimension.

REMARK 2.2

Note that we require finite-dimensional weight spaces in our definition, which is

not always the case in the literature. This category also appears as a particular

case of several other categories (e.g., [20], [21], [5], [8]).

The set of all weight modules forms a full subcategory of the category of all

modules, denoted by M(g,h). Given a weight module M , we call the support of

M the set

Supp(M) = {λ ∈ h∗ :Mλ �= 0}.

The degree of a weight module M is the (possibly infinite) number

deg(M) = sup
λ∈h∗

{
dim(Mλ)

}
.

For instance, a degree 1 module is a weight module, all of whose nonzero weight

spaces are one-dimensional. Such modules have been classified by Benkart, Brit-

ten, and Lemire [4]. They are the main object of investigation of this paper.

2.2. The modules of degree 1

Let us review the classification of degree 1 modules for simple Lie algebras. First

we have the following theorem.

THEOREM 2.3 (BENKART, BRITTEN, AND LEMIRE [4, PROPOSITION 1.4])

Let g be a simple Lie algebra. Let M be a simple infinite-dimensional degree 1

weight module. Then

(1) the Lie algebra g is of type A or C;

(2) the Gelfand–Kirillov dimension of M is given by the rank of g.

2.2.1. Modules over the Weyl algebra

Let n be a positive integer. Recall that the Weyl algebra Wn is the associa-

tive algebra generated by the 2n generators {qi, pi,1≤ i≤ n} submitted to the

following relations:

[qi, qj ] = 0 = [pi, pj ], [pi, qj ] = δi,j · 1,

where the bracket is the usual commutator for associative algebras.
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Define a vector space as follows. Fix some a ∈C
n. Let

K(a) =
{
k = (k1, . . . , kn) ∈ Z

n : if ai ∈ Z, then ai + ki < 0 ⇐⇒ ai < 0
}
.

Now our vector space W (a) is the C-vector space whose basis is indexed by K(a).

For each k ∈K(a), we fix a basis vector x(k). Let (εi)1≤i≤n denote the canonical

basis of Zn. Define an action of Wn on W (a) by the following recipe:

qi · x(k) =
{
(ai + ki + 1)x(k+ εi) if ai ∈ Z<0,

x(k+ εi) otherwise;

pi · x(k) =
{
x(k− εi) if ai ∈ Z<0,

(ai + ki)x(k− εi) otherwise.

This basis shall be referred to as the standard basis of W (a).

Then we have the following.

THEOREM 2.4 (BENKART, BRITTEN, AND LEMIRE [4, THEOREM 2.9])

Let a ∈C
n. Then W (a) is a simple Wn-module.

2.2.2. Type A case

In this section only, g denotes a simple Lie algebra of type A. We construct

weight g-modules of degree 1 by using the previous construction. We realize the

Lie algebra g inside some Wn. Let n− 1 be the rank of g. Then, we can embed g

into Wn as follows: To an elementary matrix Ei,j we associate the element qipj
of Wn. This is easily seen to define an embedding of g into Wn. Let

K0(a) =
{
k = (k1, . . . , kn) ∈K(a) :

n∑
i=1

ki = 0
}
.

Let N(a) be the subspace of W (a) whose basis is indexed by K0(a). Then we

have the following.

THEOREM 2.5 (BENKART, BRITTEN, AND LEMIRE [4, THEOREM 5.8])

(1) The vector subspace N(a) of W (a) is a simple weight sl(n,C)-module of

degree 1.

(2) Conversely, if M is a simple weight sl(n,C)-module of degree 1, then

there exist a= (a1, . . . , an) ∈C
n such that the module M is isomorphic to N(a).

2.2.3. Type C case

In this section only, g denotes a simple Lie algebra of type C. We construct weight

g-modules of degree 1 in the same way as above, so we need to realize the Lie

algebra g inside some Wn. Let n be the rank of g. Then, spanC{qipj , pipj , qiqj ,
1≤ i, j ≤ n} is a subalgebra of Wn isomorphic to g. More specifically, the Cartan

subalgebra is given by

spanC

(
{qipi − qi+1pi+1, i= 1, . . . , n− 1} ∪

{
qnpn +

1

2

})
,
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the n − 1 weight vectors corresponding to the short simple roots are given by

qipi+1 with i = 1, . . . , n − 1, and the weight vector corresponding to the long

simple root is given by 1
2q

2
n. Note that this is not the same kind of embedding as

for Lie algebras of type A.

Let

K0̄(a) =
{
k = (k1, . . . , kn) ∈K(a) :

n∑
i=1

ki ∈ 2Z
}
.

Let M(a) be the subspace of W (a) whose basis is indexed by K0̄(a). Then we

have the following.

THEOREM 2.6 (BENKART, BRITTEN, AND LEMIRE [4, THEOREM 5.21])

(1) The vector subspace M(a) of W (a) is a simple weight sp(n,C)-module

of degree 1.

(2) Conversely, ifM is an infinite-dimensional simple weight sp(n,C)-module

of degree 1, then there exists a= (a1, . . . , an) ∈C
n such that M ∼=M(a).

2.3. The case of sl(2,C)
In this section, we review the classification of all weight modules for g= sl(2,C).

We consider the standard sl(2,C)-triple (F,H,E), given by

F =

(
0 0

1 0

)
, H =

(
1 0

0 −1

)
, E =

(
0 1

0 0

)
.

We therefore have the following relations:

[H,E] = 2E, [H,F ] =−2F, [E,F ] =H.

PROPOSITION 2.7

Let M be a simple weight sl(2,C)-module. Then the degree of M is 1.

Proof

Recall that Ω = 1
4H

2 + 1
2H + FE is in the center of the universal enveloping

algebra of sl(2,C). Therefore, M being simple, Ω acts as a scalar operator. On

the other hand, as M is a weight module, H acts on each weight space by

some constant (the weight). Therefore, on each weight space, FE acts by some

constant. From this, we conclude that U(g)0, the commutant of CH , acts by some

constant on each weight space. But, since M is simple, given two nonzero vectors

v and w in the same weight space, there should exist some element u ∈ U(g)
sending v to w. The fact that v and w have the same weight forces u to be in

the commutant of CH . From the above we know that u acts by some constant.

This forces v and w to be proportional, and therefore the corresponding weight

space is one-dimensional. This completes the proof. �

For a simple weight module M , the action of Ω on M is called the infinitesimal

character. From Theorem 2.5, the simple weight modules are indexed by a =
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(a1, a2) ∈C2. Recall that we set

K0(a) =

{
k = (k1, k2) ∈ Z

2 :
if ai ∈ Z, then ai + ki < 0 ⇐⇒ ai < 0,

k1 + k2 = 0

}
.

Setting k = k1 (and thus −k = k2), we have that this reduces to

K0(a) =
{
k ∈ Z : if ai ∈ Z, then ai + (−1)i−1k < 0 ⇐⇒ ai < 0

}
.

Recall then that the weight module N(a) has a basis x(k) indexed by K0(a). The

following disjoint cases exhaust all possibilities:

(I) Both a1 and a2 are not negative integers.

(II) a1 is not a negative integer but a2 is a negative integer.

(III) a2 is not a negative integer but a1 is a negative integer.

(IV) Both a1 and a2 are negative integers.

Then we have the following action of g on N(a):

(I)

⎧⎪⎪⎨
⎪⎪⎩
H · x(k) = (a1 − a2 + 2k)x(k),

E · x(k) = (a2 − k)x(k+ 1),

F · x(k) = (a1 + k)x(k− 1);

(II)

⎧⎪⎪⎨
⎪⎪⎩
H · x(k) = (a1 − a2 + 2k)x(k),

E · x(k) = x(k+ 1),

F · x(k) = (a1 + k)(a2 − k+ 1)x(k− 1);

(III)

⎧⎪⎪⎨
⎪⎪⎩
H · x(k) = (a1 − a2 + 2k)x(k),

E · x(k) = (a1 + k+ 1)(a2 − k)x(k+ 1),

F · x(k) = x(k− 1);

(IV)

⎧⎪⎪⎨
⎪⎪⎩
H · x(k) = (a1 − a2 + 2k)x(k),

E · x(k) = (a1 + k+ 1)x(k+ 1),

F · x(k) = (a2 − k+ 1)x(k− 1).

3. Unitarizability

The goal of this section is to find which weight modules for sl(2,C) are unita-

rizable. Even though this result is quite classical, we give a self-contained proof

(using a criterion of Nelson), in order to stress the Hilbert structure correspond-

ing to each unitarizable weight module.

We keep the previous notations. Let g= sl(2,C) = spanC{H,E,F}. Set h=

−i(E − F ), set e = 1
2 (−iH + E + F ), and set f = 1

2 (iH + E + F ). Then

spanR{h, e, f} is a real Lie algebra isomorphic to su(1,1).

Let G denote the simply connected Lie group with Lie algebra su(1,1). Recall

the following result of Nelson [16, Corollary 9.3].
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THEOREM 3.1 (NELSON)

Let ρ be a representation of su(1,1) on a Hilbert space by skew-symmetric opera-

tors with domain D. Then there is a unitary representation U of G such that D

is the space of infinitely differentiable vectors for U and dU(X) = ρ(X), ∀X ∈ g,

if and only if

A= ρ(h)2 + ρ(e)2 + ρ(f)2

is essentially self-adjoint and D=
⋂∞

k=1D(Āk), Ā being the closure of A.

We remark that we have A= ρ(Ω)− 1
2 (ρ(E)− ρ(F ))2. A g-module giving rise to

a representation ρ of su(1,1) satisfying the assumptions of Nelson’s theorem will

be referred to as a unitarizable module.

Thanks to this theorem, to find which N(a) are unitarizable we need to

construct on N(a) a Hilbert space structure such that h, e, and f act by skew-

symmetric operators. It is then equivalent to construct on N(a) a Hilbert space

structure such that H∗ = H , E∗ = −F , and F ∗ = −E. Let 〈·, ·〉 be an inner

product on N(a). By construction, H acts on N(a) by a semisimple operator.

So, for H to be self-adjoint it is necessary that weight vectors for different weights

are orthogonal and that all the weights are real numbers. This means that the

basis {x(k)}k∈K0 is an orthogonal basis and that a1 − a2 ∈R.

Besides, we must also have〈
F · x(k+ 1), x(k)

〉
=−

〈
x(k+ 1),E · x(k)

〉
, ∀k ∈K0.

We work with this condition in the different cases (I), (II), (III), and (IV).

3.1. Case (I)
In this case, the condition becomes

(a1 + k+ 1)
∥∥x(k)∥∥2

=−(ā2 − k)
∥∥x(k+ 1)

∥∥2
.

Let us distinguish the various situations.

(i) Assume that both a1 and a2 are not integers. In this case, K0 = Z and

we have a1+k+1 �= 0 and ā2−k �= 0. So, for the condition to hold it is necessary

and sufficient that

∀k ∈ Z,
k− ā2

k+ a1 + 1
∈R>0.

But we have seen that a1 − a2 ∈ R, so we can set a1 = a2 + r for some r ∈ R.

Therefore, we must have either Im(a2) = 0 or 2Re(a2) + r + 1 = 0. In the first

situation we must also have

∀k ∈ Z,
k− a2

k+ a2 + r+ 1
> 0.

This is true if and only if

−2− [a2]< a2 + r <−1− [a2],
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where [a2] is the integer such that [a2] ≤ a2 < [a2] + 1. Then we can express

‖x(k)‖2 uniquely in terms of ‖x(0)‖2, via the formula

∥∥x(k)∥∥2
=

∏k
j=1(j + a1)∏k

j=1(j − 1− a2)

∥∥x(0)∥∥2
if k > 0,(3.1a)

∥∥x(k)∥∥2
=

∏−k
j=1(j + a2)∏−k

j=1(j − 1− a1)

∥∥x(0)∥∥2
if k < 0.(3.1b)

Conversely, if we define an inner product on N(a) such that {x(k)} is an

orthogonal basis satisfying (3.1), then Nelson’s theorem applies, and thus the

corresponding module is unitarizable.

In the second situation, we have

∀k ∈ Z,
k− ā2

k+ a1 + 1
= 1 ∈R>0.

Then we can express ‖x(k)‖2 uniquely in terms of ‖x(0)‖2, via the formula∥∥x(k)∥∥2
=

∥∥x(0)∥∥2
, ∀k ∈ Z.(3.2)

Conversely, if we define an inner product on N(a) such that {x(k)} is an

orthogonal basis satisfying (3.2), then Nelson’s theorem applies, and thus the

corresponding module is unitarizable.

(ii) Assume that a1 is not an integer but a2 is a nonnegative integer. In this

case, an integer k belongs to K0 if and only if k ≤ a2. Moreover, since a1−a2 ∈R,

we must have a1 ∈R. Then the condition becomes

∀k < a2,
k− a2

k+ a1 + 1
∈R>0.

Therefore, we must have k+ 1+ a1 < 0 for all k < a2. This is true if and only if

a1 < −a2. Then we can express ‖x(k)‖2 uniquely in terms of ‖x(a2)‖2, via the

formula ∥∥x(a2 − k)
∥∥2

=
k!∏k

j=1(j − 1− a1 − a2)

∥∥x(a2)∥∥2
, ∀k > 0.(3.3)

Conversely, if we define an inner product on N(a) such that {x(k)} is an

orthogonal basis satisfying (3.3), then Nelson’s theorem applies, and thus the

corresponding module is unitarizable.

(iii) Assume that a2 is not an integer but a1 is a nonnegative integer. In

this case, an integer k belongs to K0 if and only if k ≥ −a1. Moreover, since

a1 − a2 ∈R, we must have a2 ∈R. Then the condition becomes

∀k ≥−a1,
k− a2

k+ a1 + 1
∈R>0.

Therefore, we must have k − a2 > 0 for all k ≥ −a1. This is true if and only if

a2 <−a1. Then we can express ‖x(k)‖2 uniquely in terms of ‖x(−a1)‖2, via the

formula ∥∥x(k− a1)
∥∥2 = k!∏k

j=1(j − 1− a1 − a2)

∥∥x(−a1)
∥∥2

, ∀k > 0.(3.4)
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Conversely, if we define an inner product on N(a) such that {x(k)} is an

orthogonal basis satisfying (3.4), then Nelson’s theorem applies, and thus the

corresponding module is unitarizable.

(iv) Assume that both a1 and a2 are nonnegative integers. In this case, an

integer k belongs to K0 if and only if −a1 ≤ k ≤ a2. Let −a1 ≤ k < a2. Then the

condition becomes

∀k ∈ Z,
k− a2

k+ a1 + 1
∈R>0.

This is not true, unless a1 = a2 = 0. This choice corresponds to the trivial (one-

dimensional) module, which is of course unitarizable. In this case, we recovered

the fact that a finite-dimensional representation of a noncompact group cannot

be unitary unless it is trivial.

3.2. Case (II)
In this case, the condition becomes

(a1 + k+ 1)(a2 − k)
∥∥x(k)∥∥2

=−
∥∥x(k+ 1)

∥∥2
.

Therefore, we must have (a1 + k + 1)(k − a2)> 0. For an integer k to belong to

K0 it is necessary that a2 − k < 0. Therefore, we must have a1 + k + 1> 0. Let

us distinguish between the two disjoint situations which may occur.

(i) If a1 /∈ Z, then the condition a1 + k + 1 > 0 for all k > a2 is true if

and only if a1 + a2 + 2 > 0. In this case, we can express ‖x(k)‖2 via the for-

mula

∥∥x(k+ a2 + 1)
∥∥2

= (k!)

k∏
j=1

(j + 1+ a1 + a2)
∥∥x(a2 + 1)

∥∥2, ∀k > 0.(3.5)

Conversely, if we define an inner product on N(a) such that {x(k)} is an

orthogonal basis satisfying (3.5), then Nelson’s theorem applies, and thus the

corresponding module is unitarizable.

(ii) If a1 is a nonnegative integer, then an integer k > a2 is in K0 if and only

if k + a1 ≥ 0. Hence, in this case the condition is fulfilled. Then we can express

‖x(k)‖2 via the formula∥∥x(k− a1)
∥∥2

= (k!)

k∏
j=1

(j − 1− a1 − a2)
∥∥x(−a1)

∥∥2, ∀k > 0, if −a1 > a2,
(3.6a)

∥∥x(k+ a2 + 1)
∥∥2

= (k!)

k∏
j=1

(j + 1+ a1 + a2)
∥∥x(a2 + 1)

∥∥2
, ∀k > 0, if −a1 ≤ a2.

(3.6b)
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Conversely, if we define an inner product on N(a) such that {x(k)} is an

orthogonal basis satisfying (3.6), then Nelson’s theorem applies, and thus the

corresponding module is unitarizable.

3.3. Case (III)
This case is analogous to the previous one. More specifically, we have exactly two

possible situations:

(i) If a2 /∈ Z, then we find the condition a1+a2+2> 0. In this case, we can

express ‖x(k)‖2 via the formula

∥∥x(−k− a1 − 1)
∥∥2

= (k!)
k∏

j=1

(j + 1+ a1 + a2)
∥∥x(−a1 − 1)

∥∥2, ∀k > 0.(3.7)

Conversely, if we define an inner product on N(a) such that {x(k)} is an

orthogonal basis satisfying (3.7), then Nelson’s theorem applies, and thus the

corresponding module is unitarizable.

(ii) If a2 is a nonnegative integer, then the unitarizability condition is ful-

filled, and we can express ‖x(k)‖2 via the formula∥∥x(a2 − k)
∥∥2

= (k!)

k∏
j=1

(j − 1− a1 − a2)
∥∥x(a2)∥∥2

, ∀k > 0, if −a1 > a2,
(3.8a)

∥∥x(−k− a1 − 1)
∥∥2

= (k!)

k∏
j=1

(j + 1+ a1 + a2)
∥∥x(−a1 − 1)

∥∥2, ∀k > 0, if −a1 ≤ a2.
(3.8b)

Conversely, if we define an inner product on N(a) such that {x(k)} is an

orthogonal basis satisfying (3.8), then Nelson’s theorem applies, and thus the

corresponding module is unitarizable.

3.4. Case (IV)
In this case, the condition becomes

(a2 − k)
∥∥x(k)∥∥2

=−(a1 + k+ 1)
∥∥x(k+ 1)

∥∥2.
Furthermore, an integer k belongs to K0 if and only if k+ a1 < 0 and a2 − k < 0.

Therefore, the condition is never fulfilled. Of course, in this case the correspond-

ing module N(a) is finite-dimensional, so we know a priori that it is not unita-

rizable.

3.5. Statement
We summarize the above results as follows.
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THEOREM 3.2

Let a= (a1, a2) ∈C
2. The module N(a) is unitarizable if and only if a is of one

of the following forms:

(1) a= (−1− x+ iy, x+ iy), with x ∈R, y ∈R.

(2) a = (a1, a2), with a1, a2 noninteger real numbers and −2− [a2] < a1 <

−1− [a2].

(3) a= (a1, a2), with a1 ∈ Z≥0 and a2 ∈R \Z such that a1 + a2 + 2< 0.

(4) a= (a1, a2), with a2 ∈ Z≥0 and a1 ∈R \Z such that a1 + a2 + 2< 0.

(5) a= (a1, a2), with a1 ∈ Z≥0 and a2 ∈ Z<0.

(6) a= (a1, a2), with a2 ∈ Z≥0 and a1 ∈ Z<0.

(7) a= (0,0).

In this classification, there are a lot of repetitions. For instance, if a1 and a2
are not integers we have N(a1, a2) =N(a1 − k, a2 + k), for any integer k. Up to

isomorphism, this list reduces to the following:

(i) N(−1− x+ iy, x+ iy), −1≤ x < 0, y ∈R>0 (principal series);

(ii) N(a1, a2), −1< a1, a2 < 0 (complementary series);

(iii) N(a1,0), a1 < 0 or N(0, a2), a2 < 0 (discrete series and continuations);

(iv) N(0,0) (trivial representation).

In the rest of this article we denote in the same way a unitarizable module and

the corresponding unitary representation of the universal covering of SU(1,1).

REMARK 3.3

The first proof of the classification of the unitary dual of the universal covering

of SU(1,1) is due to Pukanszky [22] (see also [24]). Another proof in the same

spirit as ours can be found in [10]. There, Jørgensen and Moore proved a stronger

result: any simple weight module is the differential of a continuous representation

of the universal covering of SU(1,1) in some Hilbert space.

To conclude this section, we collect the supports and the infinitesimal characters

of the unitarizable modules in Table 1.

Table 1

Modules Support Infinitesimal character

π−x,iy =N(−1− x+ iy, x+ iy) −1− 2x+ 2Z − 1
4
− y2

(principal series)

πc
−a1,−a2

=N(a1, a2)
a1 − a2 + 2Z ((a1 + a2)/2)(1 + (a1 + a2)/2)

(complementary series)

π+
−a1

=N(a1,0)
a1 − 2Z≤0 (a1/2)(1 + a1/2)

(highest weight)

π−
−a2

=N(0, a2) −a2 + 2Z≥0 (a2/2)(1 + a2/2)
(lowest weight)
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4. Tensor products: algebraic approach

In this section we investigate the algebraic structure of tensor products of sl(2,C)-

modules. More precisely, we are interested in tensor products of one of the fol-

lowing forms:

(i) N(0, b)⊗N(a,0), with a, b ∈R<0;

(ii) N(−1−x+ iy, x+ iy)⊗N(a,0), with −1≤ x < 0, y ∈R>0, and a ∈R<0;

(iii) N(a1, a2)⊗N(a,0), with −1< a1, a2 < 0, a ∈R<0.

In all cases, we denote by V the tensor product. We give a basis of V as follows.

Let x(k) be the standard basis of N(0, b) (resp., N(−1−x+iy, x+iy), N(a1, a2)),

where k belongs to Z≥0 (resp., Z). Let y(l) be the basis of N(a,0) defined by

y(l) = x(−l), where x(j) is the standard basis of N(a,0) and l belongs to Z≥0.

Set z(k, l) = x(k)⊗ y(l). This is a basis of V . Using formulas (I), (II), (III), and

(IV) of Section 2.3, we have

(i) H · z(k, l) = (−b+ a+ 2(k− l))z(k, l),

(ii) H · z(k, l) = (−1− 2x+ a+ 2(k− l))z(k, l),

(iii) H · z(k, l) = (a1 − a2 + a+ 2(k− l))z(k, l).

We deduce then that V is the direct sum of its weight spaces and that all its

nonzero weight spaces are infinite-dimensional. Moreover, we have Supp(V ) =

b1 − b2 + a + 2Z, where (b1, b2) = (0, b) (resp., (−1 − x + iy, x + iy), (a1, a2)).

From [7], we know that every submodule (resp., quotient) of V is also the direct

sum of its weight spaces. More specifically, if W is a submodule of V , then for

any λ ∈ h∗ we have Wλ = Vλ ∩W and (V/W )λ = Vλ/(Vλ ∩W ).

Let U0 denote the commutant of h in U(g). Then, as an algebra, U0 is gener-

ated by H and FE. In other words, a basis of U0 is given by the vectors (FE)tHs

for t, s ∈ Z≥0. Now recall the following general result.

THEOREM 4.1 (LEMIRE [15, THEOREM 1])

Let g be a simple finite-dimensional complex Lie algebra. Let h be a Cartan

subalgebra of g. Denote by U0 the commutant of h in U(g).

(1) Let M be a simple weight g-module. Then for any λ ∈ h∗, Mλ is either

zero or a simple U0-module.

(2) Let M0 be a simple U0-module. Then up to isomorphism, there is a unique

simple weight module M such that M0 is a weight space of M .

Finally, recall from Proposition 2.7 that a simple weight module for sl(2,C) is

of degree 1. Thus, Theorem 4.1 implies that to construct all simple submodules

(resp., quotients) of V it is sufficient to understand all simple U0-submodules

(resp., quotients) of all the weight spaces of V . We have seen above that weight

spaces of V are indexed by integers. Let n0 ∈ Z. Denote by Vn0 the weight space

of weight b1 − b2 + a+ 2n0, where (b1, b2) = (0, b) (resp., (−1− x+ iy, x+ iy),

(a1, a2)). Then a basis of this weight space is given by all the vectors z(k, l) such
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that k − l = n0. Using formulas (I), (II), (III), and (IV) of Section 2.3, we see

that in general we have

(FE) · z(k, l) = a(k, l)z(k− 1, l− 1) + b(k, l)z(k, l) + c(k, l)z(k+ 1, l+ 1)

for some complex numbers a(k, l), b(k, l), and c(k, l). Moreover, we always have

c(k, l) �= 0.

Let l0 be the smallest l such that there exists k with k− l= n0. The integer

l0 exists since l ∈ Z≥0. More precisely, in the cases (ii) and (iii) we always have

l0 = 0 since k ∈ Z. In the case (i), l0 = 0 when n0 ≥ 0 and l0 =−n0 when n0 < 0,

since k ∈ Z≥0. The formulas show that we always have a(l0 + n0, l0) = 0. Denote

by c the one-dimensional Lie algebra C(FE). We prove the following.

PROPOSITION 4.2

With the notations as above, we have the following:

(1) As a c-module, Vn0 is cyclic, generated by zn0 := z(l0 + n0, l0).

(2) The map ρn0 : U(c)→ Vn0 defined by ρn0(u) = u · zn0 is a bijection.

Proof

Denote by zn0(j) := z(l0 +n0 + j, l0 + j) for j ∈ Z≥0. Then Vn0 has a basis given

by the vectors zn0(j) for j ∈ Z≥0.

(1) We have

(FE) · zn0 = b(l0 + n0, l0)zN + c(l0 + n0, l0)zn0(1),

with c(l0 + n0, l0) �= 0. Thus,

(FE)− b(l0 + n0, l0)1

c(l0 + n0, l0)
· zn0 = zn0(1).

Therefore, zn0(1) ∈ U(c) · zn0 . We then prove that zn0(j) ∈ U(c) · zn0 by induction

on j, using the relation

(FE) · zn0(j) = a(l0 + n0 + j, l0 + j)zn0(j − 1)

+ b(l0 + n0 + j, l0 + j)zn0(j)

+ c(l0 + n0 + j, l0 + j)zn0(j + 1).

This completes the first part of the proposition.

(2) The map ρn0 is surjective by the first part. We prove that it is also

injective. Let u =
∑M

m=0 cm(FE)m ∈ U(c) such that cM �= 0. Then using the

relation

(FE) · zn0(j) = a(l0 + n0 + j, l0 + j)zn0(j − 1)

+ b(l0 + n0 + j, l0 + j)zn0(j)

+ c(l0 + n0 + j, l0 + j)zn0(j + 1),
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we check that

u · zn0 = cM × c(l0 + n0 +M − 1, l0 +M − 1)zn0(M)

+

M−1∑
m=0

dmzn0(m)

for some complex numbers dm. Since vectors zn0(j) in Vn0
are linearly indepen-

dent, we conclude that u · zn0 �= 0. Hence, ρn0 is injective. �

A consequence of Proposition 4.2 is the following.

COROLLARY 4.3

As a U(c)-module, Vn0 is isomorphic to C[X], the space of polynomials in one

indeterminate.

Now remark that H acts on Vn0 as a scalar. Therefore, W is a simple U0-

submodule (resp., quotient) of Vn0 if and only if it is a simple U(c)-submodule

(resp., quotient) of Vn0 . As Vn0 =C[X] is a U(c)-module, we conclude that it does

not have any simple submodule and that simple quotients of Vn0 are of the form

Vn0/(FE − χ) for some complex number χ. Such a quotient is one-dimensional

(as expected), generated by a vector z satisfying H · z = (b1 − b2 + a+2n0)z and

FE · z = χz.

Thanks to Theorem 4.1, we conclude that V does not have any simple sub-

modules and that W is a simple quotient of V if and only if W has a one-

dimensional weight space generated by a vector z satisfying H · z = (b1− b2+a+

2n0)z and FE · z = χz for some integer n0 and some complex number χ. Note

that if W is a simple weight sl(2,C)-module such that supp(W )⊂ supp(V ), then

there is an integer n0 such that b1 − b2 + a+ 2n0 is a weight of W . The corre-

sponding weight space is one-dimensional as asserted by Proposition 2.7. Let z

be any vector of W of weight b1− b2+a+2n0. Then the Casimir operator Ω acts

on W as a scalar χ′, and therefore FE acts on z by a scalar χ. As a conclusion

we have proved the following.

THEOREM 4.4

Every simple weight sl(2,C)-module W whose support is included in the support

of V appears as a quotient of the algebraic tensor product V .

5. Tensor products: Hilbertian approach

In this section, we investigate the structure of tensor products of unitarizable

su(1,1)-modules. In what is to follow, we set V = N(a1, a2) ⊗ N(a,0), where

a ∈R<0 and either a1 = 0, a2 ∈R<0 or a1 =−1− x+ iy, a2 = x+ iy (with −1≤
x < 0, y ∈R>0) or −1< a1, a2 < 0. This means that we study the tensor product

of either a representation of the principal series or of the complementary series

or a lowest weight representation with a highest weight representation. Set s=
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a + a1 + a2. If a1 = −1 − x + iy, a2 = x + iy, then s = −1 + a + 2iy, and so

Re(s)<−1. Otherwise, s ∈R<0. We consider several disjoint cases which exhaust

all possible situations:

(A) a /∈ Z and either a1 = 0, a2 ∈R<0 \Z<0 or a1 =−1− x+ iy, a2 = x+ iy

(with −1≤ x < 0, y ∈R>0) or −1< a1, a2 < 0.

(B) a ∈ Z<0 and either a1 = 0, a2 ∈R<0 \Z<0 or a1 =−1−x+ iy, a2 = x+ iy

(with −1≤ x < 0, y ∈R>0) or −1< a1, a2 < 0.

(C) a /∈ Z<0 and a1 = 0, a2 ∈ Z<0.

(D) a ∈ Z<0 and a1 = 0, a2 ∈ Z<0.

Denote by x(k) the standard basis of N(a1, a2) given in Section 2.2.1. In

particular, k ∈ Z≥0 if a1 = 0 and k ∈ Z otherwise. For l ∈ Z≥0, denote by y(l)

the basis of N(a,0) defined by y(l) = x(−l), where x(j) is the standard basis of

N(a,0). Now a basis for V is z(k, l) = x(k)⊗ y(l).

Moreover, the modules N(a1, a2) and N(a,0) have a Hilbert space struc-

ture, given by (3.1), (3.2), (3.3), or (3.4). Therefore, we can construct a Hilbert

space structure on V via the formula 〈x⊗ y,x′ ⊗ y′〉= 〈x,x′〉 × 〈y, y′〉. Thus, the
completion of V with respect to this Hilbert structure is

V̂ =
{∑

k,l

uk,lz(k, l) :
∑
k,l

|uk,l|2
∥∥z(k, l)∥∥2

<∞
}
.

In the rest of this article we shall write V instead of V̂ . For future use we recall in

Table 2 the value of the norms ‖x(k)‖2 and ‖y(l)‖2 in various situations (which

were computed in Section 3).

From now on, we assume that ‖x(0)‖2 = 1= ‖y(0)‖2. We conclude this para-

graph by giving the action of H , E, and F in the above four cases. In fact, the

action of H is the same in all cases and is given by

H · z(k, l) =
(
a1 − a2 + a+ 2(k− l)

)
z(k, l).

We remark, in particular, that Supp(V ) = a1 − a2 + a+2Z and that all nonzero

weight spaces are infinite-dimensional. The actions of E and F are given by

(A)

E · z(k, l) = (a2 − k)z(k+ 1, l) + lz(k, l− 1),(5.1a)

F · z(k, l) = (a1 + k)z(k− 1, l) + (a− l)z(k, l+ 1);(5.1b)

Table 2

a /∈ Z<0 ‖y(l)‖2 = (l!/[
∏l

j=1(j − a− 1)])‖y(0)‖2, l > 0

a ∈ Z<0 ‖y(l)‖2 = l!
∏l

j=1(j − a− 1)‖y(0)‖2, l > 0

a2 /∈ Z<0 ‖x(k)‖2 = ([
∏k

j=1(j + a1)]/[
∏k

j=1(j − ā2 − 1)])‖x(0)‖2, k > 0

a1 = 0, a2 ∈ Z<0 ‖x(k)‖2 = k!
∏k

j=1(j − a2 − 1)‖x(0)‖2, k > 0
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(B)

E · z(k, l) = (a2 − k)z(k+ 1, l) + l(a− l+ 1)z(k, l− 1),(5.2a)

F · z(k, l) = (a1 + k)z(k− 1, l) + z(k, l+ 1);(5.2b)

(C)

E · z(k, l) = z(k+ 1, l) + lz(k, l− 1),(5.3a)

F · z(k, l) = k(a2 − k+ 1)z(k− 1, l) + (a− l)z(k, l+ 1);(5.3b)

(D)

E · z(k, l) = z(k+ 1, l) + l(a− l+ 1)z(k, l− 1),(5.4a)

F · z(k, l) = k(a2 − k+ 1)z(k− 1, l) + z(k, l+ 1).(5.4b)

5.1. Highest and lowest weight modules
In this section, we investigate which highest or lowest weight modules are sub-

modules of V . We remark that z(k, l) and z(k′, l′) have the same weights if

k − l = k′ − l′. Let n0 ∈ Z. Assume first that n0 ≥ 0. Consider a vector of the

form

v =
∑
l≥0

ulz(l+ n0, l).

We want to determine ul such that E · v = 0 and
∑

l≥0 |ul|2‖z(l+ n0, l)‖2 <∞.

From (5.1), (5.2), (5.3), and (5.4), we see that in general

E · z(l+ n0, l) = a(l+ n0)z(l+ n0 + 1, l) + b(l)z(l+ n0, l− 1),

where a(l+n0) �= 0, b(0) = 0, and b(l) �= 0 for positive l. Now the equation E ·v = 0

gives ∑
l≥0

(
ula(l+ n0) + ul+1b(l+ 1)

)
z(l+ n0 + 1, l) = 0.

Therefore, we must have

∀l≥ 0, ula(l+ n0) + ul+1b(l+ 1) = 0.

Hence,

ul = (−1)l ×
∏l

j=1 a(j + n0 − 1)∏l
j=1 b(j)

u0.

We assume now that u0 = 1. To check the convergence condition we give the

asymptotic behavior of |ul|2 in the four cases:

(A) |ul|2 ∼ ln0−1−a2 ,

(B) |ul|2 ∼ ln0+a−a2/l!,

(C) |ul|2 ∼ 1/l!,

(D) |ul|2 ∼ la+1/(l!)2.
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Now, recall that ‖z(l+n0, l)‖2 = ‖x(l+n0)‖2‖y(l)‖2. Using the asymptotic behav-

ior given in Table 2, we conclude that in all cases we have

|ul|2
∥∥z(l+ n0, l)

∥∥2 ∼ la+a1−a2+2n0 .

Thus, the convergence condition holds if and only if 2n0 <−1− a− a1 + a2.

Assume now that n0 < 0. Then if a1 �= 0, the vector z(l + n0) exists for

all nonnegative l. In this case, the above computation still holds. Hence, we

find a highest weight vector of weight a1 − a2 + a + 2n0 in V if and only if

2n0 <−1− a− a1 + a2. If a1 = 0, the vector z(l+ n0) exists only for l+ n0 ≥ 0.

In this case, the equation E ·
∑

l≥−n0
ulz(l + n0, l) = 0 gives u−n0 = 0 and by

induction ul = 0 for all l.

We can now summarize our results in the following.

PROPOSITION 5.1

If a simple highest weight module N(λ,0), of highest weight λ, is a Hilbert sub-

module of V , then λ= a1 + a− a2 + 2n0 for some integer n0. Conversely:

(1) Assume that a1 = 0. Then the simple highest module N(a− a2 +2n0,0),

of highest weight a − a2 + 2n0, is a Hilbert submodule of V if and only if 0 ≤
2n0 <−1− a+ a2.

(2) Assume that a1 �= 0. Then the simple highest module N(a1 + a − a2 +

2n0,0), of highest weight a1 + a− a2 + 2n0, is a Hilbert submodule of V if and

only if 2n0 <−1− a− a1 + a2.

Let us now turn to lowest weight modules. First assume that n0 ≥ 1. We want

to determine ul such that

F ·
∑
l≥0

ulz(l+ n0, l) = 0 and
∑
l≥0

|ul|2
∥∥z(l+ n0, l)

∥∥2
<∞.

As above, we write in general

F · z(l+ n0, l) = a′(l+ n0)z(l+ n0 − 1, l) + b′(l)z(l+ n0, l+ 1).

We remark that we have u0 = 0 (since a′(n0) �= 0) and by induction ul = 0. This

still holds if n0 < 1 and a1 �= 0.

Assume then that n0 < 1, and assume that a1 = 0. We want to determine ul

such that F ·
∑

l≥−n0
ulz(l + n0, l) = 0 and

∑
l≥−n0

|ul|2‖z(l + n0, l)‖2 <∞. As

above, we write in general

F · z(l+ n0, l) = a′(l+ n0)z(l+ n0 − 1, l) + b′(l)z(l+ n0, l+ 1).

Now we have a′(0) = 0. As above, we write

0 = F ·
∑

l≥−n0

ulz(l+ n0, l) =
∑

l≥−n0

(
ul+1a

′(l+ n0 + 1) + ulb
′(l)

)
z(l+ n0, l+ 1).
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We deduce from that the expression of ul, that is,

ul = (−1)l ×
∏l

j=1 b
′(j − 1)∏l

j=1 a
′(j + n0)

u0.

We then find the asymptotic behavior of |ul|2 from which we conclude that the

asymptotic behavior of |ul|2‖x(l + n0, l)‖2 is la2−a−2n0 . Thus, we have proved

the following.

PROPOSITION 5.2

If a simple lowest weight module N(0,−λ), of lowest weight λ, is a Hilbert sub-

module of V , then λ= a1 + a− a2 + 2n0 for some integer n0. Conversely:

(1) Assume that a1 = 0. Then the simple lowest module N(0,−a+a2−2n0),

of lowest weight a−a2+2n0, is a Hilbert submodule of V if and only if 1+a2−a <

2n0 ≤ 0.

(2) Assume that a1 �= 0. Then V has no Hilbert submodule isomorphic to the

simple lowest module N(0,−a1−a+a2−2n0), of lowest weight a1+a−a2+2n0,

for any n0.

5.2. Principal and complementary series
In this section, we investigate which modules from the principal or the comple-

mentary series are submodules of V . Recall that the support of such a module

M is of the form b+2Z. As we have supp(V ) = a1 − a2 + a+2Z, we can assume

that b= a1 − a2 + a, that is, M =N(b1, b2) with b1 − b2 = a1 − a2 + a and either

b1 =−1− x′ + iy′, b2 = x′ + iy′, or −1< b1, b2 < 0. Let v denote a weight vector

of N(b1, b2) having weight b1 − b2. Then from the action of E and F given in

Section 2.3, we find that FE · v = ξv with

ξ ≤−
(1 + a+ a1 − a2

2

)2

, if b1 =−1− x′ + iy′, b2 = x′ + iy′,(5.5a)

−
(1 + a+ a1 − a2

2

)2

< ξ <−
(a+ a1 − a2

2

)(a+ a1 − a2 + 2

2

)
,

if −1< b1, b2 < 0.

(5.5b)

Now remark that the vector z(k, l) has weight a1−a2+a if and only if k = l.

Therefore, we are looking for a vector

v =
∑
n≥0

unz(n,n)

such that FE · v = ξv (with ξ satisfying one of the conditions from (5.5)) and∑
n≥0

|un|2
∥∥z(n,n)∥∥2

<∞.

Conversely, if the vector v satisfies both these conditions it is easy to check that

v generates a simple submodule of V .
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Using (5.1), (5.2), (5.3), and (5.4), we compute FE · v in the four cases and

write it in the form

FE · v =
∑
n≥0

vnz(n,n),

for some sequence vn completely determined by the uk’s. Then we can identify

the coefficients of z(n,n) in FE · v and in ξv. We obtain

(A)

(a1 + 1)u1 +
(
a2(a1 + 1)

)
u0 = ξu0,(5.6a)

(n+ 2)(n+ 2+ a1)un+2

+
(
(a2 − n− 1)(a1 + n+ 2) + (n+ 1)(a− n)

)
un+1

+ (a− n)(a2 − n)un = ξun+1, ∀n≥ 0;

(5.6b)

(B)

a(a1 + 1)u1 +
(
a2(a1 + 1)

)
u0 = ξu0,(5.7a)

(n+ 2)(n+ 2+ a1)(a− n− 1)un+2

+
(
(a2 − n− 1)(a1 + n+ 2) + (n+ 1)(a− n)

)
un+1

+ (a2 − n)un = ξun+1, ∀n≥ 0;

(5.7b)

(C)

a2u1 + a2u0 = ξu0,(5.8a)

(n+ 2)2(a2 − n− 1)un+2

+
(
(a2 − n− 1)(n+ 2) + (n+ 1)(a− n)

)
un+1

+ (a− n)un = ξun+1, ∀n≥ 0;

(5.8b)

(D)

aa2u1 + a2u0 = ξu0,(5.9a)

(n+ 2)2(a− n− 1)(a2 − n− 1)un+2

+
(
(a2 − n− 1)(n+ 2) + (n+ 1)(a− n)

)
un+1

+ un = ξun+1, ∀n≥ 0.

(5.9b)

In the first case, we see using Table 2 that ‖z(n,n)‖2 ∼ (n+1)2+Re(s). There-

fore, the sequence un belongs to the Hilbert space V if and only if
∑

n≥0 |un|2(n+
1)2+Re(s) <∞.

Now we consider the following renormalization:

(B) v0 = u0 and vn =
∏n

j=1(a+ 1− j)× un,∀n > 0;

(C) v0 = u0 and vn =
∏n

j=1(a2 + 1− j)× un,∀n > 0;

(D) v0 = u0 and vn =
∏n

j=1(a+ 1− j)(a2 + 1− j)× un,∀n > 0.
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Then it is easily checked that the sequence vn satisfies (5.6). Moreover,

the condition
∑

n≥0 |un|2‖z(n,n)‖2 < ∞ is then equivalent to the condition∑
n≥0 |vn|2(n+ 1)2+Re(s) <∞, which is the condition satisfied by the sequence

un in case (A).

Set μ = ξ − a2(1 + a + a1), and set p = aa2. Note that in all cases μ +

[(1 + s)/2]2 is a real number which satisfies the following:

• If x generates a module from the principal series,

μ+
(1 + s

2

)2

≤ 0.

• If x generates a module from the complementary series,

0< μ+
(1 + s

2

)2

<
1

4
.

From the above discussion, we are left with the following two equations:

(a1 + 1)u1 = (p+ μ)u0,(5.10a)

(n+ 2)(n+ 2+ a1)un+2

+
(
s+ 2− μ− (n+ 2)(n+ 2+ a1)− (n− a)(n− a2)

)
un+1

+ (n− a)(n− a2)un = 0.

(5.10b)

It is clear that this difference equation has a unique solution for a given

u0. In the following, we assume without loss of generality that u0 = 1. To check

whether

(5.11)
∑
n≥0

|un|2n2+Re(s) <∞

holds, we need to understand the asymptotic behavior of this unique solution.

We use two different approaches.

5.2.1. Asymptotics using a discrete derivative

There are two independent fundamental solutions to (5.10b). We denote them

by u1
n and u2

n. Then our sequence un satisfying (5.10) is an unknown linear

combination of these solutions.

Define an operatorD (discrete derivative) by the formulaD(un) = un+1−un.

Then we can rewrite (5.10b) with D as follows:

(n+ 2)(n+ 2+ a1)D
2(un) +

(
6 + s− p+ 2a1 − μ+ n(4 + s)

)
D(un)

+ (s+ 2− μ)un = 0.
(5.12)

This is a discrete version of the hypergeometric equation.

Now we use a discrete version of the local analysis of differential equations

(see [3]). For (5.12), the point ∞ is regular-singular (see [3, Section 5.2]). There-

fore, we know from the discrete version of the Fuchs theorem (see [3, Section 5.2])

that the fundamental solutions of the difference equation have asymptotics of the

form nα
∑

n≥0Akn
−k and nβ

∑
n≥0Bkn

−k or nα ln(n)
∑

n≥0Akn
−k, for some
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complex numbers α and β, where A0 and B0 are not zero. To find α (and β), we

write u1
n =A0n

α +A1n
α−1 +A2n

α−2 + o(nα−2) for large n. Evaluating (5.10b)

gives (α2 + (3 + s)α+ s+ 2− μ)A0 + o(1/n2) = 0, from which we conclude that

α2 + (3+ s)α+ s+ 2− μ= 0. Thus, we find that

α=
−s− 3

2
±

√
μ+

(1 + s

2

)2

.

Now, if v generates a module from the principal series, we have seen that μ+

[(1 + s)/2]2 ≤ 0. First, if μ+[(1 + s)/2]2 < 0, then the square-norm of both funda-

mental solutions is equivalent to n2Re(α) = n−Re(s)−3. But any solution is a linear

combination of these fundamental solutions. Hence, the square-norm of every solu-

tion is equivalent to n−Re(s)−3. If μ+[(1 + s)/2]2 = 0, then the square-norm of the

fundamental solutions are equivalent to n−Re(s)−3 or to n−Re(s)−3 ln2(n). Hence,

the square-norm of every solution is equivalent to n−Re(s)−3 or to n−Re(s)−3 ln2(n).

Thus, if v generates a module from the principal series, we have |un|2n2+Re(s) ∼
n−1 or |un|2n2+Re(s) ∼ n−1 ln2(n). Hence, the sequence un is not in the Hilbert

space V . Thus, we have proved the following.

PROPOSITION 5.3

Let b1 =−1− x′ + iy′, and let b2 = x′ + iy′, with y′ �= 0. Then the simple weight

module N(b1, b2) is never a Hilbert submodule of V .

In other words, the tensor product V never discretely contains a module from

the principal series.

Note, however, that the principal series whose support is a1 − a2 + a+2Z is

almost contained in the Hilbert space, in the sense that it is contained in

Vε :=
{∑

k,l

uk,lz(k, l) :
∑
k,l

|uk,l|2
∥∥z(k, l)∥∥2

(k2 + l2)−ε <∞
}
,

for any positive ε. This might be seen as an analogous condition for being in the

continuous spectrum.

On the other hand, if v generates a module from the complementary series,

we have seen that 0< μ+[(1 + s)/2]2 < 1/4. Hence, we find that |u1
n|2n2+Re(s) ∼

n−1−
√

μ+[(1+s)/2]2 and |u2
n|2n2+Re(s) ∼ n−1+

√
μ+[(1+s)/2]2 . As the solution un is

an unknown linear combination of u1
n and u2

n, we cannot conclude from these

asymptotics whether un ∈ V .

5.2.2. Asymptotics using a differential equation

Therefore, we need another approach to deal with complementary series. From

now on, we assume that 0 < μ+ [(1 + s)/2]2 < 1/4. For −1 < t < 1, set S(t) =∑
n≥0 unt

n. Then, the sequence un satisfies (5.10) if and only if S(t) is a solution

of the following differential equation:

(5.13) t(1− t)S′′(t) +
(
1 + a1 − (1 + a1 − s)t

)
S′(t)−

(
p+

μ

1− t

)
S(t) = 0.
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Moreover, we must have S(0) = 1 and S′(0) = (p+ μ)/(1 + a1), since we assumed

that u0 = 1. The unique solution to this Cauchy problem is the function

S(t) = (1− t)r2F1(r− a, r− a2; 1 + a1; t),

where r = (1+ s)/2 −
√

μ+ [(1 + s)/2]2 and 2F1(r − a, r − a2; 1 + a1; t) is the

corresponding hypergeometric function

2F1(r− a, r− a2; 1 + a1; t) =
∑
n≥0

(r− a)n(r− a2)n
(1 + a1)n

tn

n!
.

Here, (b)n is the Pochhammer symbol, that is,

(b)0 = 1, (b)n =
n∏

j=1

(b− 1 + j), ∀n > 0.

As 1+ a1 /∈ Z≤0, the function S(z) is well defined on the (open) unit disc D and

is holomorphic. We remark that a and a2 play a symmetric role in the definition

of S. In the rest of this article, we shall write a(2) to refer to either a or a2.

Before going further, we need to collect several facts about the hypergeomet-

ric function. We refer the reader to [2] or [1]. On first reading, the reader might

want to skip these technicalities and go straight to page 337.

LEMMA 5.4 (GAUSS THEOREM)

Let α,β, γ ∈C such that α /∈ Z≤0, β /∈ Z≤0, and γ /∈ Z≤0. Then:

(1) The function z �→ 2F1(α,β;γ; z) is holomorphic on D.

(2) If Re(γ −α− β)> 0, then the function z �→ 2F1(α,β;γ; z) is continuous

in D̄.

(3) If Re(γ − α− β)< 0, then there is a nonzero constant C such that

2F1(α,β;γ; z)∼C(1− z)γ−α−β , when z → 1.

(4) If γ − α− β = 0, then there is a nonzero constant C such that

2F1(α,β;γ; z)∼C log(1− z), when z → 1.

Proof

The first and the second assertions are [1, Theorem 2.1.2]. The last two assertions

are [1, Theorem 2.1.3]. �

LEMMA 5.5

Assume that r− a or r− a2 is a nonpositive integer.

(1) Then 2F1(r− a, r− a2; 1+ a1; z) is polynomial and is therefore holomor-

phic on C.

(2) We cannot have r− a ∈ Z≤0 and r− a2 ∈ Z≤0 unless r = a= a2.

(3) We have 2F1(r− a, r− a2; 1 + a1; 1) �= 0.

(4) If Re(s)≥−2, then r− a ∈ Z≤0 (resp., r− a2 ∈ Z≤0) implies that r = a

(resp., r = a2), and therefore 2F1(r− a, r− a2; 1 + a1;x) = 1.
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Proof

The first assertion follows from the definition of the Pochhammer symbol.

Assume that r− a=−n, and assume that r− a2 =−m. Then 2r− a− a2 +

n+m= 0; that is, a1+1+n+m−2
√

μ+ [(s+ 1)/2]2 = 0. Therefore, we should

have 0 < 1 + a1 +m + n < 1. But we have 1 + a1 = −x + iy or 1 + a1 > 0. In

the first case the equality a1 +1+n+m− 2
√
μ+ [(s+ 1)/2]2 = 0 can hold only

when y = 0. Then in both cases 0< 1 + a1 ≤ 1. Therefore, the equality can hold

only for n+m= 0, that is, n=m= 0. This proves the second part of the lemma.

The third assertion is a consequence of the Chu–Vandermonde theorem [1,

Corollary 2.2.3]. Indeed, assume, for instance, that r−a=−n. Then 1+a1− r+

a2 = 1+ s− a− r = 1+ s−n− 2r = 2
√
μ+ [(s+ 1)/2]2−n. This last quantity is

never an integer. But the Chu–Vandermonde theorem implies that 2F1(r−a, r−
a2; 1 + a1; 1) = (1 + a1 − r+ a2)n/(1 + a1)n. Therefore, this is not zero.

Finally, assume that r − a(2) = −n for n ∈ Z>0. Then we must have 0 <

n+ [(Re(s) + 1)/2]−Re(a(2))<
1
2 . By our hypothesis (Res+ 1)/2≥−1

2 . But we

have Re(a(2))≤ 0. Thus, such a condition never holds. �

LEMMA 5.6

Assume that r− a and r− a2 are not nonpositive integers.

(i) The hypergeometric function is well defined and continuous on the closed

unit disc D̄.

(ii) We have that

2F1(r− a, r− a2; 1 + a1; 1) =
Γ(1 + a1)Γ(1 + s− 2r)

Γ(1 + a1 + a− r)Γ(1 + a1 + a2 − r)
.

(iii) For z ∈D, we have that

2F
′
1(r− a, r− a2; 1 + a1; z) =

(r− a)(r− a2)

1 + a1
2F1(r− a+ 1, r− a2 + 1;2 + a1; z).

(iv) The derivative of 2F1(r− a, r− a2; 1+ a1; z) is well defined and contin-

uous on the domain D̄ \ {1}.
(v) When z → 1, there is a nonzero constant C such that

2F
′
1(r− a, r− a2; 1 + a1; z)∼C(1− z)s−2r.

Proof

We remark that 1+ a1 − (r− a)− (r− a2) = 1+ s− 2r = 2
√

μ+ [(1 + s)/2]2 and

that 0 < μ + [(1 + s)/2]2 < 1
4 . Now (i) is a consequence of [1, Theorem 2.1.2],

(ii) is the Gauss theorem [1, Theorem 2.2.2], (iii) is [1, (2.5.1)], (iv) is a conse-

quence of (iii) and [1, Theorem 2.1.2], and (v) is a consequence of (iii) and [1,

Theorem 2.1.3]. �

COROLLARY 5.7

Assume that r−a and r−a2 are not nonpositive integers. If 1+a1+a− r /∈ Z≤0

and 1 + a1 + a2 − r /∈ Z≤0, then 2F1(r− a, r− a2; 1 + a1; 1) �= 0.
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LEMMA 5.8

Assume that r − a and r − a2 are not nonpositive integers. Assume also that

1 + a1 + a− r ∈ Z≤0 or 1 + a1 + a2 − r ∈ Z≤0.

(1) We cannot have 1 + a1 + a− r ∈ Z≤0 and 1 + a1 + a2 − r ∈ Z≤0.

(2) If 1 + a1 + a− r =−n, we have 2F1(1 + a1 + n, r − a2; 1 + a1; z) = (1−
z)a2−r−nPn(z), where Pn(z) is a polynomial of degree n. If 1+a1+a2− r =−n,

we have 2F1(1 + a1 + n, r − a; 1 + a1; z) = (1− z)a−r−nQn(z), where Qn(z) is a

polynomial of degree n.

(3) With the notations as above, we have P0 = 1=Q0 and, for n > 0,

Pn(1) =
(r− a2)(r− a2 + 1) · · · (r− a2 + n− 1)

(1 + a1)(2 + a1) · · · (n+ a1)
�= 0

and

Qn(1) =
(r− a)(r− a+ 1) · · · (r− a+ n− 1)

(1 + a1)(2 + a1) · · · (n+ a1)
�= 0.

(4) If Re(s) ≥ −2, then 1 + a1 + a− r = −n (resp., 1 + a1 + a2 − r = −n)

implies that Re(s)<−1 and n= 0, and therefore 2F1(1 + a1, r− a2; 1 + a1; z) =

(1− z)a2−r (resp., 2F1(1 + a1, r− a; 1 + a1; z) = (1− z)a−r).

Proof

Assume that 1+a1+a−r =−n, and assume that 1+a1+a2−r =−m. Then we

have 1+s+1+a1−2r+n+m= 0; that is, 1+a1+n+m+2
√
μ+ [(1 + s)/2]2 =

0. So we must have 1 + a1 ∈R and −1< 1 + a1 + n+m< 0. As 1 + a1 > 0, this

is not possible.

The second assertion of the lemma is Euler’s theorem [1, Theorem 2.2.5].

The value of Pn at z = 1 is Chu–Vandermonde’s theorem [1, Corollary 2.2.3].

To prove the fourth part of the lemma, assume, for instance, that 1+a1−r+

a+n= 0. Therefore we have (1 +Re(s))/2+n−Re(a2)+
√
μ+ [(s+ 1)/2]2 = 0.

So we must have 0<−(1 +Re(s))/2− n+Re(a2)<
1
2 . As we have Re(a2)< 0

and Re(s)≥−2 by hypothesis, such an equality can hold only if n= 0. Moreover,

we must have Re(s)>−1. The proof when 1+a1+a2− r =−n is analogous. �

From now on, we set F (z) = 2F1(r− a, r− a2; 1 + a1; z). For future use, we com-

pute some asymptotics.

LEMMA 5.9

(1) Let d ∈R. Then, when teiθ → 1, there is a nonzero constant C such that

(1− teiθ)d ∼C|1− teiθ|d.

(2) Assume that r− a and r− a2 are not nonpositive integers. Assume also

that F (1) �= 0. Then, when teiθ → 1, there is a nonzero constant C such that

F ′(teiθ)∼C|1− teiθ|s−2r.
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(3) Let d ∈C. Then there is a nonzero constant such that∣∣(1− z)d
∣∣2 ∼C|1− z|2Re(d), when z → 1.

Proof

The first part of the lemma follows from the equality

(1− teiθ)d = |1− teiθ|d

× exp
(
2idarctan

( −t sinθ

1− t cosθ+
√
1 + t2 − 2t cosθ

))
.

The second assertion follows from the first part together with Lemma 5.6. (Note

that s− 2r ∈R.) The last part of the lemma follows from the equality

(1− z)d = |1− z|Re(d)

× exp
(
iIm(d) ln |1− z|+ 2idarctan

( −Im(z)

1−Re(z) + |1− z|
))

. �

LEMMA 5.10

Let a ∈D. Then we have

1

2π

∫ 2π

0

(
1 + a2 − 2a cos(θ)

)ν
dθ = 2F1(−ν,−ν; 1;a2).

Proof

This is [9, p. 427, (3.665(2))]. �

COROLLARY 5.11

Let ν be such that ν /∈ Z≤0 and Re(1 + 2ν)< 0. When t→ 1, there is a nonzero

constant C such that

1

2π

∫ 2π

0

|1− teiθ|2ν dθ ∼C(1− t2)1+2ν .

Proof

We remark that |1− teiθ|2ν = (1+a2−2a cos(θ))ν . Then apply Lemmas 5.10 and

5.4. �

LEMMA 5.12

Assume that r−a /∈ Z≤0, r−a2 /∈ Z≤0, 1+a1+a−r /∈ Z≤0, and 1+a1+a2−r /∈
Z≤0. Then:

(1) We have

S′(z) = (1− z)rF ′(z) + (−r)(1− z)r−1F (z).

(2) We have

S(z)S′(z)z =
∣∣(1− z)r

∣∣2F (z)F ′(z)z + (−r̄)
∣∣(1− z)r−1

∣∣2∣∣F (z)
∣∣2(z̄ − |z|2

)
.
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When z → 1, there are nonzero constants C and C ′ such that∣∣(1− z)r
∣∣2F (z)F ′(z)z ∼C|1− z|Re(s)

and ∣∣(1− z)r−1
∣∣2∣∣F (z)

∣∣2z̄(1− z)∼C ′|1− z|2(Re(r)−1/2).

Furthermore, if r �= 0, then there is a nonzero constant C ′′ such that

S(z)S′(z)z ∼C ′′|1− z|2(Re(r)−1/2).

(3) We have∣∣S′(z)
∣∣2 = ∣∣(1− z)r

∣∣2∣∣F ′(z)
∣∣2 + |r|2

∣∣(1− z)r−1
∣∣2∣∣F (z)

∣∣2
+ 2

∣∣(1− z)r−1
∣∣2((−r)(1− z)F (z)F ′(z) + (−r̄)(1− z̄)F ′(z)F (z)

)
.

When z → 1, there are nonzero constants C, C ′, and C ′′ such that∣∣(1− z)r
∣∣2∣∣F ′(z)

∣∣2 ∼C|1− z|2(Re(s)−Re(r)),∣∣(1− z)r−1
∣∣2∣∣F (z)

∣∣2 ∼C ′|1− z|2(Re(r)−1),∣∣(1− z)r−1
∣∣2(1− z)F (z)F ′(z)∼C ′′|1− z|Re(s)−1.

Furthermore, if r �= 0, then there is a nonzero constant C ′′′ such that∣∣S′(z)
∣∣2 ∼C ′′′|1− z|2(Re(r)−1).

Proof

The equalities are clear. The equivalents are consequences of the fact that F (1) �=
0 by Corollary 5.7 and of those equivalents in Lemma 5.9. �

Now, we need to transform the infinitesimal condition
∑

n≥0 |un|2(n+1)2+Re(s) <

∞ from (5.11) into an equivalent condition satisfied by the function S(z) =∑
n≥0 unt

n = (1− z)rF (z), where F (z) = 2F1(r − a, r − a2; 1 + a1; z). Thus, we

need to define a Hilbert space Hs such that
∑

n≥0 |un|2(n+1)2+Re(s) <∞ if and

only if S ∈Hs.

We denote by O(D) the set of holomorphic functions of the unit disc. Let

dvol(z) denote the measure on D such that
∫
D

dvol(z) = 1. First, we remark

that Re(s)< 0. We will distinguish several cases.

Assume that Re(s)<−2, and consider the following space:

Hs :=
{
f ∈O(D) :

∫
D

∣∣f(z)∣∣2(1− |z|2
)−3−Re(s)

dvol(z)<∞
}
.

Then it is clear that for all nonnegative n the function fn(z) = zn belongs to

the Hilbert space Hs. Moreover, we have 〈fn, fm〉 = 0 if n �=m, and 〈fn, fn〉 ∼
(n+1)2+Re(s) for large n. Therefore, 〈S,S〉=

∑
n≥0 |un|2〈fn, fn〉. Hence, un ∈ V

if and only if S ∈Hs.
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Now assume that Re(s) = −2. Then the infinitesimal condition is∑
n≥0 |un|2 <∞. Therefore, we need to consider the Hilbert space

Hs :=
{
f ∈O(D) : lim

ρ→1

1

2π

∫ 2π

0

∣∣f(ρeiθ)∣∣2 dθ <∞
}
.

It is well known that the functions fn(z) = zn give an orthonormal basis of Hs.

Hence, un ∈ V if and only if S ∈Hs.

Assume now that −2<Re(s)<−1, and consider the Hilbert space

Hs :=
{
f ∈O(D) :

∫
D

(
f(z)f ′(z)z

)(
1− |z|2

)−2−Re(s)
dvol(z)<∞

}
.

It is easy to check that the functions fn(z) = zn belong to Hs, are mutually

orthogonal, and satisfy ‖fn‖2s ∼ (n+1)2+Re(s) for large n. Thus, the sequence un

belongs to V if and only if S ∈Hs.

Assume now that Re(s) =−1, in which case s ∈R, and consider the Hilbert

space

Hs :=
{
f ∈O(D) : lim

ρ→1

∫ 2π

0

1

2π

(
f(ρeiθ)f ′(ρeiθ)eiθ

)
dθ+

∣∣f(0)∣∣2 <∞
}
.

It is easy to check that the functions fn(z) = zn belong to Hs, are mutually

orthogonal, and satisfy ‖fn‖2s = n for large n. Thus, the sequence un belongs to

V if and only if S ∈Hs.

Assume now that −1 < Re(s) < 0, in which case s ∈ R, and consider the

Hilbert space

Hs :=
{
f ∈O(D) :

∫
D

∣∣f ′(z)
∣∣2(1− |z|2

)−1−Re(s)
dvol(z) +

∣∣f(0)∣∣2 <∞
}
.

It is easy to check that the functions fn(z) = zn belong to Hs, are mutually

orthogonal, and satisfy ‖fn‖2s ∼ (n+1)2+Re(s) for large n. Thus, the sequence un

belongs to V if and only if S ∈Hs.

Now we are in position to prove the following three propositions, examining

whether S belongs to Hs.

PROPOSITION 5.13

Assume that r−a ∈ Z≤0 or r−a2 ∈ Z≤0. Then the function S(z) does not belong

to Hs.

Proof

Assume first that r = a or r = a2. (In particular, r �= 0.) Then F (z) = 1 and

therefore S(z) = (1− z)r .

(1) If Re(s)<−2, then S(z) ∈Hs if and only if∫
D

∣∣(1− z)r
∣∣2(1− |z|2

)−3−Re(s)
dvol(z)<∞.
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The function |(1−z)r|2(1−|z|2)−3−Re(s) is integrable if and only if it is integrable

near z = 1. By Lemma 5.9, this is equivalent to the following condition:∫ 1

0

( 1

2π

∫ 2π

0

|1− teiθ|2Re(r) dθ
)
(1− t2)−3−Re(s)t dt <∞.

Now, we remark that Re(−r)> 0 and Re(1 + 2r)< 0. So, from Corollary 5.11,

we know that there is a nonzero constant C such that

1

2π

∫ 2π

0

|1− teiθ|2Re(r) dθ ∼C(1− t2)1+2Re(r).

So the condition of integrability becomes∫ 1

0

(1− t2)2Re(r)−2−Re(s)t dt <∞.

But −2 + 2Re(r) −Re(s) = −1 − 2
√
μ+ [(s+ 1)/2]2 < −1; therefore, S is not

integrable.

(2) If Re(s) =−2, then S(z) ∈Hs if and only if

lim
ρ→1

1

2π

∫ 2π

0

∣∣(1− ρeiθ)r
∣∣2 dθ <∞,

or also via Lemma 5.9 if and only if

lim
ρ→1

1

2π

∫ 2π

0

|1− ρeiθ|2Re(r) dθ <∞.

Now, we remark that Re(−r)> 0 and Re(1 + 2r)< 0. So, from Corollary 5.11,

we know that there is a nonzero constant C such that

1

2π

∫ 2π

0

|1− ρeiθ|2Re(r) dθ ∼C(1− ρ2)1+2Re(r).

Therefore, the above limit is infinite.

(3) If −2<Re(s)<−1, then S(z) ∈Hs if and only if∫
D

−r̄
∣∣(1− z)r−1

∣∣2(1− z)z̄
(
1− |z|2

)−2−Re(s)
dvol(z)<∞.

The function −r̄|(1− z)r−1|2(1− z)z̄(1− |z|2)−2−Re(s) is integrable if and only if

it is integrable near z = 1. Thanks to Lemma 5.9, there is some nonzero constant

C such that

−r̄
∣∣(1− z)r−1

∣∣2(1− z)z̄
(
1− |z|2

)−2−Re(s) ∼C|1− z|2(Re(r)−1/2)

×
(
1− |z|2

)−2−Re(s)
.

The integral
∫
D
−r̄|(1− z)r−1|2(1− z)z̄(1− |z|2)−2−Re(s) dvol(z) becomes

C

∫ 1

0

( 1

2π

∫ 2π

0

|1− teiθ|2(Re(r)−1/2) dθ
)
(1− t2)−2−Re(s)t dt.
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Now we remark that Re( 12 − r)> 0 and Re(2r)< 0. Then from Corollary 5.11,

we know that there is a nonzero constant C ′ such that

1

2π

∫ 2π

0

|1− teiθ|2(Re(r)−1/2) dθ ∼C ′(1− t2)2Re(r).

So the condition of integrability becomes∫ 1

0

(1− t2)2Re(r)−2−Re(s)t dt <∞.

But −2 + 2Re(r)−Res=−1− 2
√
μ+ [(s+ 1)/2]2 <−1, and therefore S is not

integrable.

(4) If Re(s) =−1, then S(z) ∈Hs if and only if

lim
ρ→1

1

2π

∫ 2π

0

−r̄
∣∣(1− ρeiθ)r−1

∣∣2(1− ρeiθ)ρe−iθ dθ <∞.

Using Lemma 5.9, we see that this limit is finite if and only if

lim
ρ→1

1

2π

∫ 2π

0

|1− ρeiθ|2(Re(r)−1/2) dθ <∞.

Now we remark that Re( 12 − r)> 0 and Re(2r)< 0. Thus, from Corollary 5.11,

we know that there is a nonzero constant C such that

1

2π

∫ 2π

0

|1− ρeiθ|2(Re(r)−1/2) dθ ∼C(1− ρ2)2Re(r).

So the condition becomes

lim
ρ→1

(1− ρ2)2Re(r) <∞.

Therefore, the above limit is not finite.

(5) If −1<Re(s)< 0, then S(z) ∈Hs if and only if∫ 1

0

( 1

2π

∫ 2π

0

|r|2
∣∣(1− teiθ)r−1

∣∣2 dθ)(1− t2)−1−Re(s)t dt <∞.

By Lemma 5.9, this is equivalent to the condition∫ 1

0

( 1

2π

∫ 2π

0

|r|2|1− teiθ|2(Re(r)−1) dθ
)
(1− t2)−1−Re(s)t dt <∞.

Now, we remark that Re(1 − r) > 0 and Re(2r − 1) < 0. Hence, from Corol-

lary 5.11, we know that there is a nonzero constant C such that

1

2π

∫ 2π

0

|1− teiθ|2(Re(r)−1) dθ ∼C(1− t2)2Re(r)−1.

So the condition of integrability becomes∫ 1

0

(1− t2)2Re(r)−2−Re(s)t dt <∞.

But −2 + 2Re(r)−Res=−1− 2
√
μ+ [(s+ 1)/2]2 <−1, and therefore S is not

integrable.
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Assume now that r − a = −n or r − a2 = −n for some positive integer n.

Then from Lemma 5.5, we know that necessarily Re(s)<−2. We also know that

F (x) is polynomial (of degree n) and that F (1) �= 0. Now, S(z) ∈Hs if and only

if ∫
D

∣∣(1− z)r
∣∣2∣∣F (z)

∣∣2(1− |z|2
)−3−Re(s)

dvol(z)<∞.

The function |(1 − z)r|2|F (z)|2(1 − |z|2)−3−Re(s) is integrable if and only if it

is integrable near z = 1. But then as F (1) �= 0 and by Lemma 5.9, there is

some nonzero constant C such that |(1− z)r|2|F (z)|2(1− |z|2)−3−Re(s) ∼ C|1−
z|2Re(r)(1− |z|2)−3−Re(s) when z → 1. Hence, we are left with the previous situ-

ation. �

PROPOSITION 5.14

Assume that r − a /∈ Z≤0, and assume that r − a2 /∈ Z≤0. Assume also that 1 +

a1+ a− r ∈ Z≤0 or 1+ a1+ a2 − r ∈ Z≤0. Then the function S(z) belongs to Hs.

Proof

By Lemma 5.8, we have F (1) = 0. More precisely, there is a polynomial P (z) of

degree n such that P (1) �= 0 and F (z) = (1− z)a(2)−r−nP (z). (Recall that a(2)
denotes either a or a2.) Thus, S(z) = (1− z)a(2)−nP (z).

Assume first that n= 0, that is, 1+s−a(2)− r = 0. Then Lemma 5.8 implies

that P = 1 and that Re(s)>−1.

(1) If −2<Re(s)<−1, then S ∈Hs if and only if∫
D

−a(2)
∣∣(1− z)a(2)−1

∣∣2(1− z)z̄
(
1− |z|2

)−2−Re(s)
dvol(z)<∞.

The function −a(2)|(1− z)a(2)−1|2(1− z)z̄(1− |z|2)−2−Re(s) is integrable if and

only if it is integrable near z = 1. Thanks to Lemma 5.9, there is a nonzero

constant C such that∣∣(1− z)a(2)−1
∣∣2(1− z)z̄

(
1− |z|2

)−2−Re(s) ∼C|1− z|2(Re(a(2))−1/2)

×
(
1− |z|2

)−2−Re(s)
.

So the condition of integrability becomes∫ 1

0

( 1

2π

∫ 2π

0

|1− teiθ|2(Re(a(2))−1/2) dθ
)
(1− t2)−2−Re(s)t dt <∞.

Now we remark that Re(2a(2)) < 0. Then from Corollary 5.11, we know that

there is a nonzero constant C such that

1

2π

∫ 2π

0

|1− teiθ|2(Re(a(2))−1/2) dθ ∼C(1− t2)2Re(a(2)).

Thus, the condition is now∫ 1

0

(1− t2)2Re(a(2))−2−Re(s)t dt <∞.
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As

2Re(a(2))− 2−Re(s) = 2+ 2Re(s)− 2Re(r)− 2−Re(s)

=−1 + 2
√

μ+ [(s+ 1)/2]2 >−1,

we conclude that S is integrable.

(2) If Re(s) =−2, then S ∈Hs if and only if

lim
ρ→1

1

2π

∫ 2π

0

∣∣(1− ρeiθ)a(2)
∣∣2 dθ <∞.

By Lemma 5.9, this is equivalent to

lim
ρ→1

1

2π

∫ 2π

0

|1− ρeiθ|2Re(a(2)) dθ <∞.

Now we remark that −Re(a(2))> 0 and

Re(1 + 2a(2)) = 2

√
μ+

(s+ 1

2

)2

> 0.

From Lemma 5.10, we know that

1

2π

∫ 2π

0

|1− ρeiθ|2Re(a(2)) dθ = 2F1

(
−Re(a(2)),−Re(a(2)); 1;ρ

2
)
.

So the condition becomes

lim
ρ→1

2F1

(
−Re(a(2)),−Re(a(2)); 1;ρ

2
)
<∞.

From the Gauss theorem (Lemma 5.4), we know that

ρ �→ 2F1

(
−Re(a(2)),−Re(a(2)); 1;ρ

2
)

is continuous on [0,1] and hence has a limit when ρ→ 1.

(3) If Re(s)<−2, then S ∈Hs if and only if∫ 1

0

( 1

2π

∫ 2π

0

∣∣(1− teiθ)Re(a(2))
∣∣2 dθ)(1− t2)−3−Re(s)t dt <∞.

By Lemma 5.9, this is equivalent to∫ 1

0

( 1

2π

∫ 2π

0

|1− teiθ|2Re(a(2)) dθ
)
(1− t2)−3−Re(s)t dt <∞.

Note that we always have Re(−a(2))> 0.

IfRe(1+2a(2))< 0, then from Corollary 5.11, we know that there is a nonzero

constant C such that

1

2π

∫ 2π

0

|1− teiθ|2Re(a(2)) dθ ∼C(1− t2)1+2Re(a(2)).

So the condition of integrability becomes∫ 1

0

(1− t2)2Re(a(2))−2−Re(s)t dt <∞.
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But −2 + 2Re(a(2)) −Res = −1 + 2
√
μ+ [(s+ 1)/2]2 > −1, and therefore S is

integrable.

If Re(1+2a(2)) = 0, then Lemma 5.10 together with Lemma 5.4 implies that

there is a nonzero constant C such that

1

2π

∫ 2π

0

|1− teiθ|2Re(a(2)) dθ ∼C log(1− t2).

So the condition of integrability becomes∫ 1

0

log(1− t2)(1− t2)−3−Re(s)t dt <∞.

Since Re(s)<−2, the function log(1−t2)(1−t2)−3−Re(s)t is integrable. If Re(1+

2a(2))> 0, then Lemma 5.10 together with Lemma 5.4 implies that

t �→ 1

2π

∫ 2π

0

|1− teiθ|2Re(a(2)) dθ

is continuous on [0,1], and therefore the function( 1

2π

∫ 2π

0

|1− teiθ|2Re(a(2)) dθ
)
(1− t2)−3−Re(s)t

is integrable on [0,1[.

Assume now that n > 0. So Lemma 5.8 implies thatRe(s)>−2. Then S ∈Hs

if and only if∫
D

∣∣(1− z)a(2)−n
∣∣2∣∣P (z)

∣∣2(1− |z|2
)−3−Re(s)

dvol(z)<∞.

The function |(1 − z)a(2)−n|2|P (z)|2(1 − |z|2)−3−Re(s) is integrable if and only

if it is integrable near z = 1. As P (1) �= 0 and by Lemma 5.9, this function is

integrable near 1 if and only if∫ 1

0

( 1

2π

∫ 2π

0

|1− teiθ|2(Re(a(2))−n) dθ
)
(1− t2)−3−Re(s)t dt <∞.

We remark that Re(n− a(2))> 0 and Re(1 + 2a(2) − 2n)< 0. Thus, from Corol-

lary 5.11, we know that there is a nonzero constant C such that

1

2π

∫ 2π

0

|1− teiθ|2(Re(a(2))−n) dθ ∼C(1− t2)1+2Re(a(2))−2n.

So the condition of integrability becomes∫ 1

0

(1− t2)2Re(a(2))−2n−2−Re(s)t dt <∞.

But −2+ 2Re(a(2))− 2n−Re(s) =−1+ 2
√
μ+ [(s+ 1)/2]2 >−1, and therefore

S is integrable. �

PROPOSITION 5.15

Assume that r− a /∈ Z≤0, assume that r− a2 /∈ Z≤0, assume that 1+ a1+ a− r /∈
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Z≤0, and assume that 1 + a1 + a2 − r /∈ Z≤0. Then the function S(z) belongs to

Hs if and only if s is real, −1< s< 0, and r = 0.

Proof

Thanks to Corollary 5.7, we know that F (1) �= 0.

(1) If Re(s)<−2, then S ∈Hs if and only if∫
D

∣∣(1− z)r
∣∣2∣∣F (z)

∣∣2(1− |z|2
)−3−Re(s)

dvol(z)<∞.

It is clear that the function |(1 − z)r|2|F (z)|2(1 − |z|2)−3−Re(s) is integrable if

and only if it is integrable near z = 1. But near z = 1 we have |F (z)|2 ∼ |F (1)|2
since F is continuous by Lemma 5.6. So by Lemma 5.9, the function is integrable

near z = 1 if and only if∫ 1

0

( 1

2π

∫ 2π

0

|1− teiθ|2Re(r) dθ
)
(1− t2)−3−Re(s)t dt <∞.

We remark that Re(−r)> 0 and Re(2r+ 1)< 0. So by Corollary 5.11 there is a

nonzero constant C such that

1

2π

∫ 2π

0

|1− teiθ|2Re(r) dθ ∼C × (1− t2)1+2Re(r).

So S ∈Hs if and only if∫ 1

0

(1− t2)2Re(r)−2−Re(s)t dt <∞.

But −2 + 2Re(r)−Re(s) = −1− 2
√
μ+ [(s+ 1)/2]2 < −1. Therefore, S is not

integrable.

(2) If Re(s) =−2, then S ∈Hs if and only if

lim
ρ→1

1

2π

∫ 2π

0

∣∣(1− ρeiθ)Re(r)
∣∣2∣∣F (ρeiθ)

∣∣2 dθ <∞.

By Lemma 5.9, this is equivalent to

lim
ρ→1

1

2π

∫ 2π

0

|1− ρeiθ|2Re(r)
∣∣F (ρeiθ)

∣∣2 dθ <∞.

As above this holds if and only if

lim
ρ→1

1

2π

∫ 2π

0

|1− ρeiθ|2Re(r) dθ <∞.

We have Re(1 + 2r) < 0. So by Corollary 5.11, the limit is not finite. Hence,

S /∈Hs.

(3) If −2<Re(s)<−1, then S ∈Hs if and only if∫
D

S(z)S′(z)z̄
(
1− |z|2

)−2−Re(s)
dvol(z)<∞.

The function S(z)S′(z)z̄(1− |z|2)−2−Re(s) is integrable if and only if it is inte-

grable near z = 1. Now we remark that 2Re(r)< 1+Re(s)< 0. Thus, according
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to Lemma 5.12, this function is integrable near z = 1 if and only if∫
D

|1− z|2(Re(r)−1/2)
(
1− |z|2

)−2−Re(s)
dvol(z)<∞

if and only if∫ 1

0

( 1

2π

∫ 2π

0

|1− teiθ|2(Re(r)−1/2) dθ
)
(1− t2)−2−Re(s)t dt <∞.

As 1
2 −Re(r)> 0 and Re(r)< 0, Corollary 5.11 implies that there is a nonzero

constant C such that

1

2π

∫ 2π

0

|1− teiθ|2(Re(r)−1/2) dθ ∼C(1− t2)2Re(r).

So the condition of integrability becomes∫ 1

0

(1− t2)2Re(r)−2−Re(s)t dt <∞.

But we have 2Re(r)−2−Re(s) =−1−2
√

μ+ [(s+ 1)/2]2 <−1. Hence, S /∈Hs.

(4) If Re(s) =−1, then S ∈Hs if and only if

lim
ρ→1

1

2π

∫ 2π

0

S(ρeiθ)S′(ρe−iθ)e−iθ dθ <∞.

This case is analogous to the previous one and is left to the reader.

(5) Finally, assume that −1 < Re(s) < 0. Then s and r are real. We have

S ∈Hs if and only if∫
D

∣∣S′(z)
∣∣2(1− |z|2

)−1−s
dvol(z)<∞.

This holds if and only if the function |S′(z)|2(1 − |z|2)−1−s is integrable near

z = 1.

Suppose first that r �= 0. Then according to Lemma 5.12, this function is

integrable near z = 1 if and only if∫
D

|1− z|2(r−1)
(
1− |z|2

)−1−s
dvol(z)<∞

if and only if ∫ 1

0

( 1

2π

∫ 2π

0

|1− teiθ|2(r−1) dθ
)
(1− t2)−1−st dt <∞.

Now remark that 1− r > 0 and 2r− 1< 0. Thus, from Corollary 5.11, there is a

nonzero constant C such that

1

2π

∫ 2π

0

|1− teiθ|2(r−1) dθ ∼C(1− t2)2r−1.

Therefore, the condition of integrability becomes∫ 1

0

(1− t2)2r−2−st dt <∞.

But we have 2r− 2− s=−1− 2
√

μ+ [(s+ 1)/2]2 <−1. Hence, S /∈Hs.
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Suppose now that r = 0. Then according to Lemma 5.12, the function

|S′(z)|2(1− |z|2)−1−s is integrable near z = 1 if and only if∫
D

|1− z|2s
(
1− |z|2

)−1−s
dvol(z)<∞

if and only if ∫ 1

0

( 1

2π

∫ 2π

0

|1− teiθ|2s dθ
)
(1− t2)−1−st dt <∞.

From Lemma 5.10, we have

1

2π

∫ 2π

0

|1− teiθ|2s dθ = 2F1(−s,−s; 1; t2).

Thus, the condition of integrability is now∫ 1

0
2F1(−s,−s; 1; t2)(1− t2)−1−st dt <∞.

Note that we always have −s > 0. If 2s+ 1< 0, then Lemma 5.4 implies that

2F1(−s,−s; 1; t2)(1− t2)−1−st∼ (1− t2)s,

which is integrable since s >−1. If 2s+ 1= 0, then Lemma 5.4 implies that

2F1(−s,−s; 1; t2)(1− t2)−1−st∼ log(1− t2)(1− t2)−1−s,

which is integrable since −1− s >−1. If 2s+1> 0, then Lemma 5.4 implies that

the function t �→ 2F1(−s,−s; 1; t2) is continuous on [0,1], and therefore∫ 1

0
2F1(−s,−s; 1; t2)(1− t2)−1−st dt <∞,

since −1− s >−1. Consequently, when r = 0, we always have S ∈Hs. �

Let us now state a consequence of these three propositions.

PROPOSITION 5.16

A simple weight module N(b1, b2) in the complementary series is a Hilbert sub-

module of (the Hilbert completion of) N(a1, a2)⊗N(a,0) if and only if

• either a1, a2 ∈R, −1< a1 + a2 + a < 0, and N(b1, b2)∼=N(a+ a1, a2);

• or −1< a1, a2 < 0, −2< a1 + a2 − a <−1, and N(b1, b2)∼=N(a1, a2 − a).

Moreover, in the first case the submodule N(a+a1, a2) is generated by the vector

w(0) =
∑
n≥0

(−a)n(−a2)n
(1 + a1)n

z(n,n)

n!
.

In the second case, the submodule N(a1, a2 − a) is generated by the vector

w(0) =
∑
n≥0

(−a)n
n!

z(n,n).
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Proof

Recall we set s = a + a1 + a2, and denote by ξ the infinitesimal character of

V =N(a1, a2)⊗N(a,0). Recall also that we set μ= ξ − a2(1 + a+ a1) and

r =
1+ s

2
−

√
μ+

(1 + s

2

)2

.

Let v be the standard basis vector of N(b1, b2)⊂ V of weight b1 − b2. Then

it is straightforward to check that FE · v = b2(b1 +1)v. Moreover, as we already

mentioned, we can assume that b1 − b2 = a+ a1 − a2. In the above notations, we

have ξ = b2(b1+1). From the above three propositions, we conclude that a vector

w of weight a+ a1 − a2 such that FE · w = ξw generates a submodule of V if

and only either s is real, −1< s< 0, and r = 0 or there is a nonnegative integer

n such that r = 1+ a1 + a+ n or r = 1+ a1 + a2 + n.

In the first case, s being real implies that a1, a2 are real; −1 < s < 0 and

r = 0 imply that μ= 0. Therefore, we have b1 − b2 = a+ a1 − a2 and b2(b1 +1) =

a2(1 + a+ a1). Hence, up to isomorphism, N(b1, b2) =N(a+ a1, a2).

In the second case, if r = 1 + a1 + a + n = 1 + s − a2 + n, then we have

2
√
μ+ [(s+ 1)/2]2 = 2a2 − 2n− 1− s. Therefore, we must have 2a2 − 2n− 1−

s ∈ R and 0 < 2a2 − 2n− 1− s < 1. The first condition is always fulfilled. The

second condition reads 1 + 2n < a2 − a1 − a < 2 + 2n. But then we also have

μ = (n − a2)(n + 1 + a + a1), which implies that ξ = n(1 + n + a + a1 − a2).

Therefore, we have b1 − b2 = a+ a1 − a2 and b2(b1 +1) = n(1 + n+ a+ a1 − a2).

The solutions of this system are b1 = n+ a+ a1 − a2, b2 = n or b1 =−1− n, b2 =

a2 − a1 − a− n− 1. In both cases, the corresponding module is a highest weight

module and therefore does not belong to the complementary series.

If r = 1+a1+a2+n= 1+ s−a+n, then we have 2
√
μ+ [(s+ 1)/2]2 = 2a−

2n−1−s. Therefore, we must have 2a−2n−1−s ∈R and 0< 2a−2n−1−s < 1.

But 2a− 2n− 1− s ∈R implies that a1, a2 ∈R. Now the second condition reads

−2−2n < a1+a2−a <−1−2n. But then we also have μ= (n−a)(n−a+1+s),

which implies that ξ = (n+ a2 − a)(1+n+ a1). Therefore, we have b1 − b2 = a+

a1−a2 and b2(b1+1) = (n+a2−a)(1+n+a1). Consequently, we have b1 = n+a1
and b2 = n+a2−a or b1 = a−n−a2−1 and b2 =−1−n−a1. If a1 = 0, then the

corresponding module is a lowest weight module and therefore does not belong

to the complementary series. If a1 �= 0, then −1 < a1, a2 < 0. However, in this

case, a2−a > a2 >−1. Therefore, the condition −2− 2n < a1+a2−a <−1− 2n

can hold only if n= 0, which gives the asserted condition. Then the submodule

is isomorphic to N(a1, a2 − a) or to N(a− a2 − 1,−1− a1), which turn out to be

isomorphic. �

Let us now state a final result about the discrete spectrum of the tensor products.

THEOREM 5.17

(1) Let a, b < 0. Then the discrete spectrum of the Hilbert tensor product

N(0, a)⊗N(b,0) is
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N(a, b), if −1< a+ b < 0,⊕
0≤2n<a−b−1

N(b− a+ 2n,0), if 0< a− b− 1,

⊕
a−b+1<2n≤0

N(0, a− b− 2n), if a− b+ 1< 0.

(2) Let −1≤ x < 0, let y ∈R\{0}, and let a < 0. Then the discrete spectrum

of the Hilbert tensor product N(−1− x+ iy, x+ iy)⊗N(a,0) is⊕
2n<2x−a

N(−1− 2x+ a+ 2n,0).

(3) Let −1 < a1, a2 < 0, and let a < 0. Then the discrete spectrum of the

Hilbert tensor product N(a1, a2)⊗N(a,0) is( ⊕
2n<a2−a1−a−1

N(a+ a1 − a2 + 2n,0)
)
⊕N(a+ a1, a2),

if −1< a+ a1 + a2 < 0,( ⊕
2n<a2−a1−a−1

N(a+ a1 − a2 + 2n,0)
)
⊕N(a1, a2 − a),

if −2< a1 + a2 − a <−1,( ⊕
2n<a2−a1−a−1

N(a+ a1 − a2 + 2n,0)
)
, otherwise.

We collect in Table 3 the results of Theorem 5.17 in a more classical setting (see

page 322 for the correspondence between the setting N(a, b) and the classical

one).

Proof

This is a consequence of Propositions 5.1, 5.2, 5.3, and 5.16. Note also that the

different conditions in (1) (and in (3)) are mutually exclusive because of the

restriction on the parameters found on page 322. �

REMARK 5.18

In [23], Repka gives the decomposition of tensor products of unitary represen-

tations of SU(1,1). Theorem 5.17 recovers in particular (some of) these results.

Note also that the particular case N(0, a)⊗N(a,0) was obtained in [19].

5.3. Application to smooth vectors
Let a1, a2, and a be real numbers such that −1 < a1 ≤ 0, −1 < a,a2 < 0, and

−1< a+a1+a2 < 0. From Proposition 5.16, we know that the (completed) tensor

product V =N(a1, a2)⊗N(a,0) contains a (Hilbert) submodule W isomorphic to

N(a1 + a, a2). We want to determine the possible relation between the spaces of



Unitary representations of S̃U(1,1) and tensor products 349

Table 3

π⊗ π′ Conditions on Discrete spectrum

the parameters

π−
a ⊗ π+

b

a > 0, b > 0,
πc
a,b

0< a+ b < 1

π−
a ⊗ π+

b

a > 0, b > 0, ⊕
0≤2n<b−a−1 π

+
b−a−2n

1< b− a

π−
a ⊗ π+

b

a > 0, b > 0, ⊕
0≤2n<a−b−1 π

−
a−b+2n

1< a− b

πx,iy ⊗ π+
a

0< x≤ 1, y > 0, ⊕
2n<a−2x π

+
1+a−2x−2n

a > 0

πc
a1,a2

⊗ π+
a

0< a1, a2 < 1, a > 0, ⊕
2n<a+a1−a2−1 π

+
a+a1−a2−2n ⊕ πc

a+a1,a2
0< a+ a1 + a2 < 1

πc
a1,a2

⊗ π+
a

0< a1, a2 < 1, a > 0, ⊕
2n<a+a1−a2−1 π

+
a+a1−a2−2n ⊕ πc

a1,a2−a
1< a1 + a2 − a < 2

πc
a1,a2

⊗ π+
a 0< a1, a2 < 1, a > 0

⊕
2n<a+a1−a2−1 π

+
a+a1−a2−2n

smooth vectors in W and the smooth vectors in V . We denote them, respectively,

by W∞ and V∞.

PROPOSITION 5.19

With notations as above, we have W ∩V∞ = {0}. In particular, W∞ ∩V∞ = {0}.

Proof

According to Nelson’s Theorem 3.1, the set of smooth vectors of a unitarizable

module is the common domain of the definition of the various operators ρ(u)

for u ∈ U(g). Denote by {w(k), k ∈ Z} the standard basis of W =N(a1 + a, a2).

Recall that the action of the triple (H,E,F ) on W is given by⎧⎪⎪⎨
⎪⎪⎩
H ·w(k) = (a+ a1 − a2 + 2k)w(k),

E ·w(k) = (a2 − k)w(k+ 1),

F ·w(k) = (a+ a1 + k)w(k− 1).

On the other hand, (3.1) gives ‖w(k)‖2 ∼ |k|1+a+a1+a2‖w(0)‖2, and so

W =
{∑
k∈Z

αkw(k) :
∑
k∈Z

|αk|2|k|1+a+a1+a2 <∞
}
.

Hence, Nelson’s theorem implies that

W∞ =
{∑
k∈Z

αkw(k) : ∀N ∈ Z≥0,
∑
k∈Z

|αk|2|k|1+a+a1+a2k2N <∞
}
.
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Recall then that

V =
{∑

k,l

uk,lz(k, l) :
∑
k,l

|uk,l|2|k|1+a1+a2 |l|1+a <∞
}
.

Using (5.1), giving the action of E and F on V , we check that

V∞ =
{∑

k,l

uk,lz(k, l) : ∀N ∈ Z≥0,
∑
k,l

|uk,l|2|k|1+a1+a2+2N |l|1+a+2N <∞
}
.

Now, we know that

w(0) =
∑
n≥0

(−a)n(−a2)n
(1 + a1)n

z(n,n)

n!
.

Then the standard basis is given for k > 0 by the following formulas:{
w(k) =

∏k
j=1

a+a1+j
a1+j ×

∑
n≥0

(−a)n(k−a2)n
(k+1+a1)n

z(k+n,n)
n! ,

w(−k) =
∏k

j=1
a1+1−j

a+a1+1−j ×
∑

n≥0
(−a)n(−k−a2)n
(−k+1+a1)n

z(−k+n,n)
n! .

It is now easy to check that w(k) /∈ V∞. We remark then that the weight vec-

tors that occur in the decomposition of w(k) and w(l) are all distinct if k �= l.

Therefore, we conclude that W ∩ V∞ = {0}, as asserted. �

REMARK 5.20

In [25], Speh and Venkataramana proved an analogous result about the K-finite

vectors for the restriction of some complementary series of SO(n,1) to SO(n−
1,1).
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