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Abstract In this paper, we give an extension of the classical story of the elliptic modu-

lar function to theHilbertmodular case forQ(
√
5).We construct the periodmapping for

a familyF = {S(X,Y )} ofK3 surfaceswith 2 complex parametersX andY . The inverse

correspondence of the period mapping gives a system of generators of Hilbert modular

functions forQ(
√
5). Moreover, we show an explicit expression of this inverse correspon-

dence by theta constants.

Introduction

The symmetric Hilbert modular surface (H×H)/〈PSL(2,OK), τ〉, where OK is

the ring of integers in a real quadratic field K and τ exchanges the factors of

H×H, gives the moduli space for the family FK = {A} of the principally polarized

Abelian surfaces with an extra endomorphism structure K(⊂ End0(A)).

In classical theory, the elliptic modular function λ(z) on the moduli space

H/Γ(2) is given by the inverse of the multivalued period mapping for a family

of elliptic curves. This period mapping gives the Schwarz mapping of the Gauss

hypergeometric differential equation E(12 ,
1
2 ,1). It is important that the modular

function λ(z) have an explicit expression given by the Jacobi theta constants.

For the Hilbert modular cases, although there are various studies on the

structure of the field of modular functions and the ring of modular forms (e.g.,

Gundlach [Gu], Hirzebruch [H], Müller [M]), still now, to the best of the author’s

knowledge, there has not appeared an explicit expression of Hilbert modular

functions as an inverse correspondence of the period mapping for a family of

algebraic varieties. In this paper, we give an extension of the above classical

story to the Hilbert modular functions for K =Q(
√
5) by using a family of K3

surfaces that gives the same variation of Hodge structures of weight 2 with the

family FK of Abelian surfaces. Namely, we show that the inverse of the period

mapping for our family ofK3 surfaces gives Hilbert modular functions for Q(
√
5).
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Figure 1

Moreover, we obtain an explicit theta expression of this inverse correspondence.

As our method, we use the fact that our period integrals of K3 surfaces satisfy

a system of partial differential equations determined in [N1].

Our result is obtained as a combined work with [N1] and based on the results

of Hirzebruch [H] and Müller [M] also.

In this paper, we consider the family F = {S(X,Y )} of K3 surfaces with 2

complex parameters given by an affine equation in (x, y, z)-space:

S(X,Y ) : z2 = x3 − 4y2(4y− 5)x2 + 20Xy3x+ Y y4.

We show that a system of generators of the field of the Hilbert modular functions

for Q(
√
5) is given by the inverse of the period mapping for F and obtain an

explicit expression of these Hilbert modular functions given by theta constants.

We use the following results of the Hilbert modular functions for Q(
√
5).

Hirzebruch [H] studied the Hilbert modular orbifold (H×H)/〈PSL(2,O), τ〉,
where O = Z+ 1+

√
5

2 Z and τ is an involution of H×H, by an algebrogeometric

method. He determined the structure of the ring of the symmetric Hilbert mod-

ular forms. This ring is isomorphic to the Klein icosahedral ring C[A,B,C,D]/

(R(A,B,C,D) = 0). Müller [M] obtained a system of generators {g2, s6, s10, s15}
of the ring of the symmetric Hilbert modular forms for Q(

√
5) and found the

relation M(g2, s6, s10, s15) = 0. These generators are given by the theta constants.

Then, they are holomorphic functions on H×H.

We show that the period mapping for F gives a biholomorphic correspon-

dence between the monodromy covering of (X,Y )-space and H × H, and the

projective monodromy group coincides with the extended Hilbert modular group

〈PSL(2,O), τ〉. Then, the quotient space (H × H)/〈PSL(2,O), τ〉 becomes the

classifying space of the family F . Consequently, we may regard X and Y as

Hilbert modular functions for Q(
√
5). This framework enables us to obtain

explicit relations between the results of [H] and [M]. Namely, we obtain an expres-

sion of the parameters X and Y as quotients of theta constants by use of the

period mapping for our family F of K3 surfaces (Figure 1).

In Section 1, we give a survey of the results of [N1] and the properties of the

Hilbert modular orbifold for Q(
√
5). Especially, we recall the family F0 of K3

surfaces and the period differential equation (1.14) for F0. A generic member of

F0 is transformed to S(X,Y ) ∈ F . The system (1.14) turns out to be the period
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differential equation for F , which gives an analogy of the Gauss hypergeometric

equation 2E1(
1
2 ,

1
2 ,1).

In Section 2, we study the K3 surface S(X,Y ). First, we obtain the weighted

projective space P(1,3,5) as a compactification of the (X,Y )-space C2. This

remains a parameter space for K3 surfaces except one point (Theorem 2.1). We

note that, due to [H] together with Klein [Kl], the orbifold (H×H)/〈PSL(2,O), τ〉
is isomorphic to P(1,3,5) as algebraic varieties. Secondly, we define the multival-

ued period mapping P(1,3,5)−{one point}→D for F , where D is a symmetric

Hermitian space of type IV . We have a modular isomorphism between H×H

and a connected component D+ of D. Our period mapping gives an explicit iso-

morphism between P(1,3,5) and (H×H)/〈PSL(2,O), τ〉. Then, we obtain the

coordinates of H×H given by the quotients of period integrals of S(X,Y ):

(
z1(X,Y ), z2(X,Y )

)
=
(
−
∫
Γ3

ω+ 1−
√
5

2

∫
Γ4

ω∫
Γ2

ω
,−
∫
Γ3

ω+ 1+
√
5

2

∫
Γ4

ω∫
Γ2

ω

)
,(0.1)

where Γ1, . . . ,Γ4 are 2-cycles on S(X,Y ) ∈ F given in Section 2.2.

Then, the inverse correspondence (z1, z2) �→ (X(z1, z2), Y (z1, z2)) defines a

pair of Hilbert modular functions for Q(
√
5). We obtain an expression of X and

Y in the following way.

In Section 3, we consider the subfamily FX = {S(X,0)} of K3 surfaces.

The period mapping for FX gives a correspondence between the X-space and

the diagonal Δ = {(z1, z2) ∈ H×H | z1 = z2}. We obtain the period differential

equation for FX . The solutions of this period differential equation are described

in terms of the solutions of the Gauss hypergeometric equation 2E1(
1
12 ,

5
12 ,1).

Then, we obtain an expression of the parameter X in terms of the elliptic J

function (see Theorem 3.2).

In Section 4, we obtain an explicit expression of the inverse of the period

mapping (0.1) by theta constants:

(X,Y ) =
(
25 · 52 · s6(z1, z2)

g32(z1, z2)
,210 · 55 · s10(z1, z2)

g52(z1, z2)

)
,

where g2, s6, and s10 are Hilbert modular forms given by Müller (see Theo-

rem 4.1).

Our results in this paper are used in the forthcoming paper [N2], in which we

shall show simple and new defining equations of the family of Kummer surfaces

for the Humbert surface of invariant 5 and a geometric and intuitive interpreta-

tion of period mappings for this family.

1. Preliminaries

1.1. The family F0

In [N1], we studied the family F0 = {S0(λ,μ)} of K3 surfaces defined by the

equation

S0(λ,μ) : x0y0z
2
0(x0 + y0 + z0 + 1) + λx0y0z0 + μ= 0,(1.1)
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where (λ,μ) ∈ Λ = {(λ,μ) | λμ(λ2(4λ− 1)3 − 2(2 + 25λ(20λ− 1))μ− 3125μ2) 	=
0)}. First, we recall the results of this family.

Set

A=

⎛
⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 2 1

0 0 1 −2

⎞
⎟⎟⎠ .(1.2)

Put

D =
{
ξ = (ξ1 : ξ2 : ξ3 : ξ4) ∈ P3(C)

∣∣ ξAtξ = 0, ξAtξ > 0)
}
.

This is a 2-dimensional symmetric Hermitian space of type IV . Note that D is

composed of two connected components: D = D+ ∪ D−. We let (1 : 1 : −
√
−1 :

0) ∈ D+. Set PO(A,Z) = {g ∈ PGL(4,Z) | tgAg = A}. It acts on D by tξ �→ gtξ.

Let PO+(A,Z) = {g ∈ PO(A,Z) | g(D+) =D+}.
In [N1, Section 2], we had the multivalued period mapping Φ0 : Λ→D+ for

F0 given by

Φ0(λ,μ) =
(∫

Γ1

ω : · · · :
∫
Γ4

ω
)
,(1.3)

where ω is the unique holomorphic 2-form on S0(λ,μ) up to a constant factor

and 2-cycles Γ1, . . . ,Γ4 ∈H2(S0(λ,μ),Z) are given by this construction.

Let NS(S) be the Néron–Severi lattice of a K3 surface S. The orthogonal

complement Tr(S) = NS(S)⊥ in H2(S,Z) is called the transcendental lattice of S.

We proved the following.

THEOREM 1.1

(1) For a generic point (λ,μ) ∈ Λ, the intersection matrix of NS(S0(λ,μ)) is given

by

E8(−1)⊕E8(−1)⊕
(
2 1

1 −2

)
(1.4)

and the intersection matrix of Tr(S0(λ,μ)) is given by

U ⊕
(
2 1

1 −2

)
=A(1.5)

(see [N1, Theorems 2.2, 3.1]).

(2) The projective monodromy group of the period mapping Φ0 : Λ→D+ is

isomorphic to PO+(A,Z) (see [N1, Theorem 5.2]).

Moreover, we determined the partial differential equation in 2 variables λ and μ

of rank 4 that is satisfied by the periods for the family F0. We call this equation

the period differential equation for F0. This equation has the singular locus Λ

(see [N1, Theorem 4.1]).
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1.2. The Hilbert modular orbifold (H×H)/〈PSL(2,O), τ〉
Here, we recall the action of the Hilbert modular group on H×H. Let O be the

ring of integers in the real quadratic field Q(
√
5). Set H± = {z ∈C | ± Im(z)> 0}.

The Hilbert modular group PSL(2,O) acts on (H+ ×H+)∪ (H− ×H−) by(
α β

γ δ

)
: (z1, z2) �→

(αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
,

for g =
(α β
γ δ

)
∈ PSL(2,O), where ′ means the conjugate in Q(

√
5). We also con-

sider the involution

τ : (z1, z2) �→ (z2, z1).

DEFINITION 1.1

If a holomorphic function g on H×H satisfies the transformation law

g
(az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
= (cz1 + d)k(c′z2 + d′)kg(z1, z2)

for any
(
a b
c d

)
∈ PSL(2,O), we call g a Hilbert modular form of weight k for

Q(
√
5). If g(z2, z1) = g(z1, z2), g is called a symmetric modular form. If g(z2, z1) =

−g(z1, z2), g is called an alternating modular form.

If a meromorphic function f on H×H satisfies

f
(az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
= f(z1, z2)

for any
(
a b
c d

)
∈ PSL(2,O), we call f a Hilbert modular function for Q(

√
5).

Set

W =

(
1 1

1−
√
5

2
1+

√
5

2

)
.

It holds that

A= U ⊕
(
2 1

1 −2

)
= U ⊕WU tW.

The correspondence

j : (z1, z2)→ (z1z2 :−1 : z1 : z2)(I2 ⊕ tW−1)

defines a biholomorphic mapping

(H+ ×H+)∪ (H− ×H−)→D.

The group PSL(2,O) is generated by three elements:

g1 =

(
1 1

0 1

)
, g2 =

(
1 1+

√
5

2

0 1

)
, g3 =

(
0 1

−1 0

)
.

We have an isomorphism:

j̃ :
〈
PSL(2,O), τ

〉
→ PO+(A,Z)

; g �→ j ◦ g ◦ j−1 = j̃(g) =: g̃.
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Especially, we see⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g̃1 =

⎛
⎜⎜⎜⎜⎝
1 −1 2 1

0 1 0 0

0 −1 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ , g̃2 =

⎛
⎜⎜⎜⎜⎝
1 −1 2 1

0 1 0 0

0 −1 1 0

0 1 0 1

⎞
⎟⎟⎟⎟⎠ ,

g̃3 =

⎛
⎜⎜⎜⎜⎝

0 −1 0 0

−1 0 0 0

0 0 −1 −1

0 0 0 1

⎞
⎟⎟⎟⎟⎠ , τ̃ =

⎛
⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ .

(1.6)

So, the above j gives a modular isomorphism:

j :
(
H×H,

〈
PSL(2,O), τ

〉)


(
D+,PO

+(A,Z)
)
.(1.7)

Recall D =D+ ∪D− and the period mapping Φ for F0. The mapping j−1 ◦Φ :

Λ→H×H gives an explicit transcendental correspondence between Λ and H×H.

Hirzebruch [H] studied the Hilbert modular orbifold (H×H)/〈PSL(2,O), τ〉.
Here, we survey his results.

The Klein icosahedral polynomials are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(ζ0 : ζ1 : ζ2) = ζ20 + ζ1ζ2,

B(ζ0 : ζ1 : ζ2) = 8ζ40ζ1ζ2 − 2ζ20ζ
2
1ζ

2
2 + ζ31ζ

3
2 − ζ0(ζ

5
1 + ζ52 ),

C(ζ0 : ζ1 : ζ2) = 320ζ60ζ
2
1ζ

2
2 − 160ζ40ζ

3
1ζ

3
2 + 20ζ20ζ

4
1ζ

4
2 + 6ζ51ζ

5
2

− 4ζ0(ζ
5
1 + ζ52 )(32ζ

4
0 − 20ζ20ζ1ζ2 + 5ζ21ζ

2
2 ) + ζ101 + ζ102 ,

12D(ζ0 : ζ1 : ζ2) = (ζ51 − ζ52 )(−1024ζ100 + 3840ζ80ζ1ζ2

− 3840ζ60ζ
2
1ζ

2
2 + 1200ζ40ζ

3
1ζ

3
2 − 100ζ20ζ

4
1ζ

4
2 + ζ51ζ

5
2 )

+ ζ0(ζ
10
1 − ζ102 )(352ζ40 − 160ζ20ζ1ζ2 + 10ζ21ζ

2
2 )

+ (ζ151 − ζ152 ).

(1.8)

We have the following relation:

R(A,B,C,D) := 144D2 −
(
−1728B5 + 720ACB3 − 80A2C2B

(1.9)
+ 64A3(5B2 −AC)2 + C3

)
= 0.

Set

X =
B

A3
, Y =

C

A5
.(1.10)

Now, set

Γ(
√
5) =

{(
α β

γ δ

) ∣∣∣ α≡ δ ≡ 1, β ≡ δ ≡ 0 (mod
√
5)

}
.

We note that the group PSL(2,O)/Γ(
√
5) is isomorphic to the alternating group

A5. Hirzebruch [H] studied the canonical bundle of the orbifold (H×H)/Γ(
√
5)

by an algebrogeometric method. He proved the following.
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PROPOSITION 1.1 ([H, PP. 307–310])

(1) The nonsingular model of (H×H)/〈Γ(
√
5), τ〉 is P2(C) = {(ζ0; ζ1; ζ2)} by

adding six points. A homogeneous polynomial of degree k in ζ0, ζ1, and ζ2 defines

a modular form for Γ(
√
5) of weight k.

(2) The ring of symmetric modular forms for PSL(2,O) is isomorphic to the

ring

C[A,B,C,D]/
(
R(A,B,C,D) = 0

)
,

where R(A,B,C,D) is the Klein relation (1.9). A (resp., B,C,D) gives a sym-

metric modular form for PSL(2,O) of weight 2 (resp., 6,10,15).

(3) There exists an alternating modular form c of weight 5 such that c2 = C.

The ring of Hilbert modular forms for PSL(2,O) is isomorphic to the ring

C[A,B, c,D]/
(
R(A,B, c2,D) = 0

)
.

Let c′ ∈ C− {0}. We consider the action (ζ0, ζ1, ζ2) �→ (c′ζ0, c
′ζ1, c

′ζ2). Because

A (resp., B,C) is a homogeneous polynomial of degree 2 (resp., 6,10) in ζ0, ζ1,

and ζ2, we have the action (A,B,C) �→ (c′2A, c′6B, c′10C). Therefore, we regard

(A,B,C)-space as the weighted projective space P(1,3,5). Especially, the pair

(X,Y ) =
(
B

A3
,
C

A5

)
(1.11)

gives a system of affine coordinates on {A 	= 0}.
By the arguments of Klein [Kl], Hirzebruch [H], and Kobayashi, Kushibiki

and Naruki [KKN], we know the following properties of the action of A5 on

(H×H)/〈Γ(
√
5), τ〉= P2(C) = {ζ0 : ζ1 : ζ2}.

PROPOSITION 1.2

(1) The correspondence (ζ0 : ζ1 : ζ2) �→ (A(ζ0 : ζ1 : ζ2) :B(ζ0 : ζ1 : ζ2) : C(ζ0 :

ζ1 : ζ2)) gives an identification between P2(C)/A5 and P(1,3,5). Then, the Hilbert

modular orbifold (H×H)/〈PSL(2,O), τ〉 is identified with P(1,3,5). The cusp

(
√
−1∞,

√
−1∞) ∈ (H×H)/〈PSL(2,O), τ〉 is given by the point (A :B : C) = (1 :

0 : 0). So, the quotient space (H×H)/〈PSL(2,O), τ〉 corresponds to P(1,3,5)−
{(1 : 0 : 0)}.

(2) The divisor {D= 0} consists of fifteen lines in P2(C). These fifteen lines

of {D= 0} are the reflection lines of fifteen involutions of A5. (Note that A5 is

generated by three involutions.)

(3) The involution τ induces an involution on the orbifold (H×H)/PSL(2,O).

The branch locus of the canonical projection (H×H)/PSL(2,O)→ P(1,3,5) is

given by {C= 0}.

Set

X=
{
(X,Y ) ∈C2

∣∣ Y (1728X5 − 720X3Y
(1.12)

+ 80XY 2 − 64(5X2 − Y )2 − Y 3
)
	= 0
}
.
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In [N1, Section 6], we obtained the birational mapping Λ→X given by

(λ,μ) �→ (X,Y ) =
( 25μ

2(λ− 1/4)3
,
−3125μ2

(λ− 1/4)5

)
.(1.13)

THEOREM 1.2 ([N1, THEOREM 6.3])

By the correspondence (1.13), the period differential equation for the family F0 =

{S0(λ,μ)} is transformed to the system of differential equations{
uXX = L1uXY +A1uX +B1uY + P1u,

uY Y =M1uXY +C1uX +D1uY +Q1u
(1.14)

with⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L1 =
−20(4X2+3XY−4Y )

36X2−32X−Y , M1 =
−2(54X3−50X2−3XY+2Y )

5Y (36X2−32X−Y ) ,

A1 =
−2(20X3−8XY+9X2Y+Y 2)

XY (36X2−32X−Y ) , B1 =
10Y (−8+3X)

X(36X2−32X−Y ) ,

C1 =
−2(−25X2+27X3+2Y−3XY )

5Y 2(36X2−32X−Y ) , D1 =
−2(−120X2+135X3−2Y−3XY )

5XY (36X2−32X−Y ) ,

P1 =
−2(8X−Y )

X2(36X2−32X−Y ) , Q1 =
−2(−10+9X)

25XY (36X2−32X−Y ) .

REMARK 1.1

In [N1], we saw that (1.14) is a uniformizing differential equation of the Hilbert

modular orbifod (H×H)/〈PSL(2,O), τ〉. In other words, the solutions of (1.14)

define the developing map of the canonical projection H × H → (H × H)/

〈PSL(2,O), τ〉. This gives an alternative proof of Theorem 1.1(2).

2. The period of the family F

2.1. The family F of K3 surfaces
We obtain a new family F of K3 surfaces with explicit defining equations from

the family F0 = {S0(λ,μ)}.

PROPOSITION 2.1

The family of K3 surfaces F0 = {S0(λ,μ)} for (λ,μ) ∈ Λ is transformed to the

family F = {S(X,Y )} for (X,Y ) ∈X:

S(X,Y ) : z2 = x3 − 4y2(4y− 5)x2 + 20Xy3x+ Y y4.(2.1)

Proof

By the transformation (1.13) and the birational transformation given by⎧⎪⎪⎨
⎪⎪⎩
x0 =

Y y
10Xx1

,

y0 =
4Y 2x1y

2
1

−50X2Y x1y1−5XY 2y2
1+5XY z1

,

z0 =−10XY x1y1+Y 2y2
1−Y z1

20XY x1y1
,

the family F0 = {S0(λ,μ)} is transformed to the family F1 = {S1(X,Y )} given

by

S1(X,Y ) : z21 = Y
(
x3
1 − 4y21(4y1 − 5)x2

1 + 20Xy31x1 + Y y41
)



Hilbert modular functions via K3 surfaces 823

over X. Then, by the correspondence (x1, y1, z1) �→ (x, y, z) = (x1, y1,
1√
Y
z1), we

have the family F = {S(X,Y )} given by (2.1). �

From (1.3), we obtain the multivalued analytic period mapping

Φ1 :X→D+; (X,Y ) �→
(∫

Γ1

ω :

∫
Γ2

ω :

∫
Γ3

ω :

∫
Γ4

ω
)
,(2.2)

where ω = dx∧dy
z is the unique holomorphic 2-form on S(X,Y ) up to a constant

factor and Γ1, . . . ,Γ4 are certain 2-cycles on S(X,Y ). (This period mapping is

stated in detail at the beginning of Section 2.2.)

REMARK 2.1

The correspondence (x1, y1, z1) �→ (x, y, z) = (x1, y1,
1√
Y
z1) in the proof of Propo-

sition 2.1 induces the double covering X′ → X given by (X,Y ′) �→ (X,Y ) =

(X,Y ′2). However, (X,Y ′) and (X,−Y ′) ∈ X′ define mutually isomorphic P -

marked K3 surfaces (see Definition 2.1). So, we obtain the above period mapping

Φ1 on X.

Hence, from Theorem 1.1, for a generic point (X,Y ) ∈X, the intersection matrix

of the Néron–Severi lattice NS(S(X,Y )) is given by (1.4), and that of the tran-

scendental lattice Tr(S(X,Y )) is given by A in (1.5). The projective monodromy

group of Φ1 is isomorphic to PO+(A,Z). From Theorem 1.2, the period differen-

tial equation for the family F = {S(X,Y )} is given by (1.14).

PROPOSITION 2.2

Under the correspondence (1.11), the surface S(X,Y ) is birationally equivalent

to

S(A :B : C) : z2 = x3 − 4(4y3 − 5Ay2)x2 + 20By3x+ Cy4.(2.3)

Proof

Putting X = B

A3 , Y = C

A5 to (2.1), we have

A5z2 =A5x3 + (20y2 − 16y3)A5x2 + 20A2By3x+ Cy4.

Then, by the correspondence

x �→ x

A3
, y �→ y

A
, z �→ z√

A9
,

we obtain (2.3). �

REMARK 2.2

For two surfaces{
S(A :B : C) : z2 = x3 − 4(4y3 − 5Ay2)x2 + 20By3x+ Cy4,

S(k2A : k6B : k10C) : z2 = x3 − 4(4y3 − 5k2Ay2)x2 + 20k6By3x+ k10Cy4,
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we have an isomorphism S(A :B : C)→ S(k2A : k6B : k10C) given by (x, y, z) �→
(k6x,k2y, k9z) as elliptic surfaces. Therefore, (A : B : C) ∈ P(1 : 3 : 5) gives an

isomorphism class of these elliptic K3 surfaces.

We set K1 = {Y = 0} and K2 = {1728X5 − 720X3Y +80XY 2 − 64(5X2 −Y )2 −
Y 3 = 0}.

THEOREM 2.1

The (A :B : C)-space P(1,3,5) gives a compactification of the parameter space X

of the family F = {S(X,Y )} of K3 surfaces given by (2.1). Namely, if (1 : 0 :

0) 	= (A :B : C) ∈ P(1,3,5), then the corresponding surface S(A :B : C) is a K3

surface. On the other hand, S(1 : 0 : 0) is a rational surface.

Proof

First, we prove the case A 	= 0. In this case, we consider S(X,Y ) in (2.1). We

have the Kodaira normal form of (2.1):

z21 = x3
1 − g2(y)x− g3(y) (y 	=∞),(2.4)

with ⎧⎨
⎩
g2(y) =−(20Xy3 − 16

3 y4(4y− 5)2),

g3(y) =−(Y y4 + 80
3 y5(4y− 5)X − 128

27 y6(4y− 5)3),

and

z22 = x3
2 − h2(y1)x2 − h3(y1) (y 	= 0),(2.5)

with⎧⎨
⎩
h2(y1) =−(20Xy51 − 256

3 y21 +
640
3 y31 − 400

3 y41),

h3(y1) =−(Y y81 +
320
3 Xy61 − 400

3 Xy71 − 8192
27 y31 +

10240
9 y41 − 12800

9 y51 +
16000
27 y61),

where y1 =
1
y . The discriminant D0 (resp., D∞) of the right-hand side of (2.4)

(resp., (2.5)) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0 = y8(27Y 2 + 32000X3y− 7200XY y

− 160000X2y2 + 32000Y y2 + 5760XY y2

+ 256000X2y3 − 76800Y y3 − 102400X2y4 + 61440Y y4 − 16384Y y5),

D∞ = y111 (−16384Y − 102400X2y1 + 61440Y y1

+ 256000X2y21 − 76800Y y21 − 160000X2y31

+ 32000Y y31 + 5760XY y31 + 32000X3y41 − 7200XY y41 + 27Y 2y51).

If (X,Y ) ∈X, then we have

ordy(D0) = 8, ordy(g2) = 3, ordy(g3) = 4,
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so π−1(0) is the singular fiber of type IV ∗ (for details, see [Ko] or [Sh]). Similarly,

we have

ordy(D∞) = 11, ordy(h2) = 2, ordy(h3) = 3,

so π−1(∞) = I∗5 . We have 5 other singular fibers of type I1. Therefore, for

(X,Y ) ∈ X, S(X,Y ) is an elliptic K3 surface whose singular fibers are of type

IV ∗ + 5I1 + I∗5 .

By the same way, we know the structure of the elliptic surface S(X,Y ) for

(X,Y ) /∈ X. If X 	= 0 and Y = 0 (namely, (X,Y ) ∈K1 − {(0,0)}), then S(X,0)

is an elliptic K3 surface with the singular fibers of type III∗ + 3I1 + I∗6 . If

(X,Y ) ∈K2 −{(0,0)}, S(X,Y ) is an elliptic K3 surface with the singular fibers

of type IV ∗ + 3I1 + I2 + I∗5 . However, we see easily that S(0,0) is not a K3

surface, but a rational surface.

Next, we consider the case A = 0. In this case, note that (B,C) 	= (0,0).

We have the equation of S(0 : B : C): z2 = x3 − 16y3x2 + 20By3x + Cy4. On

{A = 0} ⊂ P(1,3,5), we use the parameter l = C
3

B5 . By the correspondence x =
C

3

B4 x
′, y = C

2

B3 y
′, and z =

√
C9

B6 z′, we have

S(l) : z′2 = x′3 − 16ly′3x′2 + 20y′3x′ + y′4.

The discriminant of the right-hand side is given by y′8(27+32000y′ +5760ly′2 −
102400l2y′4−16384l3y′5). From this, we can see that S(l) is an elliptic K3 surface

with the singular fibers of type IV ∗ + 5I1 + I∗5 . �

Hence, we obtain the extended family {S(A :B : C) | (A :B : C) ∈ P(1,3,5)−{(1 :
0 : 0)}} of K3 surfaces. For simplicity, let F denotes this extended family.

2.2. The extension Φ of the period mapping Φ1

Set c0 = (1 : 0 : 0) ∈ P(1,3,5). In this subsection, we extend the period mapping

Φ1 :X→D+ in (2.2) to Φ : P(1,3,5)− {c0}→D+.

First, we recall the S-marking on X. According to Theorem 2.1 and its proof,

we have the elliptic K3 surface

π(A:B:C) : S(A :B : C)→ P1(C) = (y-sphere)

for any (A :B : C) ∈ P(1,3,5)− {c0}.
Take a generic point (X0, Y0) ∈ X. The elliptic K3 surface Š = S(X0, Y0)

given by (2.4) and (2.5) has the singular fibers of type IV ∗ +5I1 + I∗5 . Let F be

a general fiber of this elliptic fibration, and let O be the zero of the Mordell–Weil

group of sections. We have two irreducible components of the divisor C given by

{x = 0, z2 = Y y4}. We take the section R given by y �→ (x, y, z) = (0, y,
√
Y y2).

This gives a component of the divisor C. Let us consider the irreducible decompo-

sition
⋃6

j=0 aj (resp.,
⋃9

j=0 bj) of the singular fiber π−1
(X,Y )(0) (resp., π

−1
(X,Y )(∞))

of type IV ∗ (resp., I∗5 ). These curves are illustrated in Figure 2. Note that

a0 ∩O 	= φ, b0 ∩O 	= φ, a6 ∩R 	= φ, and b9 ∩R 	= φ.

We set Γ5 = F,Γ6 = O,Γ7 = R, Γ8+k = ak+1 (0 ≤ k ≤ 5), Γ14+l = bl+1 (0 ≤
l ≤ 8). We have the lattice Ľ = 〈Γ5, . . . ,Γ22〉Z ⊂ H2(Š,Z). We can check that
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Figure 2. The elliptic fibration given by (2.3).

|det(Ľ)|= 5. Hence, we have

Ľ=NS(Š).

Since Ľ is a primitive lattice, there exists Γ1, . . . ,Γ4 ∈H2(Š,Z) such that 〈Γ1, . . . ,

Γ4,Γ5, . . . ,Γ22〉Z =H2(Š,Z). Let {Γ∗
1, . . . ,Γ

∗
22} be the dual basis of {Γ1, . . . ,Γ22}

in H2(Š,Z). Then, we see that 〈Γ∗
1, . . . ,Γ

∗
4〉Z is the transcendental lattice. We

may assume that its intersection matrix is

(Γ∗
j · Γ∗

k)1≤j,k≤4 =A,(2.6)

where A is given by (1.2). We define the period of Š by

Φ1(X0, Y0) =
(∫

Γ1

ω : · · · :
∫
Γ4

ω
)
.

Take a small connected neighborhood V0 of (X0, Y0) in X so that we have a local

topological trivialization:

τ :
{
S(p)

∣∣ p ∈ V0

}
→ Š × V0.(2.7)

Let � : Š × V0 → Š be the canonical projection. Set r =� ◦ τ . Then,

r′p = r|S(p)

gives a C∞-isomorphism of surfaces. For any p ∈ V0, we have an isometry ψp :

H2(S(p),Z)→H2(Š,Z) given by

ψp = r′p∗.

We call this isometry the S-marking on V0. By an analytic continuation along

an arc α ⊂ X, we define the S-marking on X. This depends on the choice of α.
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The S-marking preserves the Néron–Severi lattice. We define the period mapping

Φ1 :X→D+ by

p �→
(∫

ψ−1
p (Γ1)

ω : · · · :
∫
ψ−1

p (Γ4)

ω
)
.

This is equal to the period mapping in (2.2).

Here, we recall the P-marking for K3 surfaces, which is defined in [N1, Sec-

tion 5].

DEFINITION 2.1

Let S be an algebraic K3 surface. An isometry

ψ :H2(S,Z)→H2(Š,Z)

is called the P-marking if

(i) ψ−1(NS(Š))⊂NS(S),

(ii) ψ−1(F ), ψ−1(O), ψ−1(R), ψ−1(aj) (1≤ j ≤ 6), and ψ−1(bj) (1≤ j ≤ 9)

are all effective divisors,

(iii) (ψ−1(F ) ·C)≥ 0 for any effective class C; namely, ψ−1(F ) is nef.

A pair (S,ψ) is called a P-marked K3 surface.

DEFINITION 2.2

Two P-marked K3 surfaces (S1, ψ1) and (S2, ψ2) are said to be isomorphic if

there is a biholomorphic mapping f : S1 → S2 with

ψ2 ◦ f∗ ◦ ψ−1
1 = idH2(Š,Z) .

Two P-marked K3 surfaces (S1, ψ1) and (S2, ψ2) are said to be equivalent if there

is a biholomorphic mapping f : S1 → S2 with

(ψ2 ◦ f∗ ◦ψ−1
1 )|NS(Š) = idNS(Š) .

REMARK 2.3

The other connected component R′ of the divisor C given by the section y �→
(x, y,−

√
Y y2) intersects a4 (resp., b8) at y = 0 (resp., y = ∞). Letting q be

the involution of S(X,Y ) given by (x, y, z) �→ (x, y,−z), we have q∗(R
′) = R,

q∗(a4) = a6, q∗(a3) = a5, and q∗(b8) = b9. Then, we can see that P -marked K3

surfaces (Š, id) and (Š, q∗) are isomorphic by q. This shows that our argument

does not depend on the choice of the curves R or R′.

The period of a P-marked K3 surface (S,ψ) is given by

Φ̃′(S,ψ) =
(∫

ψ−1(Γ1)

ω : · · · :
∫
ψ−1(Γ4)

ω
)
.(2.8)

It is a point in D. Let X be the isomorphism classes of P-marked K3 surfaces,

and let

[X] =X/(P -marked equivalence).
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By the Torelli theorem for K3 surfaces, the period mapping Φ̃′ : X→D for P-

marked K3 surfaces defined by (2.8) gives an identification between X and D.

Moreover, a P-markedK3 surface (S1, ψ1) is equivalent to a P-markedK3 surface

(S2, ψ2) if and only if

Φ̃′(S1, ψ1) = g ◦ Φ̃′(S2, ψ2)

for some g ∈ PO(A,Z) (see [N1, Lemma 5.1]). Therefore, we identify [X] with

D/PO(A,Z) =D+/PO
+(A,Z)
 (H×H)/

〈
PSL(2,O), τ

〉
.(2.9)

Recall that the above isomorphism is given by the modular isomorphism j in

(1.7).

We note that X is embedded in [X] (see [N1, Remark 5.3]). Then, an S-marked

K3 surface is a P-marked K3 surface, and the period mapping for P-marked K3

surfaces is an extension of the period mapping for S-marked K3 surfaces. From

Φ̃′ :X→D, we obtain a multivalued mapping Φ′ : [X]→D+. We have

Φ′|X =Φ1,(2.10)

where Φ1 is the period mapping in (2.2) for S-marked K3 surfaces.

Now, we extend the period mapping Φ1 : X→D+ in (2.2) to Φ : P(1,3,5)−
{c0}→D+. We recall that (P(1,3,5)− {c0})−X= (K1 ∪K2 ∪ {A= 0})− {c0}.

First, since the local topological trivialization on X in (2.7) is naturally

extended to {A = 0}, there exist S-markings on {A = 0} and the period map-

ping (2.2) on X is extended to P(1,3,5)− (K1 ∪K2 ∪ {c0})→D+.

Let us recall that the projective monodromy group of Φ1 is isomorphic to

PO+(A,Z). According to (2.9) and Proposition 1.2(3) (resp., Proposition 1.2(2)),

the local monodromy of the period mapping Φ1 in (2.2) around K1 (resp., K2) is

locally finite. Hence, the period mapping P(1,3,5)− (K1 ∪K2 ∪ {c0})→D+ can

be extended to P(1,3,5)−{c0}→D+. We note that this extension is assured by

Griffiths [Gr, Theorem (9.5)].

Therefore, we have the extended period mapping

Φ : P(1,3,5)− {c0}→D+(2.11)

with

Φ|X =Φ1.(2.12)

Since we have (2.9) and Proposition 1.2(1), the P-marked equivalence class

[X] is identified with P(1,3,5)−{c0}. Because we have (2.10), (2.12), and X is a

Zariski-open set in P(1,3,5)− {c0}, Φ in (2.11) is equal to the period mapping

Φ′ on [X].

Let [Φ(p)] ∈D+/PO
+(A,Z) be the equivalence class of Φ(p) ∈D+. From the

above argument, we have the following proposition.

PROPOSITION 2.3

The period mapping Φ′ : [X] → D+ for P-marked K3 surfaces is given by the

period mapping Φ in (2.11) for the family F = {S(p) | p ∈ P(1,3,5) − {c0}} of
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K3 surfaces. This is an extension of the period mapping in (2.2) for S-marked

K3 surfaces. Especially, if [Φ(p1)] = [Φ(p2)] in D+/PO
+(A,Z), then p1 = p2.

For p ∈ P(1,3,5)− {c0}, let

ψp :H2

(
S(p),Z

)
→H2(Š,Z)

be a P-marking naturally induced by the above proposition. The period of S(p)

is given by

Φ(p) =
(∫

ψ−1
p (Γ1)

ω :

∫
ψ−1

p (Γ2)

ω :

∫
ψ−1

p (Γ3)

ω :

∫
ψ−1

p (Γ4)

ω
)
.(2.13)

According to Remark 1.1, the multivalued analytic mapping (j−1 ◦ Φ)|X :

X → H × H gives a developing map of the canonical projection Π : H × H →
(H × H)/〈PSL(2,O), τ〉. Hence, by Proposition 2.3, (j−1 ◦ Φ)|X is extended to

the analytic mapping

j−1 ◦Φ : P(1,3,5)− {c0}→H×H.

This gives a developing map of Π.

REMARK 2.4

Sato [Sa] showed that the system of differential equations on X,{
uXX = LuXY +AuX +BuY + Pu,

uY Y =MuXY +CuX +DuY +Qu

with L = −20(4X2+3XY−4Y )
36X2−32X−Y ,M = −2(54X3−50X2−3XY+2Y )

5Y (36X2−32X−Y ) is a uniformizing dif-

ferential equation of (H×H)/〈PSL(2,O), τ〉. Namely, taking linearly indepen-

dent solutions y0, y1, y2, and y3, the mapping p �→ (y0(p) : · · · : y3(p)) gives a

developing map X→D+. Of course, our equation (1.14) is also a uniformizing

differential equation in this sense. But, note that we do not know whether we

can extend it to the singular locus applying the theory of the uniformizing dif-

ferential equations. Since we regard P(1,3,5)−{c0} as the parameter space of F
and p �→ (y0(p) : · · · : y3(p)) is the period mapping for F , we obtain the extension

of the solutions of (1.14) to the singular locus.

Hence, we obtain the following theorem.

THEOREM 2.2

The multivalued mapping j−1 ◦Φ : P(1,3,5)−{c0}→H×H gives the developing

map of Π. Namely, the inverse mapping of Π :H×H→ (H×H)/〈PSL(2,O), τ〉 is
given by j−1 ◦Φ through the identification (H×H)/〈PSL(2,O), τ〉 
 P(1,3,5)−
{c0} given by Proposition 1.2(1).

Let Δ be the diagonal

Δ=
{
(z1, z2) ∈H×H

∣∣ z1 = z2
}
.
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From the above theorem and Proposition 1.2(3), we have the following.

COROLLARY 2.1

It holds that

Π(Δ) =
{
(A :B : 0)

}
− {c0}

through the identification (H × H)/〈PSL(2,O), τ〉 
 P(1,3,5) − {c0} given by

Proposition 1.2(1).

Due to Theorem 2.2, we obtain the system of coordinates (z1, z2) of H×H coming

from the multivalued period mapping (2.13) for the family of K3 surfaces {S(p)}:
(
z1(p), z2(p)

)
=
(
−
∫
Γ3

ω+ ((1−
√
5)/2)

∫
Γ4

ω∫
Γ2

ω
,−
∫
Γ3

ω+ ((1 +
√
5)2)

∫
Γ4

ω∫
Γ2

ω

)
.

(2.14)

Here, for simplicity, let Γj denote the 2-cycle ψ−1
p (Γj) on S(p) for j ∈ {1,2,3,4}.

According to Proposition 1.2(1), by adding one cusp, we have the compactifi-

cation (H×H)/〈PSL(2,O), τ〉. Then, putting Π◦j−1 ◦Φ(c0) = (
√
−1∞,

√
−1∞),

we obtain an extended mapping

Π ◦ j−1 ◦Φ : P(1,3,5)→ (H×H)/
〈
PSL(2,O), τ

〉
,(2.15)

where (
√
−1∞,

√
−1∞) stands for the 〈PSL(2,O), τ〉-orbit of (

√
−1∞,

√
−1∞).

3. The family FX and the period differential equation

In this section, we consider the family FX = {S(X,0)} and the diagonal Δ =

{(z1, z2) ∈H×H | z1 = z2}.

3.1. The family FX

In Section 2, we had the K3 surfaces S(A : B : C) for (A : B : C) ∈ P(1,3,5) −
{c0} and the period mapping (2.13). Restricting them to {C = 0}, we obtain

the family {S(A :B : 0) | (A :B : 0) 	= c0} of K3 surfaces with S(A :B : 0) : z2 =

x3 − 4y2(4y− 5A)x2 +20By3x. Then, we have the family FX = {S(X,0)} of K3

surfaces with

S(X,0) : z2 = x3 − 4y2(4y− 5)x2 + 20Xy3x,

where X(= B

A3 ) ∈ P1(C)− {0}. In this section, we consider the family FX and

the period mapping for FX .

Set Σ = (X-sphere P1(C))−{0, 2527 ,∞}. Because we have Proposition 2.3, we

can prove the following theorem for the subfamily F ′
X = {S(X,0) |X ∈Σ} as in

[N1].

THEOREM 3.1

(1) For a generic point X ∈ Σ, the intersection matrix of the Néron–Severi

lattice NS(S(X,0)) is given by
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E8(−1)⊕E8(−1)⊕U ⊕ 〈−2〉

and that of the transcendental lattice Tr(S(X,0)) is given by

U ⊕ 〈2〉=:AX .

(2) The projective monodromy group of the multivalued period mapping for

F ′
X is isomorphic to PO+(AX ,Z).

From the period mapping Φ in (2.13), the system of coordinates (z1, z2) in (2.14),

Corollary 2.1, and the above theorem, we obtain a multivalued period mapping

ΦX for FX such that

j−1 ◦ΦX :
{
X
∣∣X ∈ P1(C)− {0}

}
→Δ,(3.1)

where ΦX is given by X �→ (ξ1 : ξ2 : ξ3 : ξ4) = (
∫
Γ1

ω :
∫
Γ2

ω :
∫
Γ3

ω : 0) ∈D+ satis-

fying the Riemann–Hodge relation (
∫
Γ1

ω)(
∫
Γ2

ω)+(
∫
Γ3

ω)2 = 0. The fundamental

group π1(Σ,∗) induces the projective monodromy group MX for ΦX . According

to Theorem 3.1(2), MX is isomorphic to PO+(AX ,Z). From (2.14), we have the

coordinate z of Δ
H:

z =−
∫
Γ3

ω∫
Γ2

ω
.(3.2)

Recalling (2.15), we obtain an extended mapping Π ◦ j−1 ◦ΦX : P1(C)→Δ/MX .

We note that Π ◦ j−1 ◦ΦX(0) is the MX -orbit of (
√
−1∞,

√
−1∞). The action

of MX on Δ(⊂ H×H) induces the action of PSL(2,Z) on H, for we have the

coordinate z in (3.2). Namely, there exist γ1, γ2 ∈ π1(Σ,∗) such that

γ1(z) = z + 1, γ2(z) =−1

z
.(3.3)

So, Δ/MX is identified with the orbifold H/PSL(2,Z)
 P1(C).

REMARK 3.1

The projective monodromy group MX 
 PO+(AX ,Z) of the period mapping ΦX

is generated by two elements:⎛
⎝1 −1 2

0 1 0

0 −1 1

⎞
⎠ ,

⎛
⎝ 0 −1 0

−1 0 0

0 0 −1

⎞
⎠ .(3.4)

These are induced by the monodromy matrices in (1.6).

3.2. The Gauss hypergeometric equation 2E1(
1
12 ,

5
12 ,1; t)

We recall the Gauss hypergeometric equation

2E1

( 1

12
,
5

12
,1; t
)
: t(1− t)

d2

dt2
u+
(
1− 3

2
t
) d

dt
u− 5

144
u= 0.(3.5)
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The Riemann scheme of 2E1(
1
12 ,

5
12 ,1; t) is given by⎧⎨

⎩
t= 0 t= 1 t=∞
0 0 1/12

0 1/2 5/12

⎫⎬
⎭ .

We can take the solutions y1(t) and y2(t) of 2E1(
1
12 ,

5
12 ,1; t) such that the

inverse mapping of the Schwarz mapping

σ : C− {0,1} → H

; t �→ σ(t) = y2(t)
y1(t)

= z0
(3.6)

is given by

z0 �→
1

J(z0)
,(3.7)

where J(z) is the elliptic J function with J( 1+
√
−3

2 ) = 0, J(
√
−1) = 1, and

J(
√
−1∞) =∞.

REMARK 3.2

The above J -function is given by

J(z) =
1

1728

(1
q
+ 744+ 196884q+ · · ·

)
,(3.8)

where q = e2π
√
−1z .

Note that the Schwarz mapping σ is a multivalued analytic mapping. We can

choose the single-valued branch of the Schwarz mapping σ on (0,1) ⊂ R such

that σ(t) ∈
√
−1R and

lim
t→+0

σ(t) =
√
−1∞, lim

t→1−0
σ(t) =

√
−1.(3.9)

Then, the single-valued branch of the solutions y1(t) and y2(t) near (0,1)(⊂ R)

is in the form {
y1(t) = u11(t),

y2(t) = log(t) · u21(t) + u22(t),
(3.10)

where ujk(t) are unit holomorphic functions around t= 0 and log stands for the

principal value.

The projective monodromy group of 2E1(
1
12 ,

5
12 ,1; t) is isomorphic to

PSL(2,Z). In other words, the action of the fundamental group π1(P
1(C) −

{0,1,∞},∗) on H= {z0 = y2

y1
} is generated by the two actions

z0 �→ z0 + 1, z0 �→ − 1

z0
,(3.11)

if we normalize a basis y1, y2 of the solutions of 2E1(
1
12 ,

5
12 ,1; t) around a base

point.
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REMARK 3.3

The projective monodromy group for the system (y22(t);−y21(t);y1(t)y2(t)) is gen-

erated by the two matrices in (3.4).

3.3. The period differential equation
In this subsection, we determine the period differential equation for the family

FX . Then, considering the solutions of this period differential equation, we shall

obtain the expression of X using the coordinate z in (3.2).

PROPOSITION 3.1

On the locus {Y = 0}, the period differential equation (1.14) is restricted to the

following ordinary differential equation of rank 4:

d4

dX4
u+

3(243X2 − 4060X + 2000)

2X(81X2 − 1155X + 1000)

d3

dX3
u

+
2034X2 − 40680X + 8000

8X2(81X2 − 1155X + 1000)

d2

dX2
u(3.12)

+
15(3X − 80)

8X2(81X2 − 1155X + 1000)

d

dX
u= 0.

Proof

Recalling the period differential equation (1.14), set{
E1u= L1uXY +A1uX +B1uY + P1u,

E2u=M1uXY +C1uX +D1uY +Q1u.

Deriving these equations, we have the system of equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uXX =E1u, uXXX = ∂
∂XE1u, uXXY = ∂

∂Y E1u,

uXXXX = ∂2

∂X2E1u, uXXXY = ∂2

∂X ∂Y E1u,

uY Y =E2u, uXY Y = ∂
∂XE2u, uY Y Y = ∂

∂Y E2u,

uXXY Y = ∂2

∂Y 2E1u= ∂2

∂X2E2u.

Our periods satisfy this system. From this system, canceling the terms uY , uXY ,

uY Y , uXXY , uXY Y , uY Y Y , uXXXY , and uXXY Y , we can obtain the differential

equation

a4(X,Y )uXXXX + a3(X,Y )uXXX + a2(X,Y )uXX

+ a1(X,Y )uX + a0(X,Y )u= 0,

where aj(X,Y ) (j = 1,2,3,4) is a polynomial in X and Y . Putting Y = 0, we

have (3.12). �

Set

η̌j(X) =

∫
Γj

ω (j ∈ 1,2,3).
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The equation (3.12) has the 4-dimensional space of solutions generated by η̌1(X),

η̌2(X), η̌3(X) and 1. The Riemann scheme of (3.12) is given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X = 0 X = 25/27 X = 40/3 X =∞
0 0 0 0

1 1/2 1 −5/6

1 1 2 −1/2

1 2 4 −1/6

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

We set X = 25
27 t, and the equation (3.12) is transposed to

W4u= 0,

where

W4 =
d4

dt4
+

1620t3 − 29232t2 + 15552t

72t2(t− 1)(5t− 72)

d3

dt3
+

565t2 − 12204t+ 2592

36t2(t− 1)(5t− 72)

d2

dt2

+
25t− 720

72t2(t− 1)(5t− 72)

d

dt
.

Straightforward calculation shows the following.

PROPOSITION 3.2

Set

W3 =
d3

dt3
+

3

2(t− 1)

d2

dt2
+

5t− 36

36t2(t− 1)

d

dt
+

72− 5t

72t3(t− 1)
,

W1 =
d

dt
+

15t2 − 298t+ 216

t(t− 1)(5t− 72)
.

It holds that

W4 =W1 ◦W3.(3.13)

Set ηj(t) = η̌j(
25
27 t) for j ∈ {1,2,3}.

PROPOSITION 3.3

The periods η1(t), η2(t), and η3(t) are the solutions of

W3u= 0

satisfying

η1η2 + η23 = 0.(3.14)

Proof

Let V = 〈η1, η2, η3〉C and V ′ = 〈W3η1,W3η2,W3η3〉C. Since the linear mapping

W3 : V → V ′ given by f �→ W3f is monodromy-equivalent and V is an irre-

ducible representation, according to Schur’s lemma, we have V 
 V ′ or V ′ = {0}.
It follows from (3.13) that V ′ ⊂ Ker(W1). Because dim(Ker(W1)) = 1, we have

V ′ = {0}.
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For t �→ (η1(t) : η2(t) : η3(t)) is the period mapping ΦX , the relation (3.14) is

clear. �

PROPOSITION 3.4

If u1 and u2 are solutions of 2E1(
1
12 ,

5
12 ,1; t), then tu2

1(t), tu
2
2(t), and tu1(t)u2(t)

are solutions of the period differential equation W3u= 0.

Proof

Take any solutions of 2E1(
1
12 ,

5
12 ,1; t) u1(t) and u2(t). For j ∈ {1,2},

u′′
j =

1− 3t/2

t(t− 1)
u′
j −

5

144t(t− 1)
uj ;(3.15)

then

u
(3)
j =

535t2 − 715t+ 288

144t2(t− 1)2
u′
j +

5(7t− 4)

288t2(t− 1)2
uj .(3.16)

Here, by a straightforward calculation, we have

W3(tu1u2) =
5

72t(t− 1)
u1u2 +

113t− 36

36t(t− 1)
(u′

1u2 + u1u
′
2) +

3(3t− 2)

t− 1
u′
1u

′
2

(3.17)

+
3(3t− 2)

2(t− 1)
(u′′

1u2 + u1u
′′
2) + 3t(u′

1u
′′
2 + u′′

1u
′
2) + t(u

(3)
1 u2 + u1u

(3)
2 ).

Substituting (3.15) and (3.16) for (3.17), we have W3(tu1u2) = 0. �

REMARK 3.4

According to (3.12), the derivation d
dtηj (j = 1,2,3) of the period is a solution of

the equation

d3

dt3
v+

1620t3 − 29232t2 + 15552t

72t2(t− 1)(5t− 72)

d2

dt2
v+

1130t2 − 24408t+ 5184

72t2(t− 1)(5t− 72)

d

dt
v

(3.18)

+
25t− 720

72t2(t− 1)(5t− 72)
v = 0.

Then, set

S(t) = 3F2

(1
6
,
1

2
,
5

6
; 1,1; t

)
+

1

5
3F2

(7
6
,
1

2
,
5

6
; 1,1; t

)
,

where 3F2 is the generalized hypergeometric series

3F2(a1, a2, a3; b1, b2; t) =

∞∑
t=0

(a1, n)(a2, n)(a3, n)

(b1, n)(b2, n)n!
tn.

We see that S(t) is a holomorphic solution of (3.18) around t= 0. The indefinite

integral of S(t) with the integral constant 0 is given by

t · 3F2

(1
6
,
1

2
,
5

6
; 1,2; t

)
+

1

5
t · 3F2

(7
6
,
1

2
,
5

6
; 1,2; t

)

=
6

5
t · 3F2

(1
6
,
1

2
,
5

6
; 1,1; t

)
=

6

5
t ·
(
2F1

( 1

12
,
5

12
,1; t
))2

.
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Here, we applied Clausen’s formula. From Proposition 3.4, this gives a holomor-

phic solution of W3u= 0 around t= 0.

Let y1(t) and y2(t) be the single-valued branches of the solutions of 2E1(
1
12 ,

5
12 ,1;

t) near (0,1)⊂R given in (3.9). Let

s1(t) = ty21(t), s2(t) = ty1(t)y2(t), s3(t) = ty22(t).

Note that if t ∈ (0,1)⊂R, we have⎧⎪⎪⎨
⎪⎪⎩
s1(t) = t · v11(t),
s2(t) = t · (log(t)v21(t) + v22(t)),

s3(t) = t · (log2(t)v31(t) + log(t)v32(t) + v33(t)),

(3.19)

where vjk(t) are unit holomorphic functions around t= 0. Moreover, they satisfy

−s1(t)s3(t) + s22(t) = 0.(3.20)

LEMMA 3.1

A branch of the multivalued analytic mapping t �→ (η1(t) : η2(t) : η3(t)) satisfies(
η1(t) : η2(t) : η3(t)

)
=
(
s3(t) :−s1(t) : s2(t)

)
∈ P2(C).

Proof

Because we have Proposition 1.2(1) and the coordinate z in (3.2), we take the

single-valued branch of the multivalued period mapping t �→ (η1(t) : η2(t) : η3(t))

on t ∈ (0,1)⊂R such that

lim
t→+0

−η3(t)

η2(t)
=
√
−1∞.(3.21)

In this proof, we consider η1(t), η2(t), and η3(t) near (0,1)(⊂R).

According to Proposition 3.4, we have

ηj(t) =
3∑

k=1

ajksk(t) (j = 1,2,3),

where ajk (j, k = 1,2,3) are constants. Since we have (3.21), we obtain a23 = 0.

So, it follows that η2(t) = a21s1(t)+ a22s2(t). From (3.19), we see that η1(t)η2(t)

does not contain log4(t). Then, from (3.14), we have a33 = 0. Recalling (3.21)

again, we obtain a22 = 0. Because we consider y �→ (η1(t) : η2(t) : η3(t)) ∈ P2(C),

we assume that a21 =−1. Then, the single-valued branches ηj(t) (j = 1,2,3) are

in the form ⎧⎪⎪⎨
⎪⎪⎩
η1(t) = a11s1(t) + a12s2(t) + a13s3(t),

η2(t) =−s1(t),

η3(t) = a31s1(t) + a32s2(t).
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Hence, using (3.6), the coordinate z in (3.2) is given by

z = a32
s2(z)

s1(z)
+ a31 = a32z0 + a31.

Considering the actions of π1(P
1(C)− {0,1,∞}) on z =−η3

η2
space in (3.3)

and z0 =
y2

y1
space in (3.11), we have a31 = 0 and a32 = 1.

Therefore, using (3.14) again, we obtain

η1(t) = s3(t), η2(t) =−s1(t), η3(t) = s2(t). �

COROLLARY 3.1

A coordinate z in (3.2) of the diagonal Δ (
H) is equal to

z =
y2(t)

y1(t)
.

Proof

From the above lemma, this is clear. �

THEOREM 3.2

The inverse of the multivalued period mapping j−1 ◦ΦX :X �→ (z, z) in (3.1) is

given by

X(z, z) =
25

27
· 1

J(z)
.

Proof

From Corollary 3.1 and the inverse Schwarz mapping (3.7), we have t(z) = 1
J(z) .

Therefore, we obtain

X(z, z) =
25

27
· t(z) = 25

27
· 1

J(z)
. �

4. The theta expressions of X and Y

First, we recall the classical elliptic functions. Let z ∈H.

The classical Eisenstein series are given by

G2(z) = 60
∑

(0,0) 
=(m,n)∈Z2

1

(mz + n)4
, G3(z) = 140

∑
(0,0) 
=(m,n)∈Z2

1

(mz + n)6
.

G2(z) (resp., G3(z)) is a modular form of weight 4 (resp., 6) for PSL(2,Z).

The ring of modular forms for PSL(2,Z) is C[G2,G3]. We have G2(
√
−1∞) =

4π4

3 and G3(
√
−1∞) = 8π6

27 . Let E4(z) =
3

4π4G2(z) and E6(z) =
27
8π6G3(z) be the

normalized Eisenstein series. The discriminant form is

Δ(z) =G3
2(z)− 27G2

3(z).



838 Atsuhira Nagano

We have Δ(
√
−1∞) = 0. This is a cusp form of weight 12. The cusp form of

weight 12 is Δ up to a constant factor. The J -function in (3.8) is given by

J(z) =
G3

2(z)

G3
2(z)− 27G2

3(z)
=

G3
2(z)

Δ(z)
.(4.1)

The field of modular functions for the modular group PSL(2,Z) is C(J(z)).

For a, b ∈ {0,1}, the Jacobi theta constants are defined by

ϑab(z) =
∑
n∈Z

exp
(√

−1π
(
n+

a

2

)2
z + 2

√
−1π

(
n+

a

2

) b
2

)

for (a, b) = (0,0), (0,1) and (1,0). The functions ϑ4
00(z), ϑ

4
01(z), and ϑ4

10(z) are the

modular forms of weight 2 for the principal congruence subgroup Γ(2) = {
(α β
γ δ

)
|

α≡ δ ≡ 1, β ≡ γ ≡ 0 (mod2)}. The ring of modular forms for Γ(2) is

C[ϑ4
00, ϑ

4
01, ϑ

4
10]/(ϑ

4
01 + ϑ4

10 = ϑ4
00) =C[ϑ4

00, ϑ
4
01].

We note that

1

1728

( 3

4π4

)3
Δ(z) =

1

28
ϑ8
00(z)ϑ

8
01(z)ϑ

8
10(z).

Next, we survey the theta constants for Hilbert modular forms for Q(
√
5).

They are introduced by Müller [M].

Set

S2 =
{
Z ∈Mat(2,2)

∣∣ tZ = Z, Im(Z)> 0
}
.

This is the Siegel upper half-plane consisting of (2 × 2)-complex matrices. For

a, b ∈ {0,1}2 with tab≡ 0 (mod2), set

ϑ(Z;a, b) =
∑
g∈Z2

exp
(
π
√
−1
(
t
(
g+

1

2
a
)
Z
(
g+

1

2
a
)
+ tgb

))
.

We use the mapping ψ :H×H→S2 given by

(z1, z2) = ζ �→

⎛
⎝Tr( εζ√

5
) Tr( ζ√

5
)

Tr( ζ√
5
) Tr(− ε′ζ√

5
)

⎞
⎠

=
1

2
√
5

(
(1 +

√
5)z1 − (1−

√
5)z2 2(z1 − z2)

2(z1 − z2) (−1 +
√
5)z1 + (1+

√
5)z2

)
,

where ε= 1+
√
5

2 .

REMARK 4.1

Set

N5 =

{(
σ1 σ2

σ2 σ3

)
∈S2

∣∣∣−σ1 + σ2 + σ3 = 0

}
.

Let p be the canonical projection S2 →S2/Sp(4,Z). Then, the Humbert surface

H5 = p(N5) of invariant 5 gives the moduli space of principally polarized Abelian
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Table 1. The correspondence between j and (a, b)

j 0 1 2 3 4 5 6 7 8 9
ta (0,0) (1,1) (0,0) (1,1) (0,1) (1,0) (0,0) (1,0) (0,0) (0,1)
tb (0,0) (0,0) (1,1) (1,1) (0,0) (0,0) (0,1) (0,1) (1,0) (1,0)

surfaces A such that Q(
√
5)⊂ End(A)⊗Q. We note that the above ψ is a mapping

H×H→N5.

For j ∈ {0,1, . . . ,9}, we set

θj(z1, z2) = ϑ
(
ψ(z1, z2);a, b

)
,

where the correspondence between j and (a, b) is given by Table 1. These theta

constants are holomorphic functions on H×H.

Let a ∈ Z and j1, . . . , jr ∈ {0, . . . ,9}. We set θaj1,...,jr = θaj1 · · ·θajr .
Set s5 = 2−6θ0123456789. This is an alternating modular form of weight 5. The

following g2 (resp., s6, s10, s15) is a symmetric Hilbert modular form of weight 2

(resp., 6,10,15) for Q(
√
5):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2 = θ0145 − θ1279 − θ3478 + θ0268 + θ3569,

s6 = 2−8(θ2012478 + θ2012569 + θ2034568 + θ2236789 + θ2134579),

s10 = s25 = 2−12θ20123456789,

s15 =−2−18

× (θ907θ
5
18θ24 − θ925θ

5
16θ09 + θ958θ

5
03θ46 − θ909θ

5
25θ16 + θ909θ

5
16θ25 − θ967θ

5
23θ89

+ θ918θ
5
24θ07 − θ924θ

5
18θ07 − θ946θ

5
03θ58 − θ924θ

5
07θ18 − θ989θ

5
67θ23 − θ907θ

5
24θ18

+ θ989θ
5
23θ67 − θ949θ

5
13θ57 + θ916θ

5
09θ25 − θ903θ

5
46θ58 + θ916θ

5
25θ09 − θ946θ

5
58θ03

− θ925θ
5
09θ16 − θ957θ

5
49θ13 + θ967θ

5
89θ23 + θ958θ

5
46θ03 + θ957θ

5
13θ49 − θ923θ

5
89θ67

+ θ918θ
5
07θ24 + θ903θ

5
58θ46 + θ923θ

5
67θ89 + θ949θ

5
57θ13 − θ913θ

5
57θ49 + θ913θ

5
49θ57).

(4.2)

PROPOSITION 4.1 ([M, SATZ 1])

(1) The ring of the symmetric Hilbert modular forms for Q(
√
5) is given by

C[g2, s6, s10, s15]/
(
M(g2, s6, s10, s15) = 0

)
,

where

M(g2, s6, s10, s15)

= s215 −
(
55s310 −

53

2
g22s6s

2
10 +

1

24
g52s

2
10 +

32 · 52
2

g2s
3
6s10(4.3)

− 1

23
g42s

2
6s10 − 2 · 33s56 +

1

24
g32s

4
6

)
.

(2) The ring of the Hilbert modular forms for Q(
√
5) is given by

C[g2, s5, s6, s15]/
(
M(g2, s

2
5, s6, s15) = 0

)
.
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PROPOSITION 4.2 ([M, PP. 244–245])

Müller’s modular forms satisfy⎧⎪⎪⎨
⎪⎪⎩
g2(i∞, i∞) = 1,

s6(z, z) =
2

1728 (
3

4π4 )
3Δ(z) = 1

27ϑ
8
00(z)ϑ

8
01(z)ϑ

8
10(z),

s10(z, z) = 0.

Especially, the relations{
4π4

3 g2(z, z) =
4π4

3 E4(z) =G2(z),

211π12s6(z, z) =G3
2(z)− 27G2

3(z) =Δ(z)

hold.

Now, we obtain the theta expressions of the parametersX and Y for the family F .

According to Proposition 1.1, {X = B

A3 , Y = C

A5 } gives a system of generators of

symmetric Hilbert modular functions for Q(
√
5). From Theorem 2.2, the inverse

correspondence (z1, z2) �→ (X(z1, z2), Y (z1, z2)) of the multivalued period map-

ping for F defines the pair of Hilbert modular functions of variables z1 and z2
in (2.14). In the following argument, we shall obtain the expression of X(z1, z2)

and Y (z1, z2) as the quotients of Müller’s modular forms.

For our argument, we set Z = D
2

A15 . This defines a symmertic Hilbert modular

function for Q(
√
5) also.

LEMMA 4.1

The modular functions X(z1, z2), Y (z1, z2), and Z(z1, z1) have the expressions⎧⎪⎪⎨
⎪⎪⎩
X(z1, z2) = k1

s6(z1,z2)
g3
2(z1,z2)

,

Y (z1, z2) = k2
s10(z1,z2)
g5
2(z1,z2)

,

Z(z1, z2) = k3
s215(z1,z2)

g15
2 (z1,z2)

,

(4.4)

for some k1, k2, and k3 ∈C.

Proof

SinceX = B

A3 , the modular functionX is given by the quotient of Hilbert modular

forms of weight 6, and its denominator is the cube of a Hilbert modular form of

weight 2. Note that a Hilbert modular form of weight 2 is equal to g2 up to a

constant factor. Then, we have

X(z1, z2) =
k11s6(z1, z2) + k12g

3
2(z1, z2)

k13g32(z1, z2)
,

where k11, k12, and k13 are constants. Recalling Proposition 1.2(1), we have

X(
√
−1∞,

√
−1∞) = 0. Then, from Proposition 4.2, we obtain k12 = 0 and

X(z1, z2) = k1
s6(z1, z2)

g32(z1, z2)
.
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Since Y = C

A5 , the modular function Y is given by the quotient of Hilbert

modular forms of weight 10. Its denominator is the 5th power of a modular form

of weight 2. Then, we have

Y (z1, z2) =
k21s10(z1, z2) + k22g

5
2(z1, z2) + k23g

2
2(z1, z2)s6(z1, z2)

k24g52(z1, z2)
,

where k21, k22, k23, and k24 are constants. By Proposition 1.2(3), we have

Y (z, z) = 0. According to (4.2) and Proposition 4.2, if a modular form g of weight

10 vanishes on the diagonal Δ, then we have g = const · s10. So, it holds that

k22 = k23 = 0. Therefore, we obtain

Y (z1, z2) = k2
s10(z1, z2)

g52(z1, z2)
.

Recalling Proposition 1.1(2), we note that D defines a symmetric Hilbert

modular form of weight 15. Since Z = D
2

A15 , the modular function Z is given

by the quotient of modular forms of weight 30. Its denominator is the 15th

power of a modular form of weight 2, and its numerator is given by the square

of a symmetric modular form of weight 15. According to Proposition 4.1(2), a

symmetric modular form of weight 15 is given by const · s15. Then, we have

Z(z1, z2) = k3
s215(z1, z2)

g152 (z1, z2)
. �

THEOREM 4.1

The inverse correspondence of the multivalued period mapping j−1 ◦Φ : (X,Y ) �→
(z1, z2) in (2.14) for the family F is given by the quotient of Müller’s modular

forms: {
X(z1, z2) = 25 · 52 · s6(z1,z2)

g3
2(z1,z2)

,

Y (z1, z2) = 210 · 55 · s10(z1,z2)
g5
2(z1,z2)

.

Proof

First, we obtain the expression of X . To obtain it, we determine the constant k1
in (4.4). Due to Theorem 3.2, (4.1), and Proposition 4.2, we have

X(z, z) =
25

27
· 1

J(z)
=

25

27
· 2

11π12s6(z, z)

( 4π
4

3 )3g32(z, z)
= 25 · 52 · s6(z, z)

g32(z, z)
.

So, we obtain k1 = 25 · 52.
Next, we determine the constant k3 in (4.4). By (1.9), we have

144Z(z1, z2) =−1728X5(z1, z2) + 720X3(z1, z2)Y (z1, z2)

− 80X(z1, z2)Y
2(z1, z2) + 64

(
5X2(z1, z2)(4.5)

− Y (z1, z2)
)2

+ Y 3(z1, z2).

Recalling that Y (z, z) = 0, we have
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144Z(z, z) =−1728X5(z, z) + 64 · 25 ·X4(z, z)
(4.6)

=−226 · 510 ·
(
25 · 33 · s6(z, z)

g32(z, z)
− 1
)( s6(z, z)

g32(z, z)

)4
.

On the other hand, from (4.3), we have

s215(z1, z2)

g152 (z1, z2)
= 55

(s10(z1, z2)
g52(z1, z2)

)3
− 53

2

( s6(z1, z2)
g32(z1, z2)

)(s10(z1, z2)
g52(z1, z2)

)2

+
32 · 52

2

( s6(z1, z2)
g32(z1, z2)

)2(s10(z1, z2)
g52(z1, z2)

)
(4.7)

+
1

24

(s10(z1, z2)
g52(z1, z2)

)2
− 1

23

( s6(z1, z2)
g32(z1, z2)

)2(s10(z1, z2)
g52(z1, z2)

)

− 2 · 33
( s6(z1, z2)
g32(z1, z2)

)5
+

1

24

( s6(z1, z2)
g32(z1, z2)

)4
.

So, because s10(z, z) = 0, we have( s215(z, z)
g152 (z, z)

)
=

1

24

(
−25 · 33 s6(z, z)

g32(z, z)
+ 1
)( s6(z, z)

g32(z, z)

)4
.(4.8)

Since

Z(z, z) = k3
s215(z, z)

g152 (z, z)
,

comparing (4.6), (4.8), we have k3 = 226 · 510 · 3−2.

Finally, from (4.5), (4.7), k1 = 25 · 52, and k3 = 226 · 510 · 3−2, we have

k2 = 210 · 55. �

Thus, we obtain the explicit theta expression of the inverse correspondence

(z1, z2) �→ (X(z1, z2), Y (z1, z2)) of the period mapping for our family F of K3

surfaces.
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