A theta expression of the Hilbert modular
functions for /5 via the periods of /3
surfaces

Atsuhira Nagano

Abstract In this paper, we give an extension of the classical story of the elliptic modu-
lar function to the Hilbert modular case for Q(+/5). We construct the period mapping for
afamily F = {S(X,Y)} of K3surfaces with 2 complex parameters X and Y. The inverse
correspondence of the period mapping gives a system of generators of Hilbert modular
functions for Q(+/5). Moreover, we show an explicit expression of this inverse correspon-
dence by theta constants.

Introduction

The symmetric Hilbert modular surface (H x H)/(PSL(2,0k), ), where Ok is
the ring of integers in a real quadratic field K and 7 exchanges the factors of
H x H, gives the moduli space for the family Fx = {A} of the principally polarized
Abelian surfaces with an extra endomorphism structure K (C End’(A)).

In classical theory, the elliptic modular function A(z) on the moduli space
H/T'(2) is given by the inverse of the multivalued period mapping for a family
of elliptic curves. This period mapping gives the Schwarz mapping of the Gauss
hypergeometric differential equation E (%, %, 1). It is important that the modular
function A(z) have an explicit expression given by the Jacobi theta constants.

For the Hilbert modular cases, although there are various studies on the
structure of the field of modular functions and the ring of modular forms (e.g.,
Gundlach [Gu], Hirzebruch [H], Miiller [M]), still now, to the best of the author’s
knowledge, there has not appeared an explicit expression of Hilbert modular
functions as an inverse correspondence of the period mapping for a family of
algebraic varieties. In this paper, we give an extension of the above classical
story to the Hilbert modular functions for K = Q(+/5) by using a family of K3
surfaces that gives the same variation of Hodge structures of weight 2 with the
family Fx of Abelian surfaces. Namely, we show that the inverse of the period
mapping for our family of K3 surfaces gives Hilbert modular functions for Q(v/5).
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Moreover, we obtain an explicit theta expression of this inverse correspondence.
As our method, we use the fact that our period integrals of K3 surfaces satisfy
a system of partial differential equations determined in [N1].

Our result is obtained as a combined work with [N1] and based on the results
of Hirzebruch [H] and Miiller [M] also.

In this paper, we consider the family F = {S(X,Y)} of K3 surfaces with 2
complex parameters given by an affine equation in (z,y, z)-space:

S(X,Y): 2% =2 — dy*(4y — 5)x* + 20X 3z + Yy

We show that a system of generators of the field of the Hilbert modular functions
for Q(+/5) is given by the inverse of the period mapping for F and obtain an
explicit expression of these Hilbert modular functions given by theta constants.

We use the following results of the Hilbert modular functions for Q(v/5).
Hirzebruch [H] studied the Hilbert modular orbifold (H x H)/(PSL(2,0),7),
where O =7+ 1+2—‘/5Z and 7 is an involution of H x H, by an algebrogeometric
method. He determined the structure of the ring of the symmetric Hilbert mod-
ular forms. This ring is isomorphic to the Klein icosahedral ring C[2,B,¢, D]/
(R(2,%B8,¢,D) =0). Miiller [M] obtained a system of generators {ga, S¢, S10, S15}
of the ring of the symmetric Hilbert modular forms for Q(v/5) and found the
relation M (g, S6, S10, S15) = 0. These generators are given by the theta constants.
Then, they are holomorphic functions on H x H.

We show that the period mapping for F gives a biholomorphic correspon-
dence between the monodromy covering of (X,Y)-space and H x H, and the
projective monodromy group coincides with the extended Hilbert modular group
(PSL(2,0),7). Then, the quotient space (H x H)/(PSL(2,0),7) becomes the
classifying space of the family F. Consequently, we may regard X and Y as
Hilbert modular functions for Q(v/5). This framework enables us to obtain
explicit relations between the results of [H] and [M]. Namely, we obtain an expres-
sion of the parameters X and Y as quotients of theta constants by use of the
period mapping for our family F of K3 surfaces (Figure 1).

In Section 1, we give a survey of the results of [N1] and the properties of the
Hilbert modular orbifold for Q(v/5). Especially, we recall the family Fy of K3
surfaces and the period differential equation (1.14) for Fy. A generic member of
Fo is transformed to S(X,Y") € F. The system (1.14) turns out to be the period
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differential equation for F, which gives an analogy of the Gauss hypergeometric
equation 2 F(1,1,1).

In Section 2, we study the K3 surface S(X,Y’). First, we obtain the weighted
projective space P(1,3,5) as a compactification of the (X,Y)-space C2. This
remains a parameter space for K3 surfaces except one point (Theorem 2.1). We
note that, due to [H] together with Klein [K1], the orbifold (H x H)/(PSL(2,O),7)
is isomorphic to P(1,3,5) as algebraic varieties. Secondly, we define the multival-
ued period mapping P(1,3,5) — {one point} — D for F, where D is a symmetric
Hermitian space of type I'V. We have a modular isomorphism between H x H
and a connected component D, of D. Our period mapping gives an explicit iso-
morphism between P(1,3,5) and (H x H)/(PSL(2,0), 7). Then, we obtain the

coordinates of H x H given by the quotients of period integrals of S(X,Y):

_ Jr,w+ 1_2\/5 Jr,w _ Jr,w+ 1+2\/5 Jr,@
J; r, % , J; r,% 7
where T'y, ..., Ty are 2-cycles on S(X,Y) € F given in Section 2.2.

Then, the inverse correspondence (z1,22) — (X (21,22),Y(21,22)) defines a
pair of Hilbert modular functions for Q(v/5). We obtain an expression of X and
Y in the following way.

In Section 3, we consider the subfamily Fx = {S(X,0)} of K3 surfaces.
The period mapping for Fx gives a correspondence between the X-space and
the diagonal A = {(z1,22) € H x H| 21 = z2}. We obtain the period differential
equation for Fx. The solutions of this period differential equation are described

(01) (X, ¥)2(X,Y)) = (

in terms of the solutions of the Gauss hypergeometric equation gEl(ﬁ, %, 1).
Then, we obtain an expression of the parameter X in terms of the elliptic J
function (see Theorem 3.2).

In Section 4, we obtain an explicit expression of the inverse of the period

mapping (0.1) by theta constants:

(X,Y) = (2° 52 s6(2122) 10 55, 7510(21’22)),
95(21, 22) 93(21,22)
where ¢o,s6, and s1p are Hilbert modular forms given by Miiller (see Theo-
rem 4.1).

Our results in this paper are used in the forthcoming paper [N2], in which we
shall show simple and new defining equations of the family of Kummer surfaces
for the Humbert surface of invariant 5 and a geometric and intuitive interpreta-
tion of period mappings for this family.

1. Preliminaries

1.1. The family 7
In [N1], we studied the family Fo = {So(A, )} of K3 surfaces defined by the
equation

(1.1) So(A 1) = Zoyozg (To + Yo + 20 + 1) + Azoyozo + 11 =0,
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where (A, i) € A= {(A 1) | Ap(A2(4X — 1)% — 2(2 + 25X(20\ — 1))u — 3125u2) #
0)}. First, we recall the results of this family.

Set
01 0 O
1 0 0 O
(1.2) A= 00 2 1
00 1 -2
Put

D={¢=(&:&:E&:&) €PP(C) | €A =0,6A°E>0)}.

This is a 2-dimensional symmetric Hermitian space of type IV. Note that D is
composed of two connected components: D =D, UD_. We let (1:1:—/—1:
0) € Dy. Set PO(A,Z) ={g € PGL(4,Z) | tfgAg = A}. It acts on D by ‘¢ — g'€.
Let POT(A,Z) ={g € PO(A,Z) | g(D4) =Dy }.

In [N1, Section 2], we had the multivalued period mapping ®q: A — D, for
Fo given by
(1.3) (I’O(/\,u):(/ w:~--:/ w),

I T4

where w is the unique holomorphic 2-form on Sy(A, ) up to a constant factor
and 2-cycles T'y,..., Ty € Ha(So(A, 1), Z) are given by this construction.

Let NS(S) be the Néron—Severi lattice of a K3 surface S. The orthogonal

complement Tr(S) = NS(S)* in Hy(S,Z) is called the transcendental lattice of S.
We proved the following.

THEOREM 1.1
(1) For a generic point (A, u) € A, the intersection matriz of NS(So(A, p)) is given
by

2 1
(1.4) Es(-1)® Es(—-1)® (1 _2)
and the intersection matriz of Tr(So(A\, 1)) is given by
2 1
1. =A
o vo? 1)

(see [N1, Theorems 2.2, 3.1]).
(2) The projective monodromy group of the period mapping ®o: A — Dy is
isomorphic to POT(A,Z) (see [N1, Theorem 5.2]).

Moreover, we determined the partial differential equation in 2 variables A and pu
of rank 4 that is satisfied by the periods for the family F,. We call this equation
the period differential equation for Fy. This equation has the singular locus A
(see [N1, Theorem 4.1]).
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1.2. The Hilbert modular orbifold (H x H)/(PSL(2,0), )
Here, we recall the action of the Hilbert modular group on H x H. Let O be the
ring of integers in the real quadratic field Q(v/5). Set Hy = {z € C | +Im(z) > 0}.
The Hilbert modular group PSL(2,0) acts on (H; x H;)U (H_ x H_) by
a B . oz + 0/22+5/)

<’Y 6> .(21722)H<721+6,7122+6l )
for g = (3 ?) € PSL(2,0), where ' means the conjugate in Q(+/5). We also con-
sider the involution

T: (2’172’2) — (2’2,21).

DEFINITION 1.1
If a holomorphic function g on H x H satisfies the transformation law

az1+b a'zg+ b

g(c,21 +d 2+ d
for any (‘Z 2) € PSL(2,0), we call g a Hilbert modular form of weight k for
Q(v/5). If g(22, 21) = g(21, 22), g is called a symmetric modular form. If g(z,21) =
—g(z1,22), g is called an alternating modular form.

) = (cz21 +d)f (/22 + d')*g(21, 22)

If a meromorphic function f on H x H satisfies
<a21 +b a2+

cz1+d’ 2 +d’) =/ (21,22)
for any (2Y) € PSL(2,0), we call f a Hilbert modular function for Q(v/5).

Set

1 1
W=l 1:v5]-
2 2
It holds that

2 1

AzU@(l o

)zU@WUtW

The correspondence
gi(z1,20) = (21221 —1: 21t 20) (Lo ®TW )
defines a biholomorphic mapping
(Hy xHy)UH_ xH_) - D.

The group PSL(2,O) is generated by three elements:

(11 (1 55 (0 1
=\ 1) 27\l 1) BT 41 o)

We have an isomorphism:

i+ (PSL(2,0),7) — PO*(4,7)
; g = jogojt=j(g) =3
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Especially, we see

1 -1 2 1 1 -1 2 1
. |0 1 00 - |0 1 00
o =10t P o 11 oo
0 0 01 0 1 0 1
(1.6)
0 -1 0 1 00
- -1 0 0 - 01 0
3: 5 T =
-1 -1 0 0 1
0 1 0 00 -1
So, the above j gives a modular isomorphism:
(1.7) j:(HxH,(PSL(2,0),7)) ~ (D4+,PO"(4,Z)).

Recall D =D, UD_ and the period mapping ® for Fy. The mapping j ' o ®:
A — H x H gives an explicit transcendental correspondence between A and H x H.
Hirzebruch [H] studied the Hilbert modular orbifold (H x H)/(PSL(2,0), 7).
Here, we survey his results.
The Klein icosahedral polynomials are

A(Go: ¢ C) = (5 + C16e,
B(Co: C1:Ca) =83 CiCa — 2¢5CEEE + P — Co(¢F +¢3),
€(Co: €1 : o) = 320¢5CTC5 — 160¢3¢TCS + 205 ¢ ¢s + 6¢7¢5
—4Go(C + €3)(32¢3 — 2065 ¢1 G +5¢E¢3) + (10 + (3°,
120(Co : G2 ¢2) = (¢ — (3)(—1024¢,° + 3840¢5 1o
— 3840¢§ (73 + 12005 (7 ¢5 — 100G ¢G5 + (7¢3)
+ Co(¢1? — 39)(352¢5 — 160¢5¢1¢a + 10¢7¢3)
+ ({7 = &)
We have the following relation:

R(A,B,¢,D) := 144D — (—1728B° + 720A¢B> — 80A*¢*B

(1.9) 3 2 2 3
+ 642° (5B~ — AC) +Qf):0.
Set
B ¢
Now, set
F(\/g)z{((;t ?)‘QE(SELBE(SEO (mod\/g)}.

We note that the group PSL(2,0)/T(v/5) is isomorphic to the alternating group

As. Hirzebruch [H] studied the canonical bundle of the orbifold (H x H)/T'(v/5)
by an algebrogeometric method. He proved the following.
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PROPOSITION 1.1 ([H, PP. 307-310])

(1) The nonsingular model of (H x H)/(T'(v/5), ) is P*(C) = {((o; C1;¢2)} by
adding siz points. A homogeneous polynomial of degree k in (o, (1, and (o defines
a modular form for T'(\/5) of weight k.

(2) The ring of symmetric modular forms for PSL(2,0) is isomorphic to the
ring

C[Ql,‘B,Q,’D]/(R(QI,%,QI,CD) = 0),
where R(A,B,E,D) is the Klein relation (1.9). A (resp., B, &, D) gives a sym-
metric modular form for PSL(2,0) of weight 2 (resp., 6,10,15).
(3) There exists an alternating modular form ¢ of weight 5 such that ¢? = €.
The ring of Hilbert modular forms for PSL(2,0) is isomorphic to the ring

C[2,B,¢,D]/(R(A,B,¢*,D) =0).

Let ¢ € C— {0}. We consider the action ((o,¢1,¢2) — (/Co, (1, C2). Because
A (resp., B, €) is a homogeneous polynomial of degree 2 (resp., 6,10) in (g, (1,
and (o, we have the action (2,B,€) — (22, /B, /1°¢). Therefore, we regard
(2,8, €)-space as the weighted projective space P(1,3,5). Especially, the pair
B C
)
gives a system of affine coordinates on {2 # 0}.

By the arguments of Klein [Kl|, Hirzebruch [H|, and Kobayashi, Kushibiki
and Naruki [KKN], we know the following properties of the action of A5 on

(H x H) /(D(V5),7) =P*(C) = {Co: 1 : G2}

(1.11) (X,Y)= (

PROPOSITION 1.2

(1) The correspondence (Co:C1:C2)— (A(Co:Cr:¢2) B(Co:¢C:C):C(¢o:
¢1:¢2)) gives an identification between P2(C)/As and P(1,3,5). Then, the Hilbert
modular orbifold (H x H)/(PSL(2,0),7) is identified with P(1,3,5). The cusp
(vV/—1oo,y/—100) € (H x H)/(PSL(2,0),T) is given by the point (A :B: €)= (1:
0:0). So, the quotient space (H x H)/(PSL(2,0),7) corresponds to P(1,3,5) —
{(1:0:0)}.

(2) The divisor {D =0} consists of fifteen lines in P2(C). These fifteen lines
of {D =0} are the reflection lines of fifteen involutions of As. (Note that As is
generated by three involutions.)

(3) Theinvolution T induces an involution on the orbifold (H x H)/ PSL(2,0).
The branch locus of the canonical projection (H x H)/PSL(2,0) — P(1,3,5) is
given by {€=0}.

Set

X={(X,Y)eC?| Y (1728X° - 720X°Y
(1.12)
+80XY? —64(5X*—Y)*—Y?) #0}.
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In [N1, Section 6], we obtained the birational mapping A — X given by

%u  —312542
(A= 1/4)3" (A — 1/4)5)'

(1.13) () e (X,Y) = (2

THEOREM 1.2 ([N1, THEOREM 6.3])
By the correspondence (1.13), the period differential equation for the family Fo =
{So(A, )} is transformed to the system of differential equations

(1.14) uxx = Liuxy + Arux + Biuy + Pru,
uyy = Miuxy + Ciux + Diuy + Qu
with
I — —20(4X%4+3XY —4Y) M, = —2(54X%—50X%—3XY +2Y)
1= 736x2-32X—Y - 5Y(36X2—32X—Y) )
A — —2(20X*-8XY+9X?Y+Y?) B, —  10Y(-843X)
1= XY (36X2-32X—Y) ) 1= X(@B6Xx2-32X-Y)’
—2(—25X2427X%4+2Y -3XY —2(—120X%+135X°% —2Y —3XY
01:(5+7+3) D1:(0+35 3XY)

5Y2(36X2—32X—Y) ) 5XY (36X2—32X—Y) )

P, — —2(8X—Y) 0, = —2(=1049X)
1= X?(36X2—32X—Y)" 1= 25XV (36X2—32X—Y)"

REMARK 1.1

In [N1], we saw that (1.14) is a uniformizing differential equation of the Hilbert
modular orbifod (H x H)/(PSL(2,0), 7). In other words, the solutions of (1.14)
define the developing map of the canonical projection H x H — (H x H)/
(PSL(2,0), 7). This gives an alternative proof of Theorem 1.1(2).

2. The period of the family 7

2.1. The family F of K3 surfaces
We obtain a new family F of K3 surfaces with explicit defining equations from
the family Fo = {So(\, 1)}

PROPOSITION 2.1

The family of K3 surfaces Fo={So(\, 1)} for (\, 1) € A is transformed to the
family F={S(X,Y)} for (X,Y) € X:

(2.1) S(X,Y): 2% =23 — 4y*(4y — 5)z* + 20X 3z + Yyt
Proof
By the transformation (1.13) and the birational transformation given by
Y
L0 = Toxer
— 4221y
Y0 = TH0XTV w151 —BXY 2yl 15XV 21
10X Yazy1+Y3yi Yz
- 20XYx1y1 ’

the family Fo = {So(\, )} is transformed to the family F; = {S1(X,Y)} given
by

S1(X,Y): 27 =Y (af — 47 (4y1 — 5)af + 20X yia1 + Yyi)
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over X. Then, by the correspondence (x1,y1,21) — (2,9, 2) = (z1, y1, %zl), we
have the family F = {S(X,Y)} given by (2.1). O

From (1.3), we obtain the multivalued analytic period mapping

(2.2) B : XD (X,Y)— / / / /
I Iz T's L

where w = % is the unique holomorphic 2-form on S(X,Y’) up to a constant
factor and T'y,...,T'y are certain 2-cycles on S(X,Y). (This period mapping is
stated in detail at the beginning of Section 2.2.)

REMARK 2.1
The correspondence (z1,y1,21) — (¢,y,2) = (21,91, \/?zl) in the proof of Propo-
sition 2.1 induces the double covering ¥’ — X given by (X,Y’) — (X,Y) =
(X,Y"?). However, (X,Y’) and (X,-Y’) € X’ define mutually isomorphic P-
marked K3 surfaces (see Definition 2.1). So, we obtain the above period mapping
$, on X.

Hence, from Theorem 1.1, for a generic point (X,Y) € X, the intersection matrix
of the Néron—Severi lattice NS(S(X,Y)) is given by (1.4), and that of the tran-
scendental lattice Tr(S(X,Y")) is given by A in (1.5). The projective monodromy
group of ®; is isomorphic to PO' (A, Z). From Theorem 1.2, the period differen-
tial equation for the family F = {S(X,Y)} is given by (1.14).

PROPOSITION 2.2
Under the correspondence (1.11), the surface S(X,Y) is birationally equivalent
to

(2.3) S(A:B: )22 =a% — 4(4y® — 5Ay?)z? + 20By>x + Cyt.

Proof
Putting X = %,Y: a5 to (2.1), we have
AP 22 = A5x4 (2092 — 16y3)A%22 + 202A%Byx 4 ¢y,
Then, by the correspondence
x Y z
T +— %, Y= ﬁ’ Z _219 5
we obtain (2.3). O

REMARK 2.2
For two surfaces
SRA:B:€): 2% =13 — 4(4y® — 5Ay?)x? + 20By3x + Cy?,
S(k2A: kOB : k10¢) : 22 = 23 — 4(4y® — 5E*Ay?)x? + 20k5By3x + k10¢y?,
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we have an isomorphism S(20: B : €) — S(k?A : kB : £10¢) given by (z,y,2) —
(kSx,k?y,k%2) as elliptic surfaces. Therefore, (A: B :¢€) € P(1:3:5) gives an
isomorphism class of these elliptic K3 surfaces.

We set K3 ={Y =0} and K, = {1728X5 — 720X3Y + 80X Y2 — 64(5X2 — V)2 —
Y3 =0}.

THEOREM 2.1

The (A:B : €)-space P(1,3,5) gives a compactification of the parameter space X
of the family F = {S(X,Y)} of K3 surfaces given by (2.1). Namely, if (1:0:
0)# (A:B:¢)eP(1,3,5), then the corresponding surface S(A:B:€) is a K3
surface. On the other hand, S(1:0:0) is a rational surface.

Proof
First, we prove the case 2 # 0. In this case, we consider S(X,Y) in (2.1). We
have the Kodaira normal form of (2.1):

(2.4) #=af = ga(y)r — gs(y) (y#o0),
with
92(y) = —(20Xy° — Fy*(4y — 5)*),
93(y) = —(Yy' + Fy°(4y — 5)X — 24y°(4y — 5)%),
and
(2.5) z5 = a3 — ha(y1)we — hs(y1)  (y#0),
with
ha(y1) = —(20Xy7 — %0yt + 507 — SP0),
hs(y1)

where y; = % The discriminant Dy (resp., Do) of the right-hand side of (2.4)
(resp., (2.5)) is given by

(Yy1 + 320)(y1 400)(y1 _ 81_$2yi1’) 4 10240y1 _ 128002/% 4 160700y?)

Do =98 (27Y2 + 32000X 3y — 7200X Yy
— 160000X 232 + 32000Y 4% + 5760.X Y/
+256000X 2y% — 76800Y y3 — 102400X 2y* + 61440Y y* — 16384Y5°),
D, = yi1(—16384Y — 102400X 2y; + 61440Yy,
+256000X 2y? — 76800Y y? — 160000.X 2y
+32000Y ¢ + 5760X Yy + 32000X 3yf — 7200X Yyi + 27Y243).

If (X,Y) € X, then we have

ord, (Do) =8, ord, (g2) =3, ord,(gs) =4,
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so 771(0) is the singular fiber of type IV* (for details, see [Ko] or [Sh]). Similarly,
we have

ordy (Do) = 11, ordy (he) =2, ordy (hs) =3,

so 7 1(o0) = I}. We have 5 other singular fibers of type I. Therefore, for
(X,Y)eXx, S(X,Y) is an elliptic K3 surface whose singular fibers are of type
IV* 4+ 51, + I7.

By the same way, we know the structure of the elliptic surface S(X,Y) for
(X, V)¢ X. If X#0 and Y =0 (namely, (X,Y) € K7 —{(0,0)}), then S(X,0)
is an elliptic K3 surface with the singular fibers of type II11* + 3I; + I§. If
(X,Y)e Ky —{(0,0)}, S(X,Y) is an elliptic K3 surface with the singular fibers
of type IV* + 311 + I, + IF. However, we see easily that S(0,0) is not a K3
surface, but a rational surface.

Next, we consider the case 2= 0. In this case, note that (%B,¢€) # (0,0).
We have the equation of S(0: B :€): 22 = 23 — 16y32? + 20By3z + €y*. On
{2l=0} CP(1,3,5), we use the parameter [ = %—i By the correspondence x =

3 2 9
512,y = 53y, and z = & 2/, we have

S(1): 2% =2 — 161y 2" 4 20y 2" + 2.
The discriminant of the right-hand side is given by y®(27 4+ 32000y’ + 5760ly'? —

10240012y — 1638413y'5). From this, we can see that S(1) is an elliptic K3 surface
with the singular fibers of type IV* +51; + I%. |

Hence, we obtain the extended family {S(A:B:C) | (A:B:¢) cP(1,3,5) —{(1:
0:0)}} of K3 surfaces. For simplicity, let F denotes this extended family.

2.2. The extension ¢ of the period mapping ¢,
Set co=(1:0:0) €P(1,3,5). In this subsection, we extend the period mapping
®:X— Dy in (2.2) to :P(1,3,5) — {co} = Dy

First, we recall the S-marking on X. According to Theorem 2.1 and its proof,
we have the elliptic K3 surface

Tme) : S(A: B : €) = PH(C) = (y-sphere)

for any (A:%:¢) €P(1,3,5) — {co}-

Take a generic point (Xo,Yp) € X. The elliptic K3 surface S = S(Xo,Yp)
given by (2.4) and (2.5) has the singular fibers of type IV* 4+ 51y + I}. Let F be
a general fiber of this elliptic fibration, and let O be the zero of the Mordell-Weil
group of sections. We have two irreducible components of the divisor C' given by
{x=0,22 =Yy*}. We take the section R given by y— (z,y,2) = (0,3, VY4?).
This gives a component of the divisor C'. Let us consider the irreducible decompo-
sition U?:o a; (resp., U?:o b;) of the singular fiber w(_)g’y)(O) (resp., w(_)(l’y)(oo))
of type IV* (resp., IZ). These curves are illustrated in Figure 2. Note that
aoNO # ¢, bgNO # ¢, ag N R # ¢, and bg N R # ¢.

We set I's = F,T¢ =0, =R, T'sjr =agt1 (0<k<5), Ty =by1 (0<
1 < 8). We have the lattice L = (Ts,...,Taa)z C HQ(S,Z). We can check that
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Qg

as

Qay

as

a9
Qg

ay

©) by
Figure 2. The elliptic fibration given by (2.3).

|det(L)| = 5. Hence, we have
L=NS(9).

Since L is a primitive lattice, there exists T'1, ..., T'y € Hy(S,Z) such that (I'y, ...,
T4,Ts,...,Toa)z = Ho(S,Z). Let {T'%,...,T5,} be the dual basis of {T'1,...,Ta0}
in Hy(S,Z). Then, we see that (T'},...,T'})z is the transcendental lattice. We
may assume that its intersection matrix is

(2.6) (I5 - Thi<jk<a = A,
where A is given by (1.2). We define the period of S by

‘I’l(Xo,%):(/Flw:“-r/mw)-

Take a small connected neighborhood V; of (Xg,Y,) in X so that we have a local
topological trivialization:

(2.7) T:{S(p)‘pevo}%ngo.
Let @ : S x Vy — S be the canonical projection. Set = w o 7. Then,

= Tls()
gives a C*°-isomorphism of surfaces. For any p € Vj;, we have an isometry v, :
Hy(S(p),Z) — Hy(S,Z) given by

Py = 7’;*.
We call this isometry the S-marking on V. By an analytic continuation along
an arc « C X, we define the S-marking on X. This depends on the choice of «.
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The S-marking preserves the Néron—Severi lattice. We define the period mapping

®,:X—Dy by
p»—)(/ w:~~:/ w).
¥y '(T1) Py ' (Ta)

This is equal to the period mapping in (2.2).
Here, we recall the P-marking for K3 surfaces, which is defined in [N1, Sec-
tion 5.

DEFINITION 2.1
Let S be an algebraic K3 surface. An isometry
Y : Hy(S,Z) — Hy(S,7)

is called the P-marking if

(i) ¢ '(NS(S)) C NS(S),

(ii) =N (F), v H0), ¥ (R),¥ " (a;) (1 <j<6), and ¢~ "(by) (1<j<9)
are all effective divisors,

(iii) (¥ ~1(F)-C) >0 for any effective class C; namely, ¢~ 1(F) is nef.

A pair (S,v) is called a P-marked K3 surface.

DEFINITION 2.2
Two P-marked K3 surfaces (S1,t¢1) and (S2,1)2) are said to be isomorphic if
there is a biholomorphic mapping f:S; — Sy with

Y20 froty ! =idy, 5z -
Two P-marked K3 surfaces (S1,11) and (S2,12) are said to be equivalent if there
is a biholomorphic mapping f : S; — Sy with
(¥20 fuothi Vlns(s) = idns(s) -

REMARK 2.3

The other connected component R’ of the divisor C given by the section y —
(z,y,—VYy?) intersects ay (resp., bg) at y =0 (resp., y = oo). Letting ¢ be
the involution of S(X,Y) given by (z,y,2) — (x,y,—z), we have ¢.(R') = R,
g« (aq) = ag, q«(az) = as, and q.(bg) = bg. Then, we can see that P-marked K3
surfaces (S,id) and (S,q.) are isomorphic by ¢. This shows that our argument
does not depend on the choice of the curves R or R'.

The period of a P-marked K3 surface (S,v) is given by

(2.8) $/(S, ) = (/wl(mw;.-- : /wm)w)'

It is a point in D. Let X be the isomorphism classes of P-marked K3 surfaces,
and let

[X] = X/(P-marked equivalence).
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By the Torelli theorem for K3 surfaces, the period mapping & : X — D for P-
marked K3 surfaces defined by (2.8) gives an identification between X and D.
Moreover, a P-marked K3 surface (S1,1) is equivalent to a P-marked K3 surface
(S2,19) if and only if

®(S1,41) =g 0 ¥ (S:,92)
for some g € PO(A,Z) (see [N1, Lemma 5.1]). Therefore, we identify [X] with
(2.9) D/PO(A,Z) =D, /PO™(A,Z) ~ (H x H)/(PSL(2,0),7).

Recall that the above isomorphism is given by the modular isomorphism j in
(1.7).

We note that X is embedded in [X] (see [N1, Remark 5.3]). Then, an S-marked
K3 surface is a P-marked K3 surface, and the period mapping for P-marked K3
surfaces is an extension of the period mapping for S-marked K3 surfaces. From
@' : X — D, we obtain a multivalued mapping @’ : [X] — D,.. We have

(2.10) |y =Py,

where @, is the period mapping in (2.2) for S-marked K3 surfaces.

Now, we extend the period mapping ®; : ¥ — D, in (2.2) to ®:P(1,3,5) —
{co} = D4. We recall that (P(1,3,5) — {co}) — X = (K1 UK, U{2A=0}) — {co}.

First, since the local topological trivialization on X in (2.7) is naturally
extended to {/ = 0}, there exist S-markings on {2( =0} and the period map-
ping (2.2) on X is extended to P(1,3,5) — (K1 U Ko U{co}) — Dy.

Let us recall that the projective monodromy group of ®; is isomorphic to
PO™(A,Z). According to (2.9) and Proposition 1.2(3) (resp., Proposition 1.2(2)),
the local monodromy of the period mapping ®; in (2.2) around K; (resp., K3) is
locally finite. Hence, the period mapping P(1,3,5) — (K1 UKy U {¢o}) = D4 can
be extended to P(1,3,5) — {co} — D4. We note that this extension is assured by
Griffiths [Gr, Theorem (9.5)].

Therefore, we have the extended period mapping

(2.11) ®:P(1,3,5) —{co} = D4+
with
(2.12) D|x = D;.

Since we have (2.9) and Proposition 1.2(1), the P-marked equivalence class
[X] is identified with P(1,3,5) — {co}. Because we have (2.10), (2.12), and X is a
Zariski-open set in P(1,3,5) — {co}, ® in (2.11) is equal to the period mapping
' on [X].

Let [®(p)] € Dy /PO (A,Z) be the equivalence class of ®(p) € D. From the
above argument, we have the following proposition.

PROPOSITION 2.3

The period mapping ¥’ : [X] = D4 for P-marked K3 surfaces is given by the
period mapping ® in (2.11) for the family F = {S(p) |p € P(1,3,5) — {co}} of
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K3 surfaces. This is an extension of the period mapping in (2.2) for S-marked
K3 surfaces. Especially, if [®(p1)] = [®(p2)] in Dy /POT(A,Z), then py = ps.

For peP(1,3,5) — {co}, let

Yy Ha(S(p),Z) — Ha(S,Z)

be a P-marking naturally induced by the above proposition. The period of S(p)
is given by

(2.13) @(p):(/ w:/ w:/ w:/ w).
Yp ' (T'1) Yp ' (T2) Py ' (T's) ¥y ' (Ta)

According to Remark 1.1, the multivalued analytic mapping (j =% o ®)|x :
X — H x H gives a developing map of the canonical projection II : H x H —
(H x H)/(PSL(2,0),7). Hence, by Proposition 2.3, (! o ®)|x is extended to
the analytic mapping
i o®:P(1,3,5) — {co} — H x H.

This gives a developing map of II.
REMARK 2.4
Sato [Sa] showed that the system of differential equations on X,

uxx = Luxy + Aux + Buy + Pu,
uyy = Muxy + Cux + Duy + Qu

. _ —20(4X243XY —4Y) _ —2(54X3%-50X?—3XY+2Y)
with [ = —=ce—myr—~ M = 5Y (36X2 32X _Y)

ferential equation of (H x H)/(PSL(2,0), 7). Namely, taking linearly indepen-
dent solutions yg,y1,y2, and y3, the mapping p — (yo(p) : -+ : y3(p)) gives a
developing map X — D,. Of course, our equation (1.14) is also a uniformizing
differential equation in this sense. But, note that we do not know whether we

is a uniformizing dif-

can extend it to the singular locus applying the theory of the uniformizing dif-
ferential equations. Since we regard P(1,3,5) — {co} as the parameter space of F
and p— (yo(p) : - -+ :y3(p)) is the period mapping for F, we obtain the extension
of the solutions of (1.14) to the singular locus.

Hence, we obtain the following theorem.

THEOREM 2.2

The multivalued mapping j= o ® :P(1,3,5) — {co} — H x H gives the developing
map of II. Namely, the inverse mapping of IL: Hx H — (H x H)/(PSL(2,0), ) is
given by 571 o ® through the identification (H x H)/(PSL(2,0),7) ~P(1,3,5) —
{co} given by Proposition 1.2(1).

Let A be the diagonal
A= {(21,2:2) eH x H ‘ 21 222}.
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From the above theorem and Proposition 1.2(3), we have the following.

COROLLARY 2.1
It holds that

I(A)={(A:B:0)} —{co}
through the identification (H x H)/(PSL(2,0),7) ~P(1,3,5) — {co} given by
Proposition 1.2(1).

Due to Theorem 2.2, we obtain the system of coordinates (21, z2) of H x H coming
from the multivalued period mapping (2.13) for the family of K3 surfaces {S(p)}:

wH((1=V5)/2) [pw [ wt+((1+V5)2) fr w
(Zl(p),ZQ(p))(fF3 +((f w)/ )f4 77f3 +((f+w))fr4 )

(2.14)

Here, for simplicity, let I'; denote the 2-cycle ’l/Jp_l(Fj) on S(p) for j €{1,2,3,4}.

According to Proposition 1.2(1), by adding one cusp, we have the compactifi-
cation (H x H)/(PSL(2,0),7). Then, putting IToj 1 o ®(c) = (v/—100,y/—1c0),
we obtain an extended mapping

(2.15) Ioj "o®:P(1,3,5) — (H x H)/(PSL(2,0),7),
where (v/—100,y/—100) stands for the (PSL(2,O), T)-orbit of (v/—1oo,+/—100).

3. The family Fx and the period differential equation

In this section, we consider the family Fx = {S(X,0)} and the diagonal A =
{(2’1,2’2) ceH x H ‘ 21 = 22}.

3.1. The family Fx

In Section 2, we had the K3 surfaces S(:9B:¢) for (A:B:¢)cP(1,3,5) —
{co} and the period mapping (2.13). Restricting them to {€ = 0}, we obtain
the family {S(20:B:0) | (A:B:0) #co} of K3 surfaces with S(A:B:0): 2% =
23 — 4y?(4y — 5A) 22 + 20By3z. Then, we have the family Fx = {S(X,0)} of K3
surfaces with

S(X,0): 2% = 2% — 4% (4y — 5)2* + 20X 332,

where X (= Z%) € P}(C) — {0}. In this section, we consider the family Fx and
the period mapping for Fx.

Set X = (X-sphere P!(C)) — {0, 22, 00}. Because we have Proposition 2.3, we
can prove the following theorem for the subfamily F5 = {S(X,0)| X € £} as in
[N1].

THEOREM 3.1

(1) For a generic point X € X, the intersection matriz of the Néron—Severi
lattice NS(S(X,0)) is given by
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Es(—1)® Es(-1) U @ (-2)
and that of the transcendental lattice Tr(S(X,0)) is given by
U ©® <2> = AX.

(2) The projective monodromy group of the multivalued period mapping for
o is isomorphic to POY(Ax,7Z).

From the period mapping ® in (2.13), the system of coordinates (21, z2) in (2.14),
Corollary 2.1, and the above theorem, we obtain a multivalued period mapping
®x for Fx such that

(3.1) jTle®x: {X [ X eP(C)-{0}} = A,

where @ is given by X — (§1:62:63:6a) = (Jp, w: [, w: [, w:0) € Dy satis-
fying the Riemann-Hodge relation ( . w)(f;,, w)+(/p,, @)? = 0. The fundamental
group 71 (X, x) induces the projective monodromy group Mx for ®x. According
to Theorem 3.1(2), Mx is isomorphic to PO (Ax,Z). From (2.14), we have the
coordinate z of A~ H:

Jr,w
frz w
Recalling (2.15), we obtain an extended mapping Iloj 1o ®y : P}(C) — A/Mx.
We note that ITo ;57! o ®x(0) is the Mx-orbit of (v/—100,v/—10c). The action

of Mx on A(C H x H) induces the action of PSL(2,Z) on H, for we have the
coordinate z in (3.2). Namely, there exist v1,v2 € m1 (X, *) such that

(3.2) z=—

(3.3) m(2) =2+1, Y2(2) =——.
So, A/Mx is identified with the orbifold H/PSL(2,Z) ~P*(C).
REMARK 3.1

The projective monodromy group My ~ PO (Ax,Z) of the period mapping ®y
is generated by two elements:

1 -1 2 0 -1 0
(3.4) 0o 1 o], ~1 0 0
0 -1 1 0 0 -1

These are induced by the monodromy matrices in (1.6).

3.2. The Gauss hypergeometric equation , E1 (5, 3, 1;¢)
We recall the Gauss hypergeometric equation

1 5 &2 3vd 5
E’E’l’t> 1 — )t (1f§t>—u7 2 u=0.

(3.5) 2El< dt2 dt 144
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The Riemann scheme of 2 F (3, 2, 1;t) is given by

t=0 t=1 t=o0
0 0 1/12
0 1/2 5/12

We can take the solutions y;(t) and ya(t) of 2F1(55, 3, 1;t) such that the

inverse mapping of the Schwarz mapping

c : C-{0,1} — H
3.6
(3.6) ; t = o(t)= ngg = 20
is given by
1
3.7 _—
(3.7) 2o > 7(z0)

where J(z) is the elliptic J function with J(1+\2/T3) =0,J(v-1) =1, and
J(V/—10) = 0.

REMARK 3.2
The above J-function is given by
1 1
3.8 J :-———-(— 744 + 196884 u.),
(3:8) ()= Tras\g T4 a

where g = 2™V 1%,

Note that the Schwarz mapping ¢ is a multivalued analytic mapping. We can
choose the single-valued branch of the Schwarz mapping o on (0,1) C R such
that o(t) € v/—1R and
(3.9 lim o(t) =v—1o0, . li{noa(t) =v-1.

el

t—+0

Then, the single-valued branch of the solutions y;(¢) and y2(¢) near (0,1)(C R)
is in the form

(3.10) {yl(t) =u11(t),
Yy2(t) = log(t) - u1(t) + uz2(t),

where u;j(t) are unit holomorphic functions around ¢ =0 and log stands for the
principal value.

The projective monodromy group of gEl(%, %,1;0 is isomorphic to
PSL(2,Z). In other words, the action of the fundamental group m;(P'(C) —

{0,1,00},%) on H= {29 = {2} is generated by the two actions

1
(311) ZQF—)Z()+]., 20— ——,
20

5 1;t) around a base

if we normalize a basis y1,y2 of the solutions of gEl(%, 15 15

point.
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REMARK 3.3
The projective monodromy group for the system (y3(t); —y?(t); y1(t)y2(t)) is gen-
erated by the two matrices in (3.4).

3.3. The period differential equation

In this subsection, we determine the period differential equation for the family
Fx. Then, considering the solutions of this period differential equation, we shall
obtain the expression of X using the coordinate z in (3.2).

PROPOSITION 3.1
On the locus {Y =0}, the period differential equation (1.14) is restricted to the
following ordinary differential equation of rank 4:
4t 3(243X% — 4060X +2000) d?
dx+" " 2X(81X2 — 1155X + 1000) dX3

2034X? — 40680X + 8000  d?

12
(3.12) SX2(81X2 — 1155X + 1000) dX2
15(3X — 80) d
+ L u=0.
SX2(81X2 — 1155X + 1000) dX
Proof

Recalling the period differential equation (1.14), set
Eiu= Liuxy + Ajux + Biuy + Pu,
Eyu=Muxy + Cirux + Diuy + Q1u.

Deriving these equations, we have the system of equations

0 0
uxx = Eyu, uxxx = 3y ku, uxxy = 3y E1u,
_ & _ 0
uxxxx = pxz by, UXXXY = gxay E1U,
— _ 0 _ 0
uyy = Eau, uxyy = px by, uyyy = zy Eau,

92 9?
UXXYY = WElu = WEQM

Our periods satisfy this system. From this system, canceling the terms uy,uxy,
Uyy, UXXY,UXYY,Uyyy, Uxxxy, and uxxyy, we can obtain the differential
equation

as(X,Y)uxxxx +a3(X,Y)uxxx +a2(X,Y)uxx
+ a1 (X, Y)ux + ao(X,Y)u=0,
where ¢;(X,Y) (j=1,2,3,4) is a polynomial in X and Y. Putting ¥ =0, we
have (3.12). O

Set
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The equation (3.12) has the 4-dimensional space of solutions generated by 71 (X),
72(X),73(X) and 1. The Riemann scheme of (3.12) is given by

X=0 X=25/2T X=40/3 X=c0

0 0 0 0

1 1/2 1 —5/6
1 1 2 ~1/2
1 2 4 -1/6

We set X = %t, and the equation (3.12) is transposed to
W4U; = O,

where
d* 162063 — 2923212 + 15552t d® 5652 — 12204t + 2592 d>
an 7202(t — 1) (5t —72)  dt? * 36t2(t — 1) (5t — 72) dit?
25t — 720 d
7202(t — 1)(5t — 72) dt”

Straightforward calculation shows the following.

Wy =

PROPOSITION 3.2
Set
oo 3 &£ 5-36 4 125t
BT T 2(t—1)de? T 36t2(t— 1) dt | T23(t—1)
d | 15t> — 298t + 216
Wy = +

a tt—1)(5t—72)
It holds that
(313) W4 = W1 o Wg.

Set n;(t) =10;(23t) for j € {1,2,3}.

PROPOSITION 3.3
The periods m1(t),n2(t), and ns(t) are the solutions of

Wgu =0
satisfying
(3.14) mn2 +n3 =0.
Proof

Let V = (n1,m2,m3)c and V' = (Wsny, Wana, W3ns)c. Since the linear mapping
W3 :V — V' given by f+— W3f is monodromy-equivalent and V is an irre-
ducible representation, according to Schur’s lemma, we have V ~ V' or V' = {0}.
It follows from (3.13) that V' C Ker(W7). Because dim(Ker(W1)) =1, we have
V' ={0}.
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For ¢+ (n1(t) : m2(t) : m3(t)) is the period mapping P x, the relation (3.14) is
clear. g

PROPOSITION 3.4
Ifuy and us are solutions of 2E1 (5, 2, 1;t), then tu?(t),tu3(t), and tu, (t)us(t)

are solutions of the period differential equation Wsu = 0.

Proof
Take any solutions of 2 E1 ({5, 15, 1;t) u1(t) and ug(t). For j € {1,2},
1-3t/2 5
3.15 = o
(3.15) i tt—1) i 144t (t — 1)”3
then
(3) _ H35t% — 715t +288 5(7t —4)
1 3) _ : )
(3.16) 4 1442(t —1)2 9 osge(t—1)2
Here, by a straightforward calculation, we have
) 113t — 36 3(3t—2)
Wd(tu1u2) W’U&Ug W(ultm + U]Uz) + ﬁuiué
(3.17)
3(3t—2
ﬁ(ulw +uguf) + B(ufuf + uluh) + ¢t uz + uguf?).
Substituting (3.15) and (3.16) for (3.17), we have W3(tujus) =0. O
REMARK 3.4

According to (3.12), the derivation 4, (j =1,2,3) of the period is a solution of
the equation

d_?’v n 1620t% — 2923212 + 15552t d_2v n 1130¢% — 24408t + 5184 iv

dts 2020t —1)(5t —72)  di? 7202(t — 1)(5t —72) dt

(3.18)
256-7200
722(t — 1) (5t — 72)
Then, set
115 715
S(t F 1,15t F: 1,15t
()32(626775) 532(626”’)’

where 3F5 is the generalized hypergeometric series

oo

(alvn)(a27n)(a3vn)
Fs(ay,as,as;b1,b0;t) = t"
P o201t = 2 G
We see that S(t) is a holomorphic solution of (3.18) around ¢ = 0. The indefinite

integral of S(t) with the integral constant 0 is given by
715

115 1
t 3F2<6 261 2t>+5t 3F2(6 2’ 6’1’2t)

:gt"‘*FQ(%’%’%;l’l;t)_g (2F1(112 152 L t))z'
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Here, we applied Clausen’s formula. From Proposition 3.4, this gives a holomor-
phic solution of Wsu =0 around ¢ = 0.

Let y1(t) and ya(t) be the single-valued branches of the solutions of s E1 (5, 2, 1;
t) near (0,1) C R given in (3.9). Let

si(t) =tyi(t),  sa(t) =tyi(t)ye(t),  ss(t) =ty3(t).
Note that if ¢ € (0,1) C R, we have

s1(t) =t-v11(t),
(3.19) s2(t) =t - (log(t)vay (t) + vaa(t)),
s3(t) =t - (log®(t)vs1 (t) + log(t)vsz(t) + vss(t)),
where v, (t) are unit holomorphic functions around ¢ = 0. Moreover, they satisfy

(3.20) —s1(t)s3(t) + s3(t) = 0.

LEMMA 3.1
A branch of the multivalued analytic mapping t — (n1(t) : n2(t) 1 n3(t)) satisfies

(771(25) :m2(t) :n3(t)) = (53(1%) c—s1(t) 52(t)) € P?(C).

Proof

Because we have Proposition 1.2(1) and the coordinate z in (3.2), we take the
single-valued branch of the multivalued period mapping t — (01 (t) : 72(t) : n3(¢))
on t € (0,1) C R such that

(3.21) im — B o

540 72 (t)

In this proof, we consider 11 (t),n2(t), and n3(t) near (0,1)(C R).
According to Proposition 3.4, we have

3
ni(t) =Y apsi(t) (1=1,2,3),
k=1

where a;; (j,k=1,2,3) are constants. Since we have (3.21), we obtain ags =0.
So, it follows that n2(t) = ag151(t) + azes2(t). From (3.19), we see that n1 (¢)n2(t)
does not contain log*(t). Then, from (3.14), we have ass = 0. Recalling (3.21)
again, we obtain agy = 0. Because we consider y+— (01 (t) : n2(t) : n3(t)) € P?(C),
we assume that as; = —1. Then, the single-valued branches 7;(t) (j =1,2,3) are
in the form

n(t) = anrsi(t) + arasa(t) + asss(t),
772(t) = _Sl(t)7
n3(t) = as1s1(t) + aszsa(t).



Hilbert modular functions via K3 surfaces 837

Hence, using (3.6), the coordinate z in (3.2) is given by

s2(2)
s1(2)

Considering the actions of 71 (P'(C) — {0,1,00}) on z = —% space in (3.3)
and zg = Z—f space in (3.11), we have as; =0 and ass = 1.

Therefore, using (3.14) again, we obtain

m (t) = Sg(t), 772(?5) = —Sl(t), ﬂg(t) = SQ(t). O

Z=as2 +as1 = as2zo + as:.

COROLLARY 3.1
A coordinate z in (3.2) of the diagonal A (~H) is equal to

t
5= ya( )
yi(t)
Proof
From the above lemma, this is clear. O
THEOREM 3.2

The inverse of the multivalued period mapping j=1 o ®x : X + (2,2) in (3.1) is
given by

Proof
From Corollary 3.1 and the inverse Schwarz mapping (3.7), we have t(z) = J(lz).
Therefore, we obtain

25 25 1
X(z,z):2—7 -t(z):2—7 . e

: ]

~—

4, The theta expressions of X and Y

First, we recall the classical elliptic functions. Let z € H.
The classical Eisenstein series are given by

1 1
= - = 14 DV
Ga(z)=60 > e Gs(z)=140 > CPEwne
(0,0)#(m,n)€z? (0,0)#(m,n)€Z?
Ga(z) (resp., Gs(z)) is a modular form of weight 4 (resp., 6) for PSL(2,Z).
The ring of modular forms for PSL(2,Z) is C[G2,G3]. We have Ga(v/—100) =
% and G3(v/—1o0) = %. Let Ey(2) = $2:G2(z) and Eg(z) = 25G3(2) be the

normalized Eisenstein series. The discriminant form is

A(2) = Gi(2) — 27G3(2).
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We have A(y/—1oco) = 0. This is a cusp form of weight 12. The cusp form of
weight 12 is A up to a constant factor. The J-function in (3.8) is given by

@ e
(e P B Te T S RN

The field of modular functions for the modular group PSL(2,Z) is C(J(z)).
For a,b € {0,1}, the Jacobi theta constants are defined by

Vap(2) = Zexp(\/—_lw(n+ g)Qz + 2\/——171'(71 + g) 9)
nez

(4.1)

2

for (a,b) = (0,0),(0,1) and (1,0). The functions ¥3,(2), 94, (2), and ¥}, () are the
modular forms of weight 2 for the principal congruence subgroup T'(2) = {( 1
a=6=1,=v=0 (mod2)}. The ring of modular forms for I'(2) is
C[950, 91, 910)/ (51 + V10 = Vg0) = ClI50, V1.
We note that

1 3 \3 1
1728 (H) A(2) = 55950(2)051(2)95(2).

Next, we survey the theta constants for Hilbert modular forms for Q(v/5).
They are introduced by Miiller [M].
Set
Sy ={ZeMat(2,2)|'Z=2,Im(Z) >0}.

This is the Siegel upper half-plane consisting of (2 x 2)-complex matrices. For
a,b€ {0,1}? with tab=0 (mod?2), set

HNZ;a,b) = Z exp(wx/—_l(t (g—!— %a)Z(g—F %a) —|—tgb>>.
geZ?

We use the mapping v : H x H — &5 given by

Tr( S Tr(-==
(21,22) = €+ (%) (J5)

Tr(%) Tr(—<£)
_ ((1 +V5)z1 — (1-V5)2 2(21 — 22) )
25 2(z1 — #2) (=1 +V5)z1 + (1 ++5)2 )’
where € = 1+2‘/5.
REMARK 4.1
Set

./\/5:{(01 02)662‘—014-0'24-0'3:0}.

02 O3

Let p be the canonical projection &3 — &5/ Sp(4,Z). Then, the Humbert surface
Hs = p(N5) of invariant 5 gives the moduli space of principally polarized Abelian
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Table 1. The correspondence between j and (a, b)
i 0 1 2 3 4 5 6 7 8 9
ta | (0,0) | (1,1) | (0,0) | (1,1 0 0 1
b | (0,0) | (0,0) | (1,1) | (1,1) | (0,0) | (0,0) | (0,1) | (0,1) | (1,0)

~—
—~
—
N
—~
—
(=]
=
—~
(=]
=
—~
(=]
Nt
—~
(=]
(=]
=
—~
~—

—
= O
S| =
=

surfaces A such that Q(v/5) C End(A4)®Q. We note that the above 1 is a mapping
H x H — N5.

For j € {0,1,...,9}, we set
0;(z1,22) =9 (¥(21,22);a,b),

where the correspondence between j and (a,b) is given by Table 1. These theta
constants are holomorphic functions on H x H.

Let a € Z and ji,...,jr €{0,...,9}. Weset 05, . =07 ---09 .

Set s5 = 27500123456789. This is an alternating modular form of weight 5. The
following g2 (resp., S, S10,S15) is a symmetric Hilbert modular form of weight 2

(resp., 6,10,15) for Q(v/5):

g2 = 00145 — 1279 — 03478 + Oo268 + 03569,

86 = 27 (0512475 + 0312560 + 0334568 + 0336780 + OT34570)

s10 = 53 = 2703 153456780,

s15=—2718
X (057035024 — 035076009 + 035053046 — 039035016 + 05076025 — 037033050
+ 015034007 — 03,035007 — 036053058 — 034087015 — 03905023 — 057034015
+ 039053067 — 039073057 + 076050025 — 035036055 + 036035009 — 036035003
— 035080016 — 037039015 + 057030025 + 035035003 + 057673049 — 033030067
+ 095087024 + 0050350146 + 03508059 + 039037013 — 073037049 + 013039057

(4.2)

PROPOSITION 4.1 ([M, SATZ 1])
(1) The ring of the symmetric Hilbert modular forms for Q(v/5) is given by

Clg2, 56, 510, s15]/ (M (g2, s6, 510, 515) = 0),
where

M(g2,8675107815)
2 _52

3
5 9256510

53 1
(4.3) =575 — (555?0 — 9586570 + 2—4935%0 + 5

2
L 4o 35, 1 34
— 2—39256510 —2-3%sg+ 2—49236>.
(2) The ring of the Hilbert modular forms for Q(v/5) is given by
Clg2, 85, 56, s15]/ (M (g2, 52, 86, 515) = 0).
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PROPOSITION 4.2 ([M, PP. 244-245])
Miiller’s modular forms satisfy

g2(i00,i00) =1,
56(2,2) = Trgg (21)> A(2) = 57050 (2)951 ()93 (2),
s10(z,2) =0.

Especially, the relations

{%gmz) =5 Fa(2) = Ga(2),
U m256(2,2) = G3(2) — 27G3(2) = A(2)

hold.

Now, we obtain the theta expressions of the parameters X and Y for the family F.
According to Proposition 1.1, {X = %, Y = %} gives a system of generators of
symmetric Hilbert modular functions for Q(v/5). From Theorem 2.2, the inverse
correspondence (z1,22) — (X (2z1,22),Y (21,22)) of the multivalued period map-
ping for F defines the pair of Hilbert modular functions of variables z; and 29
in (2.14). In the following argument, we shall obtain the expression of X (z1, 22)
and Y (21, z2) as the quotients of Miiller’s modular forms.

For our argument, we set Z = 2?—12:, This defines a symmertic Hilbert modular
function for Q(v/5) also.

LEMMA 4.1
The modular functions X (z1,22),Y (21,22), and Z(z1,21) have the expressions

X (21, 20) = by 2g2122)

g5 (21,22)°

(4.4) Y (21, 22) = ks s10(21,22)

95 (21,22)

525 (21,22)
Z(Zl,ZQ):k3715 1,42

93°(z1,22)°

for some ky,ks, and ks € C.

Proof

Since X = %, the modular function X is given by the quotient of Hilbert modular
forms of weight 6, and its denominator is the cube of a Hilbert modular form of
weight 2. Note that a Hilbert modular form of weight 2 is equal to g up to a

constant factor. Then, we have
ki1s6 (21, 22) + k1293 (21, 22)
kisg3 (21, 22)

where ki1,k12, and ki3 are constants. Recalling Proposition 1.2(1), we have
X (v/—100,4v/—100) = 0. Then, from Proposition 4.2, we obtain k2 =0 and

X(Zl,ZQ) =

9

s6(21,22)
X =k,
(Zla 22) 1 9:2),(2;1’ 22)
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Since Y = %, the modular function Y is given by the quotient of Hilbert
modular forms of weight 10. Its denominator is the 5th power of a modular form

of weight 2. Then, we have

kars10(21, 22) + kaogd (21, 22) + kasgs (21, 22)s6 (21, 22)
Y(21,20) = = ;
k2492 (21,22)
where ko1, koo, ko3, and kos are constants. By Proposition 1.2(3), we have
Y (z,2) =0. According to (4.2) and Proposition 4.2, if a modular form g of weight
10 vanishes on the diagonal A, then we have g = const - s19. So, it holds that

koo = koz = 0. Therefore, we obtain

810(21722)
gg('zla ZQ)

Recalling Proposition 1.1(2), we note that © defines a symmetric Hilbert

Y(Zl, 2’2) = kg

modular form of weight 15. Since Z = f—i, the modular function Z is given
by the quotient of modular forms of weight 30. Its denominator is the 15th
power of a modular form of weight 2, and its numerator is given by the square
of a symmetric modular form of weight 15. According to Proposition 4.1(2), a
symmetric modular form of weight 15 is given by const - s15. Then, we have

s2(21, 22)
Z(21, 29) = kg 152222727
(21,72) 208 (21, 22)

THEOREM 4.1
The inverse correspondence of the multivalued period mapping j=1o®: (X,Y)

(21,22) in (2.14) for the family F is given by the quotient of Miller’s modular
forms:

93 (z1,22)’

910 , x5, s10(21,22)
Y(zl’zz) =2 5 93 (z1,22) °

{X(Zl’z2)—25-52.m

Proof
First, we obtain the expression of X. To obtain it, we determine the constant k;
in (4.4). Due to Theorem 3.2, (4.1), and Proposition 4.2, we have
25 1 25 2Mal%se(z,2) 5 Ly se(z,2)
27 J(2) 2T (%2%)3g(z,2) 93(2,2)
So, we obtain k; = 2° - 52.
Next, we determine the constant k3 in (4.4). By (1.9), we have

1447 (21, 20) = —1728X5 (21, 22) + 720X > (21, 20)Y (21, 22)

X(z,2)

(4.5) — 80X (21,22)Y?(21, 22) + 64(5X? (21, 22)

— Y(Z1,22))2 + YB(Zl, 2’2).
Recalling that Y (z,2) =0, we have
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1447 (2, 2) = —1728X°(2,2) + 64 -25 - X*(2, 2)

-2 (2 S ) ()

(4.6)

On the other hand, from (4.3), we have

s15(21, 22) :55<810(21,22))3_53< 6(21,22) )( 10(21, 22) )

95° (21, 22) g5(z1,22) 2 \g3(z1,22)/ \ g5(21,22)
+32'52<56(21,2’2)> (510 2’1,22 )
2 93 21,%2 g z ,22
+ i<310(21722))2 (36(21, 2))2(510(21,22))
24\ g3 (21, 22) 2\ g3(21,22)/ \ g3(21,22)
S () ()
95 (21, 22) 24 \g5(21,22)

So, because s19(z,z) =0, we have

(4.8) (M) _ i(725 43 s¢(z, 2) N 1) (Sa(z,z)>4.

92°(z,2)) 2! 95(2,2) 95(2,2)

Since
315(Z>Z)
5 (2,2)
comparing (4.6), (4.8), we have k3 =226 . 510 372,
Finally, from (4.5), (4.7), ky = 2°- 52, and k3 = 226.519.372 we have

ko =210.55, O

Z()ks

Thus, we obtain the explicit theta expression of the inverse correspondence
(21,22) — (X (#1,22),Y (21,22)) of the period mapping for our family F of K3
surfaces.
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