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Abstract A strictly convex curve is aC∞-regular simple closed curve whose Euclidean

curvature function is positive. Fix a strictly convex curve Γ, and take two distinct tan-

gent lines l1 and l2 of Γ. A few years ago, Brendan Foreman proved an interesting four-

vertex theorem on semiosculating conics of Γ, which are tangent to l1 and l2, as a corol-

lary of Ghys’s theorem on diffeomorphisms of S1. In this paper, we prove a refinement

of Foreman’s result. We then prove a projectively dual version of our refinement, which

is a claim about semiosculating conics passing through two fixed points on Γ. We also

show that the dual version of Foreman’s four-vertex theorem is almost equivalent to the

Ghys’s theorem.

1. Introduction

The well-known four-vertex theorem asserts that for a given convex curve Γ in

the Euclidean plane R2, there exist at least four distinct points p1, p2, p3, p4 on

Γ such that the osculating circles C1,C2,C3,C4 at these four points meet the

curve Γ with multiplicity greater than or equal to 4 (cf. [4]). The definition of

multiplicity of intersection points (resp., order of contact) of two regular curves

is given in [8]. The order of contact is by definition one less than the multiplicity

of intersection points.

Moreover, Kneser [3] showed that one can take C1,C2 to be inscribed and

C3,C4 to be circumscribed. (In [3], the assertion is proved for any simple closed

regular curve.) Bose [1] improved this by showing that the number of the inscribed

osculating circles s+ (resp., the number of the circumscribed osculating circles

s−) satisfies the following so-called Bose formula for a given generic convex curve

(1.1) s+ − t+ = 2 (resp., s− − t− = 2),

where t+ (resp., t−) is the number of inscribed triple tangent circles (resp.,

the number of circumscribed triple tangent circles). (See Fact 2.1 and [10] for

details and its history.) Moreover, the authors proved in [7] that the four points
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p1, p2, p3, p4 in Kneser’s theorem can be chosen so that

(1.2) p1 ≺ p3 ≺ p2 ≺ p4(≺ p1),

where ≺ means the cyclic order on Γ. The result in (1.2) also holds for simple

closed curves as in the case of (1.1).

A variant of the four-vertex theorem is known for diffeomorphisms of

S1(=P1): let f be a diffeomorphism of the real projective line P1. Then for each

point p there exists a unique projective transformation Tp ∈ PSL(2,R) whose

2-jet at p coincides with that of f . Let us call Tp the osculating map of f at p.

Then the following assertion holds.

FACT (GHYS’S THEOREM)

For each diffeomorphism f of P1, there exist four distinct points p1, p2, p3, p4 on

P1, where Tpj has the same 3-jet as f at pj for each j = 1, . . . ,4. In particular,

the Schwarzian derivative of f vanishes at pj .

Such a point pj is called a projective point of f . In [7], the authors showed that

one can take these four points pj (j = 1, . . . ,4) on P1 so that each f ◦ T−1
pj

has

a connected fixed-point set, and they gave refinements of Ghys’s theorem along

the lines of (1.1) and (1.2). We call such a point pj a clean projective point. The

original four-vertex theorem for convex curves can be proved via Ghys’s theorem

(see [6]).

Since convexity is invariant under projective transformations, we may assume

that a convex curve Γ lies in a certain affine plane R2(⊂P2). In the projective

plane P2, the curve Γ bounds a closed contractible domain D̄Γ, which coincides

with the interior domain bounded by Γ in the affine plane R2. Instead of osculat-

ing circles, one can consider osculating conics and “sextactic points.” For any five

distinct points on a strictly convex curve Γ, there exists a unique regular conic

ω passing through the five points. Letting the five points all converge to p, the

conic converges to a uniquely defined regular conic that is called the osculating

conic of Γ at p. The osculating conic meets Γ with multiplicity at least five in p.

If it meets with multiplicity at least six at p, then p is called a sextactic point.

A strictly convex curve has at least six sextactic points (see [4]). This assertion

was improved in [5], where it was shown that three of these sextactic points can

be chosen so that the corresponding osculating conics are inscribed and the other

three such that the corresponding osculating conics are circumscribed. A mod-

ern proof of this formula can be found in [8] and a refinement is given in [9,

Theorem 1.2].

We now fix a strictly convex curve Γ and two distinct tangent lines l1 and

l2 of Γ. Let Ω(l1, l2) be the set of regular conics which are tangent to both l1
and l2. For each point p on the curve Γ, there is a unique conic ωp ∈ Ω(l1, l2)

which meets Γ at p with multiplicity three. (If p lies on l1 or l2, then the conic

ωp should meet Γ at p with multiplicity at least four.) The conic ωp is called the
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Ω(l1, l2)-osculating conic of Γ at p. A point p on the curve Γ is called an Ω(l1, l2)-

vertex if ωp hyperosculates at p; that is, ωp meets Γ at p with multiplicity at

least four (resp., at least five) if p does not lie on l1 or l2 (resp., if p lies on l1
or l2).

A few years ago, Foreman [2] gave an elegant application of Ghys’s theorem

which we call in this paper Foreman’s theorem. It says that there exist four

distinct Ω(l1, l2)-vertices on Γ. It is interesting because of the following reasons.

(i) The conics ωpj can neither be inscribed nor circumscribed.

(ii) Foreman showed that the convex curve Γ induces a diffeomorphism fΓ
on P1, and the four distinct projective points in Ghys’s theorem correspond to

the desired four points p1, p2, p3, p4 on Γ. However, even if pj is a clean projective

point, it is not clear whether or not the conic ωpj has such a global separation

property.

We will consider the question of whether Foreman’s theorem allows a refine-

ment analogous to the two formulas (1.1) and (1.2). In fact, one can accomplish

this as follows. We fix a base point b on Γ that neither lies on l1 nor on l2.

The convex curve Γ is divided into two closed arcs by the two lines l1 and l2.

We denote by Γ+ (resp., Γ−) the one of these two arcs that passes through b

(resp., does not pass through b). We call Γ+ the future part and Γ− the past part.

We then define two sets Ω+(l1, l2) and Ω−(l1, l2) as follows: a conic ω ∈Ω(l1, l2)

belongs to Ω+(l1, l2) (resp., Ω−(l1, l2)) if one can divide ω ∈ Ω(l1, l2) into two

closed arcs ω+ and ω− bounded by l1 and l2 such that

Γ+ ⊂P2 \Dω, ω− ⊂P2 \DΓ, (resp., Γ− ⊂P2 \Dω, ω+ ⊂P2 \DΓ).

The sets Ω+(l1, l2) and Ω−(l1, l2) do not depend on the order of two lines l1, l2,

but depend on the base point b. If we put b on Γ−, then Ω−(l1, l2) changes into

Ω+(l1, l2). In Figure 1, the curve Γ and the conic ω are indicated by a simple

closed curve and a circle, respectively. Namely, they are not indicated as the

real conic and the convex curve, but instead they are “cartoons” which show

more clearly how ω meets Γ. We frequently use this kind of figure for the sake of

Figure 1. A conic in Ω+(l1, l2)
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simplicity. Since the conics belonging to Ω+(l1, l2) or Ω−(l1, l2) are special, the

union of these two subsets is only a proper subset of Ω(l1, l2). An Ω(l1, l2)-vertex

p is called a clean Ω+(l1, l2)-vertex (resp., a clean Ω−(l1, l2)-vertex ) if ωp belongs

to Ω+(l1, l2) (resp., Ω
−(l1, l2)) and the intersection ωp ∩ Γ is a connected closed

subset of Γ. The following result is our refinement of Foreman’s theorem.

THEOREM 1.1

Let l1 and l2 be two distinct tangent lines of a strictly convex curve Γ. There

exist four distinct points p1, p2, p3, p4 on Γ satisfying p1 ≺ p2 ≺ p3 ≺ p4 and the

following properties:

(1) pi is a clean Ω+(l1, l2)-vertex for i= 1,3;

(2) pj is a clean Ω−(l1, l2)-vertex for j = 2,4.

Moreover, an analogue of the formula (1.1) holds.

This theorem is proved in Section 1 by using the intrinsic circle systems intro-

duced in [10] and [7].

The real projective plane P2 has its dual projective plane P2
∗. Under this

duality, lines in P2 correspond to points in P2
∗. A strictly convex curve Γ in

P2 has a (unique) dual curve Γ∗ in P2
∗ which is also strictly convex. Then two

distinct tangent lines l1 and l2 to Γ correspond to two distinct points o1 and

o2 on Γ∗. The dual version of Foreman’s four-vertex theorem is then as follows.

Take two distinct points o1 and o2 on Γ. Let Ω(o1, o2) be the set of regular conics

passing through both o1 and o2. For each point p on Γ, we define the Ω(o1, o2)-

osculating conic at p as in the case of Ω(�1, �2). (If p coincides with o1 or o2,

then the conic ωp should meet Γ at p with multiplicity at least four.) A point

p on the curve Γ is called an Ω(o1, o2)-vertex if the Ω(o1, o2)-osculating conic

hyperosculates at p.

We now fix a base point b such that b �= oi (i = 1,2). The convex curve Γ

is divided into two closed arcs by o1, o2. We denote by Γ+ (resp., Γ−) the one

of these two arcs that passes through b (resp., does not pass through b). We

call Γ+ the future part and Γ− the past part. We define two subsets Ω+(o1, o2)

and Ω−(o1, o2) as follows. A conic ω ∈ Ω(o1, o2) belongs to Ω+(o1, o2) (resp.,

Ω−(o1, o2)) if one can divide ω ∈ Ω(o1, o2) into two closed arcs ω+ and ω−

bounded by o1 and o2 such that (see Figure 2)

Γ+ ⊂P2 \Dω, ω− ⊂P2 \DΓ, (resp., Γ− ⊂P2 \Dω, ω+ ⊂P2 \DΓ).

By definition, Ω±(o1, o2) does not depend on the order of o1, o2. However, if we

put the base point b on Γ−, then Ω+(o1, o2) changes into Ω−(o1, o2).

An Ω(o1, o2)-vertex p is called a clean Ω+(o1, o2)-vertex (resp., a clean

Ω−(o1, o2)-vertex ) if the Ω(o1, o2)-osculating conic ωp belongs to Ω+(o1, o2)

(resp., Ω−(o1, o2)) and the intersection ωp ∩ Γ is a connected closed subset of Γ.

The following is the dual version of Theorem 1.1.
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Figure 2. A conic in Ω+(o1, o2)

THEOREM 1.2

There exist four distinct points p1, p2, p3, p4 on Γ satisfying p1 ≺ p2 ≺ p3 ≺ p4 and

the following properties:

(1) pi is a clean Ω+(o1, o2)-vertex for i= 1,3;

(2) pj is a clean Ω−(o1, o2)-vertex for j = 2,4.

Moreover, an analogue of (1.1) holds. In particular, there exist four distinct

Ω(o1, o2)-vertices on Γ.

In Section 3, we show that the set of Ω(o1, o2)-vertices on Γ∗ corresponds under

the duality exactly to the set of Ω(l1, l2)-vertices on Γ, which proves the last

assertion of the theorem. However, to prove all assertions of Theorem 1.2, we

cannot use duality, since clean Ω(l1, l2)-vertices on Γ might not correspond to

clean Ω(o1, o2)-vertices on Γ∗ in general. We give two distinct proofs: one uses

a method similar to the one in the proof of Theorem 1.1, and the other is an

application of the refinement of Ghys’s theorem given in [7], whereas Theorem 1.1

does not follow directly from it.

In Section 4, we also consider the case that l is a tangent line and o is a point

on a strictly convex curve Γ. We get similar results on Ω(l, o)-vertices as in the

case of Ω(l1, l2) and Ω(o1, o2).

2. Proof of Theorem 1.1

Before giving a proof of Theorem 1.1, we recall fundamental properties of intrinsic

circle systems: we denote by ≺ the cyclic order of S1. A family of nonempty closed

subsets F = {Fp}p∈S1 is called an intrinsic circle system on S1 if it satisfies the

following three conditions:

(I1) p ∈ Fp for each p ∈ S1. If q ∈ Fp, then Fp = Fq ;

(I2) If p′ ∈ Fp, q
′ ∈ Fq and p≺ q ≺ p′ ≺ q′, then Fp = Fq holds;

(I3) Let {pn} and {qn} be two sequences in S1 converging to p and q in S1,

respectively. Suppose that qn ∈ Fpn for each n= 1,2,3, . . . . Then q ∈ Fp holds.

We call Fp the intrinsic F -circle at p. Fix an intrinsic circle system F . We

indicate by p∼ q that Fp = Fq holds. It is clear that ∼ is an equivalence relation
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on S1. We denote by [p] the equivalence class of p, and we denote by r([p]) the

number of connected components of Fp which does not depend on the choice

of p. A point p ∈ S1 is called an F -vertex if r([p]) = 1. Set

S :=
{
[p] ∈ F/∼; r([p]) = 1

}
, T :=

{
[p] ∈ F/∼; r([p])≥ 3

}
,

and

(2.1) s :=
∑

[p]∈S

r(p), t :=
∑

[p]∈T

(r(p)− 2).

Then the following assertion is proved in [10, Theorem 2.7].

FACT 2.1 (THE ABSTRACT BOSE FORMULA)

If s is finite, then so is t. Moreover the identity s− t= 2 holds.

If we let Cp denote a maximal inscribed circle tangent to a given convex curve

Γ at a point p, then the family of subsets of S1 := Γ defined by Fp :=Cp ∩ Γ for

p ∈ S1 is a typical example of an intrinsic circle system. In this case, F -vertices

are clean; that is, the osculating circles are inscribed at F -vertices.

A pair of intrinsic circle systems (F+, F−) on S1 is called compatible if

an F+-vertex (resp., F−-vertex) is never an F−-vertex (resp., F+-vertex), and

F+-vertices (resp., F−-vertices) cannot accumulate to an F−-vertex (resp., an

F+-vertex). The following assertion holds (see [7]).

FACT 2.2 (THE THEOREM OF FOUR SIGN CHANGES OF CLEAN VERTICES)

Let (F+, F−) be a compatible pair of intrinsic circle systems on S1. Then there

exist four points p1, p2, p3, p4 on S1 satisfying (1.2) so that p1, p3 are F+-vertices

and p2, p4 are F−-vertices.

In [7], the refinements of the four-vertex theorem for plane curves and Ghys’s

theorem are both proved by constructing compatible pairs of intrinsic circle sys-

tems.

Let l1 and l2 be two distinct tangent lines on Γ. To prove Theorem 1.1, it

is sufficient to construct a compatible pair of intrinsic circle systems (F+, F−)

after identifying S1 with Γ. For this purpose, we will prove the following.

PROPOSITION 2.3

For each p on Γ, there exists a unique conic ω1
p in Ω+(l1, l2) (resp., ω2

p in

Ω−(l1, l2)) such that

(1) ω1
p (resp., ω2

p) is the Ω(l1, l2)-osculating conic at p, or

(2) {p} is a proper subset of F+
p (resp., F−

p ), where

F+
p :=

(
(ω1

p)
+ ∩ Γ+

)
∪

(
(ω1

p)
− ∩ Γ−)

,

F−
p :=

(
(ω2

p)
+ ∩ Γ+

)
∪

(
(ω2

p)
− ∩ Γ−)

.
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Figure 3. A typical arrangement

Once the proposition is proved, (F+, F−) gives a compatible pair of intrinsic

circle systems on Γ. In fact, if F+
p is connected, then ω1

p coincides with the

Ω(l1, l2)-osculating conic at p. Hence, F
+-vertices (resp., F−-vertices) correspond

to clean Ω+(l1, l2)-vertices (resp., clean Ω−(l1, l2)-vertices). By the uniqueness of

ω1
p, the three axioms (I1–I3) and the compatibility condition are all proved using

the fact that two conics having more than four common points must coincide.

We have indicated a typical impossible case of two conics in Ω+(l1, l2) in

Figure 3, where we find six intersections between the two conics. Since the roles

of Γ+ and Γ− interchange if we move the base point b between Γ+ and Γ−,

we may assume that p lies on Γ+. Since the uniqueness of ω1
p and ω2

p follows

from the fact that there is a unique conic passing through five given points, it is

sufficient to show the existence of ω1
p and ω2

p as in Proposition 2.3. (To prove the

uniqueness when p ∈ l1 or p ∈ l2, we also need the fact that ωp must meet Γ at p

with multiplicity at least three.) Fix a point p on Γ arbitrarily. We first consider

the case that p neither lies on l1 nor on l2. We denote by m the tangent line of

Γ at p. Let A (resp., B) be the point where l1 (resp., l2) meets Γ. By a suitable

projective transformation of P2, we may assume that l1 is the line {y = 1}, l2 is

the x-axis, and m is the y-axis in the affine plane (R2;x, y) contained in P2. Then

A,B can be placed on the right-hand side of the y-axis (see Figure 4). Take a conic

ω0 ∈ Ω+(l1, l2) so that ω0 is tangent to the y-axis at p from the left. Let c(t) =

(x(t), y(t)) be a parameterization of the conic ω0 such that c(0) = p and c(t+1) =

c(t) for t ∈R. Define a family of conics by cλ(t) := (λx(t), y(t)), where λ ∈ [0,∞).

Denote by Cλ the image of the curve cλ. By definition, C1 coincides with ω0.

LEMMA 2.4

The family {Cλ}λ∈(0,∞) satisfies the following properties.

(a) There exist positive constants ε and δ such that cλ([−ε, ε]) lies in D̄Γ if

λ > δ and cλ([−ε, ε]) lies in P2 \DΓ if λ < 1/δ.

(b) If λ is sufficiently large, Cλ belongs to Ω+(l1, l2).

(c) If λ is sufficiently small, Cλ belongs to Ω−(l1, l2).
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Figure 4. The figure after the projective transformation

Proof

In Figure 4, the convex domain A+(Γ) is marked in gray. The Euclidean curvature

of Cλ at p is equal to λκ0, where κ0 is the curvature of ω0 at p. In particular, there

exist positive constants ε and δ such that cδ([−ε, ε]) lies in D̄Γ and c1/δ([−ε, ε])

lies in P2 \DΓ. If λ > δ (resp., λ < 1/δ), then cλ([−ε, ε]) lies on the left-hand

side of cδ (resp., right-hand side of c1/δ). Hence assertion (a) follows.

Next, we prove (b) (resp., (c)). It is obvious that C−
λ (resp., C−

1/λ) does not

meet Γ− for sufficiently large λ. So if (b) (resp., (c)) fails, then for each positive

integer n, there exists a positive number λn and point qn( �= p) on C+
λn

(resp.,

C−
1/λn

) such that qn ∈ Γ+ and {λn} diverges to ∞. Since Γ+ is compact, we

may assume that the sequence {qn} converges to a point q∞ ∈ Γ+. Since the

x-component of cλn(t) (t �∈ Z) (resp., c1/λn
(t)) diverges to ∞ (resp., converges

to 0) when n→∞, we get q∞ = p. This is a contradiction, since qn must lie on

the left-hand side (resp., right-hand side) of Γ by (a). �

We now come to the proof of Proposition 2.3. By (b) and (c), we can set

λ1 := inf
{
λ ∈ (0,∞);Cλ ∈Ω+(l1, l2)

}
,

λ2 := sup
{
λ ∈ (0,∞);Cλ ∈Ω−(l1, l2)

}
.

Then by definition, Cλ1 ∈ Ω+(l1, l2) (resp., Cλ2 ∈ Ω−(l1, l2)). If the osculating

Ω(l1, l2)-conic ωp of Γ at p coincides with Cλ1 (resp., Cλ2), then we are in case

(1) of Proposition 2.3. So we may assume Cλ1 �= ωp (resp., Cλ2 �= ωp). If {p} is a

proper subset of

Λ1 := (C+
λ1

∩ Γ+)∪ (C−
λ1

∩ Γ−)
(
resp., Λ2 := (C+

λ2
∩ Γ+)∪ (C−

λ2
∩ Γ−)

)
,

then we are in case (2) after setting ω1
p = Cλ1 (resp., ω2

p = Cλ2). Thus we may

assume that Λ1 = {p} (resp., Λ2 = {p}). Since Cλ1 (resp., Cλ2) is not an oscu-

lating conic, the curvature of Cλ1 (resp., Cλ2) at p must be greater than (resp.,

less than) that of osculating Ω(l1, l2)-conic at p and then Cλ1 (resp., Cλ2) lies on

the left-hand side (resp., right-hand side) of Γ around p. Then for a sufficiently

small ε > 0, Cλ1−ε (resp., Cλ2+ε) must also belong to Ω+(l1, l2) (resp., Ω
−(l1, l2)),
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which contradicts the definition of λ1, and proves Proposition 2.3 whenever p is

not on l1 ∪ l2.

Next, we consider the case that p lies on l1 or l2. After a suitable replacement

of b, we may assume without loss of generality that p lies on l1. Take a sequence

{pn}∞n=1 on Γ \ {p} converging to p. Then there exists a conic ω1
pn

∈ Ω+(l1, l2)

and ω2
pn

∈ Ω+(l1, l2) satisfying one of the two properties of Proposition 2.3. If

there exists a subsequence {ω1
pin

}∞n=1 such that ω1
pin

is the Ω(l1, l2)-osculating

conic, then {ω1
pin

}∞n=1 converges to the Ω(l1, l2)-osculating conic at p, and the

limit conic must satisfy (1). So we may assume that each ω1
pn

is not equal to the

Ω(l1, l2)-osculating conic at pn. Then there exists a point qn on Γ so that qn ∈ F+
pn
.

Since Γ is compact, we may assume that {qn} converges to a point q ∈ Γ. If q �= p,

then the limit of {ω1
pn
}∞n=1 is a regular conic satisfying (2) since q ∈ F+

p . If q = p,

then the limit of {ω1
pn
}∞n=1 must converge to the Ω(l1, l2)-osculating conic at p

and satisfy (1). Finally, we can apply the same argument for ω2
pn

∈ Ω−(l1, l2)

and can prove the limiting conic satisfies case (1) and case (2) of Proposition 2.3

which completes the proof.

3. The dual version

Let γ(t) be a closed strictly convex curve in P2. Then it can be lifted to a

spherical curve γ̃ : S1 → S2 whose image is contained in an open hemisphere. If

we denote by

π̃ : S2 →P2

the canonical covering projection, then π ◦ γ̃ = γ holds. We denote by ñ(t) ∈
Tγ̃(t)S

2 the unit normal vector of the curve γ̃ pointing into the interior domain.

This provides us with a map

ñ : S1 → S2(⊂R3),

such that ñ(t) is orthogonal to γ̃(t) and ˙̃γ(t)(:= dγ̃/dt) in R3. We set

γ∗ = π̃ ◦ ñ : S1 →P2.

Then γ∗(t) is also a closed strictly convex curve. Using the canonical inner prod-

uct on R3, one can identify the dual vector space of R3 with R3. Then the cor-

respondence γ 
→ n realizes the duality of convex curves between P2 and P2
∗. In

fact, the tangent lines of (resp., the points on) γ correspond to the points on (the

tangent lines of) γ∗(t). Without loss of generality, the convex curve γ lies in the

affine plane R2 = {[x, y,1] ∈P2;x, y ∈R}. Then we can write γ(t) := (x(t), y(t)).

Without loss of generality, we may also assume that the origin is contained in

the interior domain. Then we can choose a parameter t so that

x(t)ẏ(t)− y(t)ẋ(t)> 0

for each t. Then the dual of γ(t) in P2
∗ is given by

γ∗ =
1

xẏ− yẋ
(−ẏ, ẋ).
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In particular, if l := γ is a line such that γ̇ is a constant unit vector e :=

(cosθ, sinθ), then

(3.1)
1

d
(− sinθ, cosθ) where d := det(γ, e)

is called the dual point of the line l, where d is the signed distance of the line l

from the origin.

PROPOSITION 3.1

Let γi (i = 1,2) be strictly convex curves in R2 that meet at a point p with

multiplicity m≥ 2. Let p∗ be the dual point corresponding to the common tangent

line at p. Then their dual curves meet at p∗ with the same multiplicity m.

Proof

Since the two curves meet at p with multiplicity m, the (m− 1)-th jet of γ1(t) at

t= 0 coincides with that of γ2(t). The crucial point is that the curvature function

of the dual curve γ∗
i (i= 1,2) of γi is given by the formula

κ∗
i =− det(γi, γ̇i)

3

|γi|3 det(γ̇i, γ̈i)
,

which involves only the 2-jet of the curve γi. (The same phenomenon occurs

in the proof of the Foreman theorem; see the formula for κ(t) in [2].) Now the

assertion follows from the lemma in the appendix. �

Let (Γ∗, o1, o2) be the dual of (Γ, l1, l2). By Proposition 3.1, the Ω(l1, l2)-vertices

of Γ correspond one-to-one to the Ω(o1, o2)-vertices of Γ∗. This is analogous to

the correspondence between the Ω(l1, l2)-vertices of Γ and the projective points

of the associated diffeomorphism on S1 found by Foreman. We get the following

corollary.

COROLLARY 3.2

Let Γ be a strictly convex curve, and let o1, o2 be two distinct points on Γ. Then

there exist at least four distinct Ω(o1, o2)-vertices on Γ; namely, the last assertion

of Theorem 1.2 holds.

We fix a strictly convex curve Γ and distinct points o1, o2 on Γ. To prove the whole

statement of Theorem 1.2, we need to construct a compatible pair of intrinsic

circle systems. For each ω ∈ Ω+(o1, o2) (resp., ω ∈ Ω−(o1, o2)), we denote by

G+(ω) (resp., G−(ω)) the subset of Γ+ (resp., Γ−), where ω+ (resp., ω−) meets

Γ+ (resp., Γ−) with multiplicity more than one.

PROPOSITION 3.3

For each p on Γ, there exists a unique conic ω1
p (resp., ω2

p) in Ω+(o1, o2) (resp.,

Ω−(o1, o2)) such that

(1) ω1
p (resp., ω2

p) is the Ω(o1, o2)-osculating conic, or
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(2) {p} is a proper subset of F+
p (resp., F−

p ), where

F+
p :=G+(ω1

p)∪G−(ω1
p), F−

p :=G+(ω2
p)∪G−(ω2

p).

Proof

The uniqueness of ω1
p and ω2

p is proved using the fact that two conics having

more than four points in common must coincide. (To prove the uniqueness when

p= o1 or p= o2, we also need the fact that ωp must meet Γ at p with multiplicity

at least three.) So it is sufficient to prove the existence of ω1
p and ω2

p.

We first consider the case p �= o1, o2. Let m be the tangent line of Γ at p.

By a suitable projective transformation, we may assume that Γ lies in the affine

plane (R2;x, y) such that p= (0,−1), o1 = (−1,0), o2 = (1,0), and m coincides

with the line y =−1 such that Γ is tangent to y =−1 at (0,−1). Then the family

of conics passing through o1, o2 and tangent to the line y =−1 at (0,−1) is given

by

Cλ : x2 + λy2 + (λ− 1)y− 1 = 0.

If λ <−1, then ω+ of this conic does not pass through p, since Cλ is a hyperbola

which is tangent to the line y =−1 from below. Hence Cλ for λ <−1 cannot be a

candidate for ω1
p or ω2

p. So we consider a family of conics {Cλ}λ>−1 in Ω(o1, o2). If

λ tends to −1, then Cλ collapses to the union of two lines (x−y−1)(x+y+1) = 0,

and if λ goes to ∞, then Cλ collapses to a pair of parallel lines y = 0,1. Using

this property, one can easily show that there exists a constant δ such that Cλ ∈
Ω+(o1, o2) if (−1<)λ <−1 + 1/δ and Cλ ∈Ω−(o1, o2) if λ > δ. So we can set

λ1 := sup
{
λ ∈ (−1,∞);Cλ ∈Ω+(o1, o2)

}
,

λ2 := inf
{
λ ∈ (−1,∞);Cλ ∈Ω−(l1, l2)

}
.

Then it can be proved that

ω1
p :=Cλ1 , ω2

p :=Cλ2

satisfy the properties in Proposition 3.3. Finally, the case p = o1 or p = o2 can

be proved by taking a limit pn → p as in the proof of Proposition 2.3. �

Proof of Theorem 1.2

We let F+ and F− be the families of closed subsets of Γ as in part (2) of

Proposition 3.3. It can be directly checked that (F+, F−) gives a compatible

pair of intrinsic circle systems on Γ by using the fact that two conics having

more than four points in common must coincide. Now the assertion follows from

Fact 2.1 and Fact 2.2. �

We now suggest a different proof of Theorem 1.2. We can identify the pencils of

lines through o1 and o2 with P1(oi) (i= 1,2). For each point p ∈ Γ, there exists a

unique line ϕi(p) ∈P1(oi) passing through oi and p (see Fig. 5). (If p= oi, then

ϕi(p) should be the tangent line of Γ at oi.) Then, we get a diffeomorphism fΓ :



754 Gudlaugur Thorbergsson and Masaaki Umehara

Figure 5. The correspondence fΓ

P1(o1)→P1(o2) given by fΓ = ϕ2 ◦ (ϕ1)
−1. The following gives rise to another

proof of Theorem 1.2.

THEOREM 3.4

The map fΓ can be identified with the diffeomorphism given in [2] for the dual

convex curve Γ∗. In particular, fΓ is a projective transformation if and only if Γ

is a conic. Moreover, a conic ω ∈Ω(o1, o2) meets Γ at p with multiplicity m(≥ 1)

if and only if the osculating map TfΓ has the same (m− 1)-jet as Tω at ϕ1(p).

Furthermore, the intrinsic circle system associated to fΓ given in [7] coincides

exactly with that induced by Proposition 3.3.

Proof

Without loss of generality, we may assume that Γ lies in R2 with the origin inside

of Γ, and oi = (xi,−1) (i = 1,2). Let m be the line through o1 and o2. Under

duality, o1 and o2 correspond to two tangent lines l1 and l2 of Γ∗, respectively.

Then the dual point M on Γ∗ of the line m is the intersection point of l1 and l2.

Let n1 (resp., n2) be a line whose angle with m is αi. Then ni (i = 1,2) is

an element of P 1(oi) which can be expressed by the homogeneous coordinates

[cosαi, sinαi]. By (3.1) the dual point Ni of ni lies on the line li whose signed

Euclidean distance from M is proportional to 1/(xi + cotαi) which is just a

projective action of the inhomogeneous coordinate cotαi of ni in P 1(oi).

Suppose now that n1 meets n2 at a point p on Γ; namely, ni = ϕi(p) holds for

i= 1,2. Then the dual of p is just the tangent line of Γ∗ passing through N1 ∈ l1
and N2 ∈ l2. Thus, fΓ is just equal to the diffeomorphism given by Foreman [2]

for the dual convex curve Γ∗.

Since Γ is a conic if and only if Γ∗ is, the second assertion follows. By replacing

Γ by ω ∈Ω(o1, o2), we get a diffeomorphism fω . If ω coincides with the Ω(o1, o2)-

osculating conic at p, fω is equal to the osculating map of fΓ at ϕ1(p). The

last assertion can easily be proved using the two facts that the intersections

between ω and Γ correspond to the fixed points of fΓ ◦ f−1
ω and that minimal
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(resp., maximal) projective points of fΓ correspond to the points where Ω(o1, o2)-

osculating conic lies locally on the left-hand side (resp. right-hand side) of Γ. �

4. The case of Ω(l, o)

Let l and o be a tangent line and a point on a strictly convex curve Γ such that

o does not lie in l. Let Ω(l, o) be the set of regular conics passing through o and

having contact with l. For each point p on Γ, we can define the Ω(l, o)-osculating

conic at p as in the case of Ω(l1, l2) and Ω(o1, o2). A point p on the curve Γ is

called an Ω(l, o)-vertex if ωp(l, o) hyperosculates at p. We now fix a base point

b on Γ such that b �= o and b �∈ l. The convex curve Γ is divided into two closed

arcs by l and o. We denote by Γ+ (resp., Γ−) the one of these two arcs that

passes through b (resp., does not pass through b). We call Γ+ the future part

and Γ− the past part. By definition, Γ+ and Γ− both meet l (resp., o) at one

of their boundary points. We then define two subsets Ω+(l, o) and Ω−(l, o) as

follows. A conic ω ∈Ω(l, o) belongs to Ω+(l, o) (resp., Ω−(l, o)) if one can divide

ω ∈Ω(l, o) into two closed arcs ω+ and ω− bounded by l and o such that

Γ+ ⊂P2 \Dω, ω− ⊂P2 \DΓ, (resp., Γ− ⊂P2 \Dω, ω+ ⊂P2 \DΓ).

If we put b on Γ−, then the roles of Γ+ and Γ− are interchanged. In this section,

we prove the following theorem.

THEOREM 4.1

Let l and o( �∈ l) be a tangent line and a point on a strictly convex curve Γ. Then,

there exist four distinct points p1, p2, p3, p4 on Γ satisfying p1 ≺ p2 ≺ p3 ≺ p4 and

the following properties:

(1) pi is a clean Ω+(l, o)-vertex for i= 1,3,

(2) pj is a clean Ω−(l, o)-vertex for j = 2,4.

Moreover, an analogue of formula (1.1) holds.

To prove the theorem, it is sufficient to show the existence of a compatible pair of

intrinsic circle systems. For this purpose, it is sufficient to show that the following

proposition holds. For each ω ∈Ω+(l, o) (resp., ω ∈Ω−(l, o)), we denote by G+(ω)

(resp., G−(ω)) the subset of Γ+ (resp., Γ−) where ω+ (resp., ω−) meets Γ+ (resp.,

Γ−) with multiplicity more than one.

PROPOSITION 4.2

For each p on Γ, there exists a unique conic ω1
p (resp., ω2

p) in Ω+(l, o) (resp.,

Ω−(l, o)) such that

(1) ω1
p (resp., ω2

p) is the Ω(l, o)-osculating conic, or

(2) {p} is a proper subset of F+
p (resp., F−

p ), where

F+
p :=G+(ω1

p)∪G−(ω1
p), F−

p :=G+(ω2
p)∪G−(ω2

p).
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Figure 6. A conic belonging to Ω(l, o)

The uniqueness of ω1
p and ω2

p is proved using the fact that two conics having

more than four points in common must coincide. So it is sufficient to prove the

existence of ω1
p and ω2

p.

We consider the case p �= o and p does not lie in l. (The case p= o or p ∈ l

can be proved by taking a limit pn → p as in the proof of Proposition 2.3.) Let

m be the tangent line of Γ at p. By a suitable projective transformation, we may

assume that Γ lies in the affine plane (R2;x, y) such that o = (0,0), l equal to

y = 1, and m coincides with the line y =−1 such that Γ is tangent to the line m

(i.e., y =−1) at (0,−1). We fix a conic ω0 passing through (0,0) which is tangent

to y = 1 and is tangent to y =−1 at (0,−1) (see Fig. 6). Let c(t) = (x(t), y(t))

be a parameterization of the conic ω0 such that c(0) = p and c(t+ 1) = c(t) for

t ∈R. We set cλ = (λx(t), y(t)) (λ ∈R), and we denote its image by Cλ. Now,

Proposition 4.2 can be proved by applying the following lemma as in the proof

of Proposition 3.3.

LEMMA 4.3

The family {Cλ}λ∈(0,∞) satisfies the following properties.

(a) The velocity vector of cλ at (0,0) tends to be horizontal if λ→∞ and to

be vertical if λ→ 0.

(b) There exist positive constants ε and δ such that cλ([−ε, ε]) lies in D̄Γ if

λ < 1/δ and cλ([−ε, ε]) lies in P2 \DΓ if λ > δ.

(c) If λ is sufficiently large, Cλ belongs to Ω−(l, o).

(d) If λ is sufficiently small, Cλ belongs to Ω+(l, o).

Proof

Assertion (a) follows from the fact that the tangent line of ω0 at (0,0) is not

vertical. Assertion (b) follows from the fact that the (Euclidean) curvature of Cλ

is equal to λ−2κ0, where κ0 is the curvature of ω0 at (0,−1), as in the proof

of (a) of Lemma 2.4.
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Next, we prove (c) (resp., (d)). It is obvious that C+
λ and C+

1/λ do not meet

Γ− for sufficiently large λ. So if (c) (resp., (d)) fails, for each positive integer n,

there exist a positive number λn and a point qn( �= p) on C+
λ (resp., C−

1/λ) such

that qn ∈ Γ+ and {λn} diverges to ∞. Since Γ+ is compact, we may assume that

the sequence {qn} converges to a point q∞ ∈ Γ+. Since the x-component of cλn(t)

(t �∈ Z) (resp., c1/λn
(t)) diverges to ∞ (resp., converges to 0) when n→∞, we

can conclude that q∞ = p or q∞ = o. However, this contradicts (a) or (b). �

Appendix: A criterion for multiplicity

The following lemma is needed to prove Proposition 1.2.

LEMMA A.4

Let γi(t) (i= 1,2) be a pair of regular curves satisfying γ1(0) = γ2(0)(=: p) and

γ̇1(0) = γ̇2(0). We denote by κi(t) (i= 1,2) the Euclidean curvature function of

γi(t). Then γ1 meets γ2 at p with multiplicity at least n+ 2 if

(∗)j
djκ1(0)

dtj
=

djκ2(0)

dtj

holds for j = 0,1, . . . , n− 1 and n≥ 1.

Proof

We introduce arc-length parameter s on γi (i = 1,2) so that s = 0 corresponds

to p. We prove the assertion by induction. If n = 0, (∗)0 implies that the first

two derivatives of γ1(s) and γ2(s) at s= 0 coincide. The chain rule implies that

dkκi/ds
k (i = 1,2) can be expressed in terms of djκi/dt

j (0 ≤ j ≤ k) and the

first k derivatives of γi(t). We now suppose that (∗)j (j = 0, . . . , k − 1) implies

the first k + 1 derivatives of γ1(s) at s = 0 coincide with those of γ2(s). Then,

as a consequence, dkκ1(0)/ds
k is equal to dkκ2(0)/ds

k, which implies that the

first k + 2 derivatives of γ1(s) and γ2(s) coincide for s = 0. This proves the

assertion. �
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