On the Caffarelli-Kohn-Nirenberg-type
inequalities involving critical and
supercritical weights

Toshio Horiuchi and Peter Kumlin

Abstract The main purpose of this article is to establish the Caffarelli-Kohn
Nirenberg-type (CKN-type) inequalities for all « € R and to study the related matters
systematically. Roughly speaking, we discuss the characterizations of the CKN-type
inequalities for all & € R as the variational problems, the existence and nonexistence of
the extremal solutions to these variational problems in proper spaces, and the exact val-
ues and the asymptotic behaviors of the best constants in both the noncritical case and
the critical case.

In the study of the CKN-type inequalities, the presence of weight functions on both
sides prevents us from employing effectively the so-called spherically symmetric
rearrangement. Further the invariance of R™ by the group of dilatations creates some
possible loss of compactness. As aresult we see that the existence of extremals, the values
of best constants, and their asymptotic behaviors essentially depend upon the relations
among parameters in the inequality.
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1. Introduction and historical remarks

1.1. Introduction
We begin by recalling the classical weighted Sobolev inequalities (1.1), which are
often called the Caffarelli-Kohn—Nirenberg-type (CKN-type) inequalities.
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There is a positive number S depending only on p, q,«, 5, and n such that
we have

/
| vu@plaprdezs( [ el )"
RTZ R’V'L

for any u € C°(R"),

(1.1)

where Vu = (u/dx1,0u/0zs, . ..,0u/0z,) and |Vu| = (3 ;_, |8u/8wk|2)1/2.

Here n > 1, 1 <p< 400, and ¢, «, 3 are real numbers satisfying
a>1-n/p,

(I—a+p)p<n,
0<1/p—1/g=(1—a+p)/n,

B<a.

(1.2)

The main purpose of this article is not only to establish the CKN-type
inequalities for all &« € R but also to study the related matters systematically.
Roughly speaking, we discuss the characterizations of the imbeddings as the
variational problems, the existence and nonexistence of the extremal solutions
to these variational problems in proper spaces, and the exact values and the
asymptotic behaviors of the best constants.

Now we introduce a crucial parameter v as follows.

DEFINITION 1.1
For 1 <p < +0o0, in (1.2) let us set

(1.3) ry:a_1+§:5+ﬁ.
p q

Under the condition (1.2), we have 0 < y as well. By noting that ap = p(1++v) —n,
B =vq—n, we can rewrite (1.1) and (1.2) to obtain the following:

/
[ vtz s( [ )™
n R’IL

(1.4)
for any u € C°(R"),

where n > 1, 1 <p < 400, and ¢,~ are real numbers satisfying

v >0,
(1.5) q < +o0,
0<1/p—1/¢<1/n.
Throughout the present article we work with a parameter v € R instead of «
and [, so that most of our results become symmetric in v with respect to v =0.

Furthermore we classify the CKN-type inequalities according to the range of
the parameter 7 into three cases.
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DEFINITION 1.2
The parameter ~ is said to be subcritical, critical, and supercritical if v satisfies
~v>0,v=0, and v < 0, respectively.

REMARK 1.1

(1) Here we note that the conditions v > 0, v =0, and v < 0 are equivalent
toa>1-—n/p,a=1—-n/p, and a <1 —n/p, respectively.

(2) In the classical CKN-type inequalities (1.1), it follows from the subcrit-
ical condition v > 0 that we have 8q > —n; hence the weight functions on both
sides are locally integrable on R™. By this reason these inequalities (1.1) are
classified into the subcritical case of the CKN-type inequalities in this article.

1.2. Historical remarks

Before we go further into our main results on the CKN-type inequalities involving
critical and supercritical cases, we give a brief historical review here. As we have
already mentioned, the inequalities (1.1) for y =a — 1+ n/p > 0 are often called
the CKN-type inequalities. In fact in [CKN] they established general multiplica-
tive inequalities including this type. In [Hol] we also studied these inequalities
among more general imbedding theorems on the weighted Sobolev spaces, where
the weights are powers of the distance from a given closed set F'.

It was also very interesting for us to study further the properties of the
embedding operators obtained there. But for a general F' it did not seem easy
to study these problems in a detailed way. For this reason, in [Ho2] we restricted
ourselves to the simplest case in which F' consists of a single point, namely, the
origin. In this particular case we studied various aspects of related problems
and obtained interesting results such as the exact values of the best constant
S'=S5(p,q,a) in certain cases, the existence and nonexistence of the extremals,
and so on (see [ACP], [CW1], [CW2], [GPP]).

Recently we have revisited the weighted Hardy—Sobolev inequality in [AH1].
It is easy to see that the classical CKN-type inequality coincides with the weighted
Hardy—Sobolev inequality if 8 =« — 1, or equivalently p = ¢. To our surprise it
was shown that the weighted Hardy—Sobolev inequalities themselves hold for all
v € R (or equivalently for all « € R) with some modifications. In fact, even if
v=a—1+n/p=0 holds, the sharp inequality of Hardy type remains valid as
long as the whole space R" is replaced by a bounded domain containing the origin
and the weight functions on the right-hand side are replaced by the logarithmic
ones. Moreover we have successfully improved those weighted Hardy—Sobolev
inequalities by finding sharp missing terms, which turned out to be very useful
in many ways. For the improved inequalities, see Proposition 1.2 below. (For the
complete argument and related applications, see [AH1].)

On the other hand, the counterpart in the CKN-type inequalities to the
weighted Hardy—Sobolev inequalities in [AH1] seems to be unknown so far. But
it seems reasonable for us to expect that the CKN-type inequalities should remain
valid for all v € R (o € R) with a similar modification to that performed in the
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weighted Hardy—Sobolev inequalities. In this spirit we establish the CKN-type
inequalities for all v € R (o € R) and we further study them systematically in
the present paper.

To emphasize the meaning of this classification of the CKN-type inequalities
and our motivation in this paper, let us recall the results on the weighted Hardy—
Sobolev inequalities as the necessary background.

We first review as Proposition 1.1 the classical weighted Hardy—Sobolev
inequalities in the noncritical case, and then we also recall as Proposition 1.2
the improved weighted Hardy—Sobolev inequalities with sharp missing terms in
[AH1] (see also [AH2], [ANC], [DHA1], [DHA2], [DHA3], [Ho3]). It follows from
these results that the weighted Hardy—Sobolev inequalities are valid for all v € R.
Hence it is appropriate to study the CKN-type equalities according to Defini-
tion 1.2 on the basis of the (improved) weighted Hardy—Sobolev inequalities.

PROPOSITION 1.1

Let n>1, let 0 € Q, and let Q2 be a domain of R™. Assume that 1 < p < +00,
and assume that v # 0. Then we have

(1.6) /Q V()| P d > [P /Q ()Pl P de

for any uwe C(22\ {0}).

In this inequality (1.6), the domain 2 may be unbounded and the best constant
|7|P is apparently independent of the shape of the domain. In particular we can
put 2 =R".

PROPOSITION 1.2
Let n>1, let 0 €2, and let Q be a bounded domain of R™.

(1) Subcritical case (y>0, 1 <p < +00)
There exist K = K(n) > 1 and C = C(n) > 0 such that if R > K supg, |z| then

/ V() Pl| 0P de > |y / ()PP de
(1.7) ¢ ¢

RN\—2
P(] Yp—n g
+0/Q|u(x)\ (10 Iw\) [P da
for any w e C(Q).

(2) Critical case (y=0, 1 <p < +00)

There ezist K = K(n) > 1 and C = C(n) > 0 such that if R > K supg, |z| then

(n
/Q|Vu(:c)|p\x|p_"d:v > ! [u(@)” <log —>_pdx

@)rJo |z |z

+ C’/Q U|E;TZL|F (log %) o <log (log %)) ) dx

for any uwe C°(Q). Here p' =p/(p—1).

(1.8)
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(3) Supercritical case (7 <0, 1 <p<+4o0)
There exist K = K(n) >0 and C = C(n) > 0 such that if R > K supg, |z| then

/ V(@) Pl| 0P do > |y / () PP de
(1.9) ¢ “

R\—2
—1—0/ u(z)|P (log — [P dx
e (log 7)1

for any uwe C(22\ {0}).

REMARK 1.2

(1) If we replace a bounded domain by the whole space R™, then in
general we cannot expect any improved weighted Hardy—Sobolev inequalities
with a missing term.

(2) If v =0 (the critical case) and 2 = R", then one can show from a capac-
itary argument that for any compact set K C R"

inf{/ [Vu(z)Plz|P""dr:ue C°(R™),u>1 on K} =0.
R‘n,
Therefore we cannot expect the weighted Hardy inequality in the whole space R™.

2. Main results

2.1. The CKN-type inequalities
In the subsequent section we employ the following notations:

p * np
2.1 p=— p'=—"—— for1<p<oo.
21) p—1 (n—p)+
Here we set t4 = max{0,t} and 1/0 = oo.
As we have already mentioned in Section 1, for fixed p, g, instead of param-

eters a, B in the CKN-type inequalities we work with a new parameter

n n
p q
Then the range for p,q,~v becomes
1 1 1
2.3 1<p<qg<o00,(0)1q=——=-<—, ~v€R.
23) ODma= - 2% 0

From this condition we obtain for a fixed p
(2.4) pgqu*‘:ﬂ ifl<p<mg p<qg<p'=0c0 ifn<p<oo.
n—p

We recall that the subcritical condition, the critical condition, and the subcritical
condition simply correspond to v >0, v=0, and y < 0, respectively.
We prepare more notations below.
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DEFINITION 2.1
For « € R and R>1 we set
(2.5) In(x) =1, (|z]) = for x e R™\ {0},

|1.|n7a

log £ for z € By \ {0},
(2.6) Ay gr(z) = Ay p(|2)) = o] 1\ {0}
log(R|z|) for z € R™\ Bj.

When 0 < a < n holds, I, is called a Riesz kernel of order «.

Under these notations the CKN-type inequalities have the following forms:
if v=£0, then

p/q
(2.7) /R V(@) [P L1 4 () d > s( / ()|, () dx) .
If y=0, then for R>1

(2.8) /B V()P L, (z) do > c(/ |u(x)|q% dx)p/q.

By

We introduce function spaces and related norms below.

DEFINITION 2.2
Let 1<p<qg<oo,let y€R, and let R>1. Let Q2 be a domain of R", and let
u: Q2 —R.

(1) For w:Q — R satisfying w > 0 a.e. on ), we set

1/q
(29) s = (| @lwar) "
(2) Under the above notation we set

Q) = IVl e (Q)>

||UHL%(Q) = ||UHLq(Q§1q7)’ [Vl g .

(2.10) o
HUHLZ;R(Q) = ||UHLq(Q;Io/A1T;/p/)'
(3) We have L4(Q) ={u: Q= R | [ullps) < oo}, L] p(Q) ={u: Q= R|
llullza (@) <oo}.

(4) By Wig(Q) we denote the completion of C°(2\ {0}) with respect to
the norm

u || Vullze, ()

(5) Let Q be a radially symmetric domain. For any function space V() on
Q, we set

(2.11) V(Q)raa = {u ev(Q) ‘ u is radial}.

We remark on the following fundamental properties concerning the density of
smooth functions. (The proof is given in Section 8.)
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PROPOSITION 2.1
Assume that 1 <p < oo, and assume that v € R.

(1) If v>0, then C(R™) C Wl’g(R") and CP(R™) is densely contained
in W18 (R™).

(2) Ify<0, then CZ(R") ¢ W, F(R").

(3) If y=0, then C*(B;) C Wol”(f(Bl) and C(By) is densely contained in
Wo g (B1).

i

Then the CKN-type inequalities are simply represented as follows:
if v #0, then

(2.12) IVulfy, ) = Slulllsgny forue WP (R™),
if =0, then for R >1

(2.13) ||Vu||Lp(B = CHuH for u € Woly’é’(Bl).
REMARK 2.1

(1) When p = ¢ holds, these two inequalities are called the Hardy—Sobolev
inequalities. It is known that the best constants S of (2.12) and C of (2.13)
coincide with the ones restricted in the radial functional spaces W (Rn)rad and
W070 (B1)rad, respectively, and hence we have

1
)P
(2) It follows from the Hardy—Sobolev inequalities that if v > 0, then the

space W,i’g (R™) coincides with the completion of C°(R™\ {0}) with respect to
the norm

(2.14) S = SPPY =P, C = (PPl —

(2.15) [ullwzr@ny = VullLe, @ + llullz @,

and if v =0, then the space Wo,b (B1) coincides with the completion of
C (B \ {0}) with respect to the norm

(2.16) lullwir sy = IVullez sy + llully s,y with B> 1.

Here we note that if v =0, then the weight function on the right-hand side of the
CKN-type inequality (2.13) is sharp in the following sense. (The proof is given
in Section 8.)

PROPOSITION 2.2
Let 1 <p<q<oo, let 7, <1/n, and let R > 1. Assume that w € C(B; \ {0})
satisfies

Rz )1+Q/P

w(x) >0 for x € By \ {0}, I( )

w(x) 00 asz—0.
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Then we have

inf{ (”V“”ﬂ)p ] we WEE(B)\ {0}} ~0.

HUHLQ(Bl;w)

In what follows we study the validity of the CKN-type inequalities and the behav-
ior of the best constants precisely when the parameters enjoy 1 < p < g < oo,
Tpq < 1/n, and in addition the cases in which v <0 and R =1 are considered.
Moreover when v =0, we also establish the CKN-type inequality in the exterior
domain R™\ By such that

(2.17) |Vl >Clul?, for uw e WiE(R™\ By).

LY(R™\B1) — .r(R™\B1)

2.2. Main results in the noncritical case
In this section we describe the results when v £ 0.

DEFINITION 2.3

Let 1 <p<q<oo, and let v # 0. We have:
Assertion (1):

IVullzy

#)p for u e WAE(R™)\ {0}.
) |

2.18 BP9y = (
(2.18) = Tl e

Assertion (2):
ST = inf{ BP9 [u] | u € |4 LPR™)\ {0}}
=inf{EP%[u] | u e C(R™\ {0})\ {0} },
SPAT = inf { P97 [u] | uw € W B (R™)raa \ {0} }
=inf{ BP9 [u] | u € C°(R™\ {0})raa \ {0} }.

(2.19)

(2.20)

First of all we state the CKN-type inequalities in the noncritical case.

THEOREM 2.1

Assume that 1 <p < q < oo, assume that 7, 4 < 1/n, and assume that v # 0.
Then, we have S¥%47 > SP4Y > (0 and the following inequalities:

(2.21) IVullgy, oy = Sl gy for ue WH(R™),

(222)  |Vullly, e >S5S for u € WL H (R )saa.

||UHL‘1 Rn)

This follows from assertions (1)—(4) of Theorem 2.2. Let us introduce more nota-
tion.

DEFINITION 2.4
For 1 <p < q < oo, we set
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_ n—1
1+q/p"’

S {(p/)p—2+p/qqp/q(ﬂ]3( 1 1 ))1_p/q if p<gq,
P.g =

Tp.q
(2.23)

9 ’
Tp,q PTp,q’ P Tp,q

1 if p=gq.

Here B(-,-) is the beta function, and w, is the area of a unit ball.

REMARK 2.2
(1) It holds that
1

1 1\~
In fact for 0 <7 < min{l/p,1/p'}, we see that
Pl — )P T < _ (l _ T>1/p_T <i _ T)l/p o
Si-r v

(2.25)
for 0<t<1;

hence we have

B( L) = ([ oy

0

Sac 217)1727 (;19 - T)l/p_T (;% - T) o

1
%pil/p(p/)l/p’ as 7 — 0,
]_ ]_ T 1 , r T
B(omyn) 2 ([ a0 ar)
pT pT 0
/ 1
p(1_pi/p - -~
—>Orélta§x1t (1—-1¢) AT ) 1P as 7 — 0.

(2) Since 7,4 — 0 as ¢ — p, it follows from the argument of assertion (1) of
this remark that we have

(p/)P=1-PToa <w—”B( 1 1 )>mp'q o

p.q = — 1—pr )
(1/p=7pg)' 7P™Pa \Tpg \PTpq P'Tpyq

=Spp asqg—p.

(2.26)

Under these preparations we can compute the best constant S'%" of the CKN-
type inequality in the radial function space to obtain the exact representation.
In the next theorem we describe important relations among the best constants
SPAT and ST,

THEOREM 2.2
Assume that 1 <p < q <q<oo, and assume that 1, 4 < 1/n. Then it holds that:
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(1) SPa7 = SPai=7 Sh4Y — SPE™7 for v #0.

(2) Spa” = pqlvl”1 ) for oy #0.

(3) SPIY = Sp’q”y = |’7|p(177—p @) for 0<|y] < Yp,q-

(4) |’Y |p(1 Tp.q Sp,q,v < Sp,qm/ < |’Y|prp 4 SPET for 0 < || < |7

(5) WS’”’ Tt <SP < PPt = SPETE for |y >

Yp,p* = T if p<n.
(6) 92277 — §2,2%v2,2¢ — 5272 2,2+ for |’7| > g g = nTﬂ ifp=2<n.

rad

(7) SPE7 > (|7|p7m(Spﬁw)fp,q)l/fp,a for ~ #0.
In particular, SP%7 > Mp(l—mp,q)(Spm*w)nmq forv#0 if p<n.

REMARK 2.3

(1) Assertions (1)—(4) are proved in Sections 3 and 4, and assertions (5)—(7)
are established in Section 6, respectively.

(2) It follows from Remark 2.1 and Theorem 2.2(1) that we have

(2.27) SPPY = SPIET — | [P for v #0.
(3) For 1 < p < n, the number
. — p\p-1 p/n
p—1 po\p'p

coincides with the classical best constant of the Sobolev inequality:

IVellgngn =IVulzy, g

Z S”u”ig*

- (R™) = S” ||p for u € W,tpp* O(Rn)

LP"(R")

In particular for n > 3, p =2, we see that

. 2/n
S2,2*;’Yz,2* — 52’2 i72,2* :n(n— 2) (W—HB(E E))

rad

=n(n—2) (Fl(f(ié?) )Q/nﬁ.

(2.29)

Here, I'(+) is the gamma function.

Moreover the best constant SP'%7 is a continuous function of the parameters ¢
and . Namely we have the following theorem, which is established in Section 6.

THEOREM 2.3
For 1 <p< oo, the maps

(230)  (p.p"]\ {ool)x(R\{0})3 (g:7) = 747, SDA7 €R,
are continuous. In particular, it holds that

(2.31) SPEY — SPPY = |~|P as ¢ — p.
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In what follows we describe results on the existence and non-existence of extremal
functions which attain the best constants of the CKN-type inequalities. In short,
the best constant SP*%7 is attained by some element in Wvl”g (R™)\ {0} provided
that p < g < p* is satisfied. On the other hand, if ¢ = p, then the corresponding
CKN-type inequalities are reduced to the Hardy—Sobolev inequalities and there-
fore no extremal function exists. When ¢ = p* holds, then SP*"+7 is attained
provided that 0 < |y| < (n —p)/p=ypp+, but in the case that |y| > (n —p)/p, it
is unknown in general, except for the case p =2, whether SP?"7 is achieved by
some element or not. If p =2 is assumed, then it is shown that no extremal exists
provided that |y| > (n — 2)/2 holds.

THEOREM 2.4
Assume that 1 <p < q < oo, assume that 7,4 < 1/n, and assume that v # 0.
Then we have the following.

(1) If p<gq, then S%%¥7 is achieved in Wi’g(R")rad \ {0}.
(2) If p<q<p*, then SP7 4s achieved in W,;:g(R") \ {0}.
(3) If p<n, ¢=p", and ]3| < (n—p)/p = Ypyp-, then SPP" 7 = SPE is
achieved in Wi’g(R")rad \ {0}.
(4) If p=2<n, ¢g=2"=2n/(n—2), and |y| > (n — 2)/2 = 2.2+, then
2,2%

S22 =57 22 holds and S** is not achieved in Wvlg(R”) \ {0}.

REMARK 2.4
Assertions (1) and (3) are proved in Section 4. On the other hand assertions (2)
and (4) are established in Sections 7 and 8, respectively.

PROPOSITION 2.3
If1<p=gq<ooand~y#0, then SPP7 and SPH are not achieved in Wi”g(R")\
{0} and Wﬂ}:g(R”)rad \ {0}, respectively.

This is proved in Section 8.

2.3. Main results in the critical case
In this section we state the results in the case of ¥ = 0. Let us begin by defining
various functionals and best constants.

DEFINITION 2.5
Let 1<p<g<oo,and let R>1. We have

Assertion (1)

\Y% p
(2.32) FPoRly] = (H“”ﬂ)p for u € W22 (By)\ {0}

lulls (1)
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Assertion (2)
CPEE = inf{ FP9 8] |uw e Wy P(B1) \ {0}}
= inf{ FP4%[u] |ue CZ(B1\ {0}) \ {0} },
CLA™ = mf { FPBu] [ w € Wy (B1)saa \ {0}}
=inf{FP5u] | u € C°(By \ {0})raa \ {0}}.

(2.33)

(2.34)

Assertion (3)

e V’LL D A\ )\ P _
(2.35)  FU)= (””Lw) for w e WP (R™\ Br) \ {0}.
HU”L;R(Rn\Bl)

Assertion (4)

P = inf {FP " ] | w e WP R\ B1) \ {0}}
(2.36) R —
=t {F" " [u] |ue C(R"\ By) \ {0} },

Crt" =t {F""[u] | w e W (R \ Bi)raa \ {0}}
(2.37) R o
=inf{F"" " [u] | u € CZ(R™\ B)raa \ {0}}.

When R > 1, we have the following theorem.

THEOREM 2.5

Assume that 1 < p < q < oo, assume that 7,4, < 1/n, and assume that R > 1.
; ; 0GR =p.aR .

Then, we have CP:%R > craR > o V9" > T > 0, and the following

rad
inequalities:

(2.38) HVuH’zf(Bl) > Cp?q;R”“”ig;R(Bl) foru € Wol,’(;”(Bl),

forue V[/’Ol”é[’(Bl)md7

R
(2:39) [Vullyy g, > CRE ully s

—p.¢; R 1, n\ 5
(2:40) (90l iy = Nl oy for w € W R\ B,

PG R 1, -
(241) HquI[)ff(R"\Bil) - CVrad HuHiZR(R"\B’T) fOT S WO,(Z))<Rn \ Bl)rad-
REMARK 2.5

If p > n, these embedding inequalities follow from assertions (3) and (4) of The-
orem 2.7. On the other hand if 1 < p < n, then these are established in Section 5
by using the so-called nonlinear potential theory.

When R =1 holds, we have the next result, which is established in Section 4 and
partly in Section 8.
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THEOREM 2.6
Assume that 1 <p < q < oo, assume that 17,4 < 1/n, and assume that R =1.
Then we have the following.

(1) Ifn=1, then CB4' > CPal >0 and CL%' > TP > 0 hold. Further

the inequalities in Theorem 2.5 are valid with R=1.
(2) If n>2, then C2%' >0 and Uiﬁl > 0 hold. Further the inequalities in

rad

Theorem 2.5 are valid with R =1, and CP%! = TP =0 holds.

Now we introduce more notation.

DEFINITION 2.6
For 1 <p<q < oo we set
L+q/p" . Sp.q
2.42 R,,= — ifn>2 Cpg=——1"—.
( ) p,q = €XP (n—1)p un =z, Pyq (p)P0—7r.)

By virtue of these we can represent in a concrete way C’Qg; and Cfa‘é’ which
are the best constants in the radial function spaces.

THEOREM 2.7
Assume that 1 <p < q < oo, and assume that 7,4 < 1/n. Then we have the fol-
lowing:

(1) craR =P opal G o p >,

rad
(2) CPgR = TVE™ — Gy for R 1.
(3) Crask = cPsl P R _ Cfa?iR —C,, for R> 1 ifn=1,
o ' Rpq tfp>n>2.
. =0 4R R _ APGR log R log B\ PP ¢ R
(4) g”’q’R =C <oral = < ( e ) CraR (@) C for
1<R<ZR.
REMARK 2.6
(1) Assertions (1) and (4) are established in Section 3 and the rest are done
in Section 4.
(2) We have Cp, ; — (p)p
tion, which is established in Section 6.
(3) From Remark 2.1 and Proposition 3.1 we obtain
1

Wy

= Cpp as ¢ — p. Hence we have the following asser-

DR

(2.43) cprR — ol _gP v bl ~C,, for R>1.

Further the best constant CP*%% is a continuous function of the parameters ¢, R.



674 Toshio Horiuchi and Peter Kumlin

THEOREM 2.8 (1) For1<p< oo, the maps
(2.44)

(Ip.p"]\ {00} x(1,00) 5 (g; R) s CPER = GP4R cpaik _gpaif o g

are continuous.
(2) Forn=1 and 1 <p < oo, the maps

(245)  [p,0o)x[1,00) 3 (q; R) = CPaiF = Pt _GPIF _Ghal o g

rad

are continuous.

On the existence of extremal functions we have the next theorem, which is proved

in Section 4. When n > 2, p < ¢, and R > 1 hold, we do not yet know if CP-%:%
=P @R .

and C"""" are achieved by any extremals or not.

THEOREM 2.9
Assume that 1 <p < g < oo, assume that 7,4 < 1/n, and assume that R > 1.
Then we have the following.

(1) For R=1, Cfdgl and C’f;i’ are achieved in Woly’g)(Bl)md \ {0} and
w, ”éJ(R" \ B1)raqa \ {0}, respectively.

(2) Forn=1 and R=1, CP%' =% gng " t= Cfa(é’ are achieved in
W, 0 ((=1,1))raa \ {0} and Wolé’(R\ [—1,1])raa \ {0}, respectively.

(3) For R>1, CP%% 4nd C’f;?i’ are not achieved in Wo P(B1)raq \ {0} and

rad

Wy (R"\ By )raa \ {0}, respectively.

0,

We also have the next proposition, which is proved in Section 8.2 together with
Theorem 2.4(4).

PROPOSITION 2.4
Let 1 <p= q <00, and let 7, , < 1/n. If R > 1 is sufficiently large, then CPPE
C’fmg R C’p’p’ and Cfgﬁ’ are not achieved in Wl’p( 1)\ {0}, W&f(Bl)rad\{O},

WO TER™\ Bl) \ {0}, and W0 P(R™\ Bi)raqa \ {0} respectively.
3. Change of variables and the best constants
Here we see the relations among the best constants by the method of change of

variables.

DEFINITION 3.1
For >0 and R > 1, we set the following:

(1) Y(y) Ty ‘2 for y e R" \ {0}
(2) Ys(y) = |y’ 'y for y e R™.
(3) R(y) Rexp(— \y|)|y\ for y e R".
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REMARK 3.1
For >0 and R > 1, we have the inverse maps as follows:

(1) Y '(2) =V (x) = 2= for € R™\ {0}.

(2) Yﬁfl(x) = Yl/g( z) =|z|"f~ 1z for z € R".

-1
(3) YR (a:) mll‘ fOI‘xeBR

In what follows we define various operators which are fundamental in the present
paper.

DEFINITION 3.2
Let 8 >0, and let R > 1. Let 2 be a domain of R"™, and let u: 2 — R. We have:

(1) Tu(y) =u(Y(y) = (%) for ye ¥ (2\{0}).
(2) Tsuly) =u(Va(y)) = ullyl’~1y) for y € ¥, 5(92).
(3) For Q2 C Bp,

Tru(y) = u(}}R(y)) = u(Rexp(—ﬁ) ﬂ) for y € Y5 1(Q).

We begin by studying the operator 7. By a direct calculation we have
(3.1) det(0;; + aw;x;)1<i j<n =1 +a|z|* forz € R",a€R.

Since the Jacobi determinant of the change of variables defined by z =Y (y) =
y/lyl? is

- 1 Yy, ) 1
3.2 det DY det 05 — 25— =——
(3:2) W)= <| 2 ( ly[? ) 1<4,j<n ly[>"

we have the following lemma.

LEMMA 3.1
Assume that 1 <p < q < oo, assume that v # 0, and assume that R> 1. Then we
have the following:
(1) llullpgmny = Tullpe_ mny for ue LY (R™),
IVulle, ey = IV[Tu]l s gey for ue Wig(R");
(2) HUHLq (B = IITUHLq L(R\BY) for w€ Ly p(B1),
IVullr(s,) = ||V[Tu]|\Lz;>(m\15e1 forue Wy (B )-

For the proof of this, it suffices to note that for x =y/|y|?> we have

‘(V U <| ‘2)’ = [y|* ‘V (Tu ))

As a direct consequence of this we have the next proposition, which proves The-
orem 2.2(1) and Theorem 2.7(1). Further we see that in the proofs of Theorems

. for yeR™\ {0}
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2.1-2.4, it suffices to assume that v > 0, and it suffices to establish the proofs of
Theorems 2.5-2.9 in a unit ball By.

PROPOSITION 3.1
Assume that 1 <p < q < oo, assume that v+# 0, and assume that R > 1. Then we
have the following:

(]_) SPaY :SP,IB*’Y Sp’q! Spvq’

(@) Cram =g R "
Proof
From Lemma 3.1 we see that
(3.3) EP97[u] = EP4[Tu]  for ue W H(R")\ {0},
(3.4) FPafiu] = F"[Tu)  for ue WiT(B1)\ {0};
hence the assertions follow. O

In the next lemma we consider the operators T3, Tr. By Agn-1 we denote the
Laplace —Beltrami operator on a unit sphere S®~!. Then a gradient operator A
on 8" is defined by

(3.5) / (—Agn—1u)vdS = Au-AvdS  for u,v € C*(S™1).
Sw 1 3"’71
Here we note that
1 07 ,4,0u 9 9
(3.6) Au—ﬁa[r 87"} — Agn-1u, |Vul —’ ‘ —i— |Au|
where
(3.7) @) =lel,  2@)= L Vu()
' b or’ x| '

The Jacobi determinant of the change of variables z = Y3(y) = |y|*~1y is given
by

(38)  det DYj(y) = det(|y|ﬁ—1 (6 + (8- 1) 2% )) = Bly|"o Y
lyl 1<i,j<n

Hence by calculations we have the next lemma.

LEMMA 3.2
Assume that 1 <p<g<oo,y>0, R>1, and 8> 0. Then we have the follow-
mg:
(1) HUHL%(R“) = ﬁl/qHTBUHLgW(Rn) Jorue L (Rn)
- 2
IVullpr, mny = o (& Tsul? + SIATull?) 2]

Py g (RY) for u €
W (R™);
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(2) HUHLZ:R(Bl) = —ﬁll/p/ ||T6UHL‘IP;R1/B(31) forue LZ;R(Bl),
2 1,
IVl or 5,y = 5o (5 Tpul® + S| ALsull?) 2 |y (s, for ue W (B).

As a consequence we have the next proposition, which gives Theorem 2.2(4) and
Theorem 2.7(4) as well.

PROPOSITION 3.2
Assume that 1 <p < q<oo. Then we have the following:

P(1=7p,q) op,q;7 . T\PTo.a ap,qi7 qP-@Y — (1 \P(1=Tp.a) opiai¥
0 (12 (%) Pquqngpq'yg(%) pqqu77srad _(%) pquad fOT'
<y <7.
In particular, there is a constant S, 4 > 0 such that we have

PG = G, AP0 for 4 > 0.

rad

;R 4R log R\P ~p,q;R ~P:3:R _ ~p:a;R -
(2) Croft <Pl < (REd)POr el CRAT = CPA™ for < R<R.

In particular, there is a constant C'p,q > 0 such that we have

C’fa’tg;R =Cpy for R>1.
Proof
Let us note that by Remark 3.1, u =T ,gv holds for v =Tgu. Then it follows
from Lemma 3.2(1) with § =+/7 that we have

P(1=7p.q) _
(1) P EPT[ Ty u]

Y
< BP9y < (%)pr,qu,q;W[Tﬁ/vu] for u € le”é’(R") \ {0},
p(l_"'p,q) =
EE%7h4=:<l> EPUITS ) for ue W2 (R™)raa \ {0}

From assertion (2) with 3= (log R)/(log R), we have
prq;R[TlogR/ logRu] < prq;R[u]

< log R

p .
= <1ogR) FPU T o rul - for ue Wog(Bi)\ {0},

FPafly] = FPORIT o emul for w€ Wi (Br)raa \ {0}
Thus the desired assertions follow. O

Further from Proposition 3.2 we have the following proposition.

PROPOSITION 3.3
Assume that 1 < p < q < oo, assume that ¥ >0, and assume that R > 1. Then we
have the following.
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(1) If SP%7 = SP9T holds, then
§PTY — Sp G Sp q,yp(lpr,q) for0<y<7.
(2) If OP 5B = CPEE polds, then
P GR — Oqu Cpq for R>R.

Lastly we have the next lemma, noting that the Jacobi determinant of the change
of variables © = Yr(y) = Rexp(—1/|y|)y/|y| is given by

- R 1 1 Yil;
det DYR(y) = det( exp ((L-- + -1 J ))
| ( Iyl) ’ <|y| ) W12/ /) 1<ij<n

n 1
= R”exp(——) _.
lyl/ Jy|™+

(3.9)

LEMMA 3.3
Assume that 1 < p < q < oo, and assume that R > 1. Then we have the following:

Hu||Lq (B) = HTR“HL"/IJ,(Bl/ng) foruELZ;R(Bl),

IVull e sy) _H(‘ [TRU]‘2+%\A[TRu]|2>1/2‘

L11]+1/p/(Bl/logR)

forue W0 Y(B1).
Combining this with Proposition 3.2(2) we obtain the next proposition.

PROPOSITION 3.4
For 1 <p<q<oo we have

p,q; R p,q;1/p" _ Sp.q
(3.10) chit=s00"" = i for R>1.
Proof
It follows from Lemma 3.3 that we have
(3.11) FPaiffy] = Erat/Y [Tru] - for uw € Wy (Bi)raa \ {0}.

Here we note that the operator Tru is an extension of Tru to the whole R”
by setting Tru =0 on R™\ By /156 r-
— G 1/p’

; : p,q;1
Then we immediately have C}’3 rad

also have

A . ;R . . ,q; e’}
Cpq = inf CLE = inf inf{PPE[u] [u € O (B1 \ {0})saa \ {03}

. From Proposition 3.2(2) we

= inf inf{ BPCYY [Tpu] | w € C(By \ {0})raa \ {0} }

— inf{ PP ] | p € (R {0})saa \ {03} = S24V7
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The assertion follows from this together with assertion 1 and Proposition 3.2(1).
O

. P95 p,q; R D,q;Y p,q; R
4. Relationsamong S 37, CLi™, S ,and C'

In this section we exactly determine the best constants 57247 and C’fa’tg;R in the
radials function spaces, and we study when SP'%7 and Cfa’g;R should coincide
with SP:%7 and CP'% respectively.

4.1. Variational problems in radially symmetric spaces

In this section we determine the best constants S¥:%7 and C’f;’g;R for p < q by solv-
ing corresponding variational problems in radially symmetric spaces employing
Talenti’s result in an essential way. We begin by introducing variational problems

and solutions.

DEFINITION 4.1
Let 1 <p<q<oo, and let a,b>0. We have:

(1) C;;,q((O, o0)) = {u € C((0,00)) | fooo|u’(r)|pr1/'rpf471 dr < oo,u(r) — 0 as
r—o0};

|/ (r)|Prt/ Tea =1 gr e
(2) Jrapy = YO “

( O°°|u(r)\‘1r1/Tqu_1 dr)

(3) wo(@) =wo(lz)) = rmpyeas for 2 € R\ {0}
(In what follows g is also regarded as a function of r = |z| on (0,00).)

for u € C’;,q((o, o)) \ {0};

The next lemma is essentially due to G. Talenti (see [Tal, Lemma 2]).

LEMMA 4.1
For 1 <p<qg< oo, we have
(4.1) JPu] > JPpo]  forue C;’q((O, oo)) \ {0}.

Noting that

8] ta—l
(4.2) / mdt:B(a,ﬁ—a) for 0 <a < p,
0

we have

@) [ ettt ey
. r)|dr*/Tra r= —
0 70 (al/Pl /P )L moa pf "\ pry g T/
(oo}
| le@prt/matar
0

(4.4) - ! (p/)p_lB( L, +1)

(al/Pbl/P/)P/(qu,q) (qu,q)P DPTp.q ’ p,Tp,q
_ 1 (p)P? B( 11 )
- (al/Pbl/P/)P/(anq) qP—ng’q PTpq ’ p/Tp,q :
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Hence we have

(p,)l/pli‘rp’q B( 1 1 )Tp,q
q"/P Ty q PToa P'Tpg .
First of all, for v > 0, we have the next proposition and then Theorem 2.4(1)
follows. Moreover combining it with Proposition 3.2, Theorem 2.2(2) follows.

(4.5) TP po] =

PROPOSITION 4.1
Assume that 1 < p < g < 00, and assume that v > 0. Then we have the following.

(1) The infimum of SEL7 in Wi’g(R")rad \ {0} is attained by uP9Y =

rad

Tqrp,qﬁ@o-

(2) In Proposition 3.2(1),

Spa = (Wit (q7p,g) "1 TP p0])’ = Spg-

Proof

(1) Tt follows from Lemma 3.2 that we have for u € C°(R™ \ {0})rad,
(4.6) lullLs mrny = W||Tl/(q’rp,q'y)uHL‘f/(qu)q)(R’")a
(4.7) ”vu”Lﬁv(R") = (qu,qV)l/p ||V[T1/(q7p,q»y)u]HLfH/(qmq)(R")'

Then we have
EP T u) = (Wi (q7p,q) 0 P Ty
for u e Cgo(Rn \ {O})rad \ {O}a

hence the assertion follows from Lemma 4.1.
(2) This is clear from assertion (1) of this proposition and Proposition 3.2(1).

qu,q'Y)u])p/yp(l_prq)

O

Let us proceed to the case v = 0. In this case we have the next proposition, from
which Theorem 2.6 and assertions (1) and (3) of Theorem 2.9 follow. Moreover
combining it with Proposition 3.2(2), Theorem 2.7(2) follows.

PROPOSITION 4.2
Assume that 1 < p < q < 0o, assume that v =0, and assume that R > 1. Then we
have the following.

(1) If R=1, the infimum of ng;l in Woly’é)(Bl)md\{O} is attained by
apal =Tt [Tyry. /0 P0)-
(2) In Proposition 3.2(2), it holds that

~ . qTp, 1=7p.q p
Cpq= (Wnp’q (%) Jp’q[SDO]> =Cpq-

(3) If R> 1, then the infimum of C%%"™ is not attained in W&K(Bl)rad \{0}.
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Proof
(1) From Lemmas 3.2 and 3.3, we have for u € C2°(Bj \ {0})raa

||UHLZ;R(B1) = ||T1U||L§/p,(Rn)
(4.8)

P\ Ve .
B (qTP,q ) HTPI/((ITP’Q) [Tlrl” ||L112/(q7p,q)(Rn)’

IVull sy = IV [Tl

L1/ (BT

qTp, 1/p' I
- (%) Hv [Tp’/(q'erq) [Tlu]] ||L’erl/(quo,q)(Rtn)7

and we have

1=7p.q ~ P
Fp,q;l[u] = (w;pq (q;#) JP [Tp//(qu,q)[Tlu]]>

for u € Cgo(Bl \ {O})rad \ {O}

Hence from Lemma 4.1 the desired assertion follows.

(2) This is clear from Propositions 3.2(2) and 3.4.

(3) If u € Wy (B1)raa \ {0} for R > 1 achieves the infimum of C%:%", then
from the previous result we have

. s ;R
FPoRfy) = PR = ¢

But we have FP48[y] > FP-@8[y] > C, , for any 1 < R < R, and this is a contra-
diction. g

4.2. A generalized rearrangement of functions

We introduce a rearrangement of functions with respect to general weight func-
tions instead of the Lebesgue measure to establish the validity of S7%7 =SP4
and CP@R = Crp;g;R under additional conditions. In this section we begin by
studying a theory of generalized rearrangement of functions (cf. [Tal], [Ta2]).

DEFINITION 4.2
(1) For fe LL_(R") and f >0 a.e. on R", let us set for a (Lebesgue)

loc
measurable set A

(4.10) i) = [ dng = [ f@yan

Then gy is said to be the measure determined by f.

(2) We say that f is admissible if and only if f € LL (R™)NC(R"™\ {0})rad,
f>0o0n R™\ {0}, and f is nonincreasing with respect to r = |x|.

(3) For an admissible f and a Borel set A C R"™ satisfying 0 < u1(A4) < 400,
let us define r¢[A] >0 by pus(A) = ps(By,14).- Then B, (4 is said to be the
rearrangement set of A by f.

(4) For an admissible f and u:R™ — R, we set

(4.11) ,uf[u](t):ﬂf({\u|>t}):/ f(z)dz fort>0,

{lul>t}
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Rylul(x) = Ry[u](|x])

=sup{t >0 | pus[u](t) > ps(Bjy)} for z € R™\ {0}.

Then pylu] and Ryu] are said to be the distribution function of w and the
rearrangement function of u with respect to f, respectively.

(4.12)

Direct from this definition we see the next proposition.

PROPOSITION 4.3
Let 1 <p< oo, and assume that f is admissible. Then, for u:R"™ — R, we have
the following:

(1) purlu](t) = pg[Ry[u]](t) fort = 0;
(2) RyllulPl(z) = Rylul(x)? for z € R™\ {0}
(3) if u is radially symmetric and nonincreasing with respect to r = |x|, then

Rylul(z) =u(z) for a.e. x € R™\ {0}.
Further we have the following proposition.

PROPOSITION 4.4
Let 1 <p < oo, and assume that f is admissible. Then, for u,v:R™ — R, we
have the following:

(1) Jgn lw(@)Pf(2)de = [g. Rylu](z)? f(z)de.
(2) fR" [u(z)v(z)|f(z)dx < fRn Rylul(z)Rylv](z) f(z) d.

Proof
(1) Since |u(z)|P :pfooox{lubt}(ac)tp_l dt for a.e. z € R™, we see that

| lu@p s ds
(4.13) :p/ ) (/OOO X{‘u|>t}(x)t”’1dt)f(x) dx

:pAw </{u|>t} f(l')dl‘)ti”—l dt:p/oooﬂf[u](t)tp_ldt7

and in a similar way
(4.14) [ Ryt @ e =p [ Ryl 0
n 0
Then the assertion follows from Proposition 4.3(1).
(2.a) First we show that

(4.15) pr({lul >t} n{lv] >s}) <pr({Rslu] >t} N{Rsv] >s}) for s, t>0.
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If g ({[ul > t}) < pg({|v] > s}), then we have {Ry[u] >t} C {Ry[v] > s}. So it
follows from Proposition 4.3(1) that we have

pp ({Jul >t} N {|v] > s}) < pp({u>t})
= p({Rylu] > t}) = nr({Rylu] > t} N {Ry[v] > s}).

If pe({lv] > s}) < pr({|u| > t}), then we see that {Rs[v] > s} C {Ry[u] >t}
hence in a similar way the desired assertion holds.
(2.b) In a similar way we see that

[ tep@r@de = [ ([ @) ([ g ds) i) e

(4.16) :/OOO /ooo(/{|u>t}m{|v>s}f(x)dx) dsdt
- /oij /Oooﬂf({ul >t} {lv] > s})dsdt

and
Rylul(@)Ry[v](2)f () dx
(4.17) Ve
:/O /0 wr ({R ] > £ N {Rf[0] > ) ds .
The assertion therefore follows from (2.a). O

If uwe C.(R™) is Lipschitz continuous, then w is differentiable for a.e. x € R™
and |Vu| € L>°(R"). For an admissible f, we see that R[u] for u € C}(R")
becomes Lipschitz continuous, and hence Ry[u] is differentiable for a.e. x € R”
and |V[Rs[u]](z)| € L>(R™). Then we have the next proposition, which is estab-
lished in the Appendix.

PROPOSITION 4.5
Let 1 <p< oo, and assume that f is admissible. Then, for u € CL(R™) we have

p$ " wlz p# X
/Rn|V[Rf[u]](l’)| f(a’:)p_ld S/n|v ( )| f(x)p—ld

4.3. Application of the theory on rearrangement of functions

In this section we establish SP%7 = SP'%7 and CP@f = C’ﬁg;R under certain
assumptions by using the theory on the generalized rearrangement of functions
that was developed in the previous section.

First let us consider the case in which v > 0. Then we have the following
proposition, which proves Theorem 2.2(3). Further, making use of Theorem 2.2(4)
at the same time, we see that Theorem 2.1(1) follows as well. Here we note that
1, is admissible if 0 < o < n.
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PROPOSITION 4.6
For 1<p<q<oo, Tpq<1/n, and 0 <~ <r,4, it holds that SP 7 = SP%7.

Proof

By virtue of Proposition 3.3(1), it suffices to consider the case y =1, 4=(n —
1)/(1+¢q/p’). Since 0 < g7, 4 <, by using Propositions 4.3(2), 4.4(1), and 4.5(2),
we have for u e C°(R™\ {0})

lllty e = / )|, () diz = / Ru,, [ul)(@) g, () de
p,q R R”
= [ Rty [ T @)l = [Ri [l gy

1
p — p _
HVUHL€+’yp,q(Rn) - A,L ‘Vu(x)‘ Ji (m)p71 dx

9%p.q

= [ R 0 e

9Yp.q

= HV[RIQ’qu ]HLH—'Y (R™)"

Therefore

EP’WM(u)_(Hvu”LH” (R")>P (HV[RL]W,Q[UHHLIJrw (R"))p

Rign, o [lllzs, , )
(4.18)

||U||Lzm (R")
> S§hara for we C(R™\ {0}) \ {0}.

This proves the assertion. O

Now we consider the case v =0. Noting that the above argument works only
when p > n, we have the following proposition, which gives Theorem 2.7(3).

PROPOSITION 4.7
Letn>2. Ifn<p<g<oo and R> R, ,, then it holds that Pl — C’fég;R.

Proof

When R > Ry = exp((1+ q/p)/((n — 1)p')) holds, L1y, /AL /" < By \
{0} — R is positive and decreasing with respect to r = |z|. Then, noting that
0< (n—=1)p’ <n, it follows from Propositions 4.4(2), 4.3(2), 4.3(3), and 4.5 that
we have for u € C(By \ {0})

n—n 1
||u||Lq (B1) /|u |q 1(+q/p)P}(x)f(n—np/(x)d:c

In— n—1)p’
o R A [ e (R L I
B AR

1
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_ /B Ry )’ [m} (@) T 1y () do

Ak
= Rie, o [lllZe (5,
1
vul|?, :/ Vu(z)|p ———— dx
|| ||L1(B1) 31‘ ( )| I(n_l)p,(x):ﬂfl
1
> VIR [ul] (@) g da
_/31’ [ I(n—l)p[ H( )‘ [(nil)p/(l‘)p_l
p
=||V[R1,_,,, [u]] HL{(BI)‘

Therefore we see that

||VUHL1;(31))P . (||V[R1(n,_1)p'[|u|]]HL’1’(B1))p S (PR

FP’Q5R(u) = ( -
R [ullllzs a0 .

lullze . (B1)
for we C°(B1\ {0}) \ {0},

and this proves the assertion. O

When n =1, I;,_1), = o is not admissible. Hence we cannot apply the same
method directly, but Theorem 2.9(2) follows from the next proposition.

PROPOSITION 4.8
Letn=1.If1<p<q<oo and R>1, then it holds that CP%E = Cfa’g;R,

Proof
(1) Admitting that (14 ¢?)Y/? > (14 t9)/4 for t > 0 holds, we have for any

ue G ((=1,1)\{0})

1 1
Ul o+ el 0.0 2 (lllgs vop + 1015 0.0

= ||U||Lg;R((—1,1))-
Then we also have
> mi { ||U'||L§’((—1,o)) ’ ||U/HL’1’((O,1)) }
lullzs —1,1)) lullrz —1.00)  lullns 0,1
for ue C((-1,1)\ {0}) \ {0}.

In fact, if ||u'||L11’((_1,o))/”u||L§;

||U/HL1§((—1,1))

(=100 = Wl 0./l ((0.1)) holds, then

we have
lllzpcray _ (R Zprop 102 o)™
lullze ,(-1,1)) lullze . (~1,1))
1 ||u/||]2§’((0,1)) p ip /p
& lullza . (-1,1)) ( el oy e HLJID((O’D))
p; ’

p
ullZs 0.1y
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1
W llze 0.0y (““Hizﬂ(( 1,0)) +Hu”iq. R(0.)) v

a HUHLZ;R((OJ)) HUHLq R((-1,1))

> ||UI||L11’((0,1))

||u||L",R((0 1)).

IE 1w lee o, /1wl e 0,0)) = 10/l 2o(—1,00)/llullLa ((~1,0)), then in a similar
way we see that

HU'HLf((_l,l)) ||u/||LP(( 1,0))

HUHLZ;R((—Ll)) ||UHL‘1R(( 1 o))

(2) Since we have

CcPaR _ inf{( [ HLP(( 1,1)) )P
rad lullLe ,((-1,1))

u P
:inf{( lu'll L2 (1,00 )P
||U||Lq ((—1,0))

—{ (ALY e ez (1.0 ) (01}

||U||Lq ((0,1))

we O ((-1,1)\ {0}),,,\ {0}}

we C((-1,1)\ {0}) \ {0} }

it follows from (1) that we have

quR(u) ( HUIHLP((fl 1) )p
||U||Lq R((-1,1))

/
Zmin{( [l HLl((—l,O)) ) ( [|lu HL ((0,1)) )P}
||U||L§,;R((—1,o)) ||U||L" ((0,1))

> P4t for ue C°((—1,1)\ {0}) \ {0}.

Thus the assertion follows. O

5. Application of nonlinear potential theory

It follows from Propositions 4.7 and 4.8 that we have Theorem 2.7(3). Then,
combining it with Theorem 2.7(4), we find that Theorem 2.5 clearly follows
provided that p > n. Therefore, it suffices to assume that 1 < p < n in the rest of
the proof of Theorem 2.5. We finish this task by employing the so-called nonlinear
potential theory.

DEFINITION 5.1 (MUCKENHOUPT A p-CLASS)
Let 1 < p < co. We say that w € C(R"™ \ {0}) belongs to A,-class, if and only if
w>0on R"\ {0} and

ey s o wga(Sh ) <
' a:ER”pr>Own B, (z) v W™ J g, () w(y)t/ P=D 4

are satisfied.
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When w belongs to A,-class, simply we describe w € A,(R™). Let us define

“ron 1 1
5.2) J = d dt f R" 0.
( ) p[’UJ](J),’I") /T (wnt" /B,(z) w(y)l/(P—l) y) e or r € , >

Here, v, = (n—p)/(p—1).

Under these notations we have the next lemma, which is due to R. Adams [Ad,
Theorem 7.1, Section 7).

LEMMA 5.1
Let 1 <p < q<oo. Assume that w € A,(R"), assume that g € Li (R"), and

loc
assume that g >0 a.e. on R™. Then, the following two assertions are equivalent

to each other:

(1) ,
sup  fig (Br(x)) Jplwl(z, T)Q/p < 00,
zER™,1>0

(2) there is a positive number C' >0 such that we have

11 * fllLamn,g) < Cllfllprryw)  for any f € LP(R™;w).

Using this we establish the next proposition. Then, combining it with Theo-
rem 2.7(4), we see that Theorem 2.5 is valid even when 1 < p < n holds.

PROPOSITION 5.1
Ifl<p<g<oo,p<n, Tpqe<1l/n, and R >3, then we have Pl >,

Introducing more notation, we verify this using Lemma 5.1.

DEFINITION 5.2
For 1<p<g<oo,p<n, Tpe<1/n,and R>1, we set
(5.3) wy(z) = wy(|z|) = max{I,(z),1} for z€R™\ {0},
— @) for z€ By \ {0}
(5.4) Ipair (%) = gpgr(ja]) = § Arm” 7
e e 0 for z € R" \ By.

To apply Lemma 5.1 to these weight functions, let us prepare more lemmas.

LEMMA 5.2
For 1 <p<n, it holds that w, € A,(R"™).

Proof
Let us set

n n 1 p—l1
oplepller) =50 /Br(m)wp(y) i ™ /B,m wy(y)/#=1) @)

forx e R",r >0,

(5.5)
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and show it to be bounded.

(i) First we asssume that 0 < |z| < 1.
(a) If 0 <7 < min{|z|/2,1 — |z}, then we see that B,(x) C Bjg|4, \ Bjz|—r C Bu1;
hence

n n 1 ot
< —r)d B
oplwpl(@,7) < wnr”/Brm SEIE y(wnr”/g (a) wp(|a| + 1)/ (=1 /)

e
el S \ampe) T

(b) If 1 — |z| <7 < |x|/2, we see that |z| > 2/3; hence

wlen < " [ wel (S [ w) =

o - =—
e S NP v wnt™ JB, () Y (Jz| —r)n=r

1 2 \n—P
<——=(— <3"7P,
(2| = [=[/2)"P (\xl)
¢ z|/2<r <1—|z|, then we see that B,(z) C B|;|., C B1; hence
(c) If |z|/2 1 — |z, th hat B,.(z) C Bjzj4r C B1; h

wlen <" [ wwa( S Lo )
oplwp|(x,7) < wply) ay 1, Y
e Wnt™ Bia|tr ! wn ™ B\m|+rwp(y)l/(p_1)
G = G )"
Ny r T\ r
_ ﬁ(&’)ﬁ—lgnp.
pAp
(d) If » > max{|z|/2,1 — ||}, then > 1/3 and B,(x) C B|y4,. Hence

oplwy)(z,7r) < W:T”/Bmwwp(y)dy(w:”/m+r wp(y)}/(p—l) dy)p_l
(G ()
(5 Gom) ey =g

(ii) Second we assume that |z| > 1.
(a) If 0 <7 <|x[/2, then B, (x) C Bjg|1r \ Bjz|—; hence

n n p—1 1
< — TR )
wlwer) < 2 | ol (1 /| )N e

1 2 \n—p
G ()
(| = [z[/2)»=P Aa]

(b) If r > |x[/2, then r > 1/2 and B,.(x) C Bjy|4y; hence

<" a)
oplwp](z,7) < wn’"”/BMW wnT”/B 1/(p 0 y)

[o]+r

() G ) () (1_2_,’);”)“
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<(2r:r>”+ (% 3 1>2n) (27“:1")“(17*1)
(3” + (% = 1)2”) 3P, -

IN

LEMMA 5.3
For 1<p<mn and R > 3, there exist positive numbers ¢, and cp,gr >0 such that
we have the following:

(1) Jplwp)(z,7) <1 V_TTP forz e R™,r > 0.
(2) Jplwp)(w,r) < cp(1+log 3+ (51)) if [2] +7 < 1.
(3) Jplg)(2.7) < cprr(Av g (min{1, a]}) + (2L 4r0 < < lel

T

Proof
Let us note that

n 1
5.6 dy < min{1, (¢ wl <1 forz € R",t>0.
(5:6) wnt”/Btmwp(y)l/(p‘” y<mingl,(t+la)fp <1 fora
Then
(1)
*/n 1 1 * 1
Jp[wp](a:,r) :/r (wnt” /Ba,(m) wp(y)l/(p—l) dy) t1+VP dtg/r tlJ”’p dt
11
:—T foerRn,T>0.
l/p ree

(2) If |z| + r < 1, then we see that r < 1; hence

~ 1
Jp[wp](IJ’)S/ mm{l (t+ |z|)» T dt

< - dt 1 t vp 1 dt
<] et ( + )™ e,

1 ! 1 ! v 1
:_+/ (1_’_|$|> _dt§_+2(Vp_1)+/ <1+(|‘T_|) )—dt
Vp r t t Vp T t t

Vp 1
:__|_2(Vp—1)+ (1 og - + ] ( _1))
Vp T Vp \T¥p

i+2(Vp71)+ (10 1 +_(M)V’)>'
v, T Up\T

p p

IN

(3.a) If || +r <1 and 0 <r <|z|/2, then |z| <1 and |z|/r > 2. From the
argument of assertion (2) of this lemma and

(5.7) 1+logt <épt"» fort>1
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it holds that

Jp[wp](ﬂ)<cp<1+1og + ) <1+10g +1ogR| (f”|>””)

<¢ (Al,R(x) +(1+ |m| Vp)

(3.b) If |x| +r > 1, then from assertion (1) of this lemma we see that

Bl < - L L(lEnye M(H (1))

vp TP 'p r Vp
2(111371)4r A v,
< ( Lr(T) | (@) p> it 2 < 1,
Vp log R r
11 1 IR
Jp[wp]($77°)<V—pTTp<V—p(A1,R(1)+(;) ) if |z] > 1. O

LEMMA 5.4

Forl<p<g<oo,p<mn, Tpq<1/n, and R >3, there exists a positive number
Cp,q:R > 0 such that we have

Cp.q:RIp.g:R(min{ 1, [z[})r™  if 0 <7 < 3 min{l, |z[},

(5.8) Hgp,qir (Br(l")) < Cp,q;RW if % ST 57
Cp.q:R if r> %
Proof
First we note that for 1< R< R
R _logR R
. log= > ——=1log— f <1 .
(5.9) Ogr*logR 0g or 0<r<1(<R)

By the definition we have

:ugp,q;R(BT(x)) :/B ( )gp,q;R(y) dy

(5.10) .

1
= ——dy forzeR",r>0.
/Br(z)ﬁBl (log(R/[y[))*+a/¥" [y[

(a) f 0 <r<|z|/2<1/2, then |z|/2 < |z| —r < |y| < |z|+ 7 < 3|z|/2 for y €
B,(z); hence we have, using (5.9) with R=2R/3,

1 2\"
Hapn (Br(2)) < /Brm TorGRTGT77 ()

Wn 1 2
= GarT R ()

2"&( log R )1+q/p’

Tog(21/3) Ip,;R(T)T
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(b) If 0 <r<1/2<|z|/2, then 1/2 < |z|/2 < |z| —r < |y| for y € B,.(z); hence
we have

Igy.ar (Br(z)) < /

1
—2
B, (x) (log R)1 /v

(c) If 1/2>r >|z|/2, then B,(z) C B3, C Bgr; hence we have, using (5.9) with
R= R/37

n nwn n
dy=2 ng,q;R(l)r .

1 R 1
boran(Br ) = | o e e 0 gt

< p’( log R >q/p’ 1
W — .
= g \log(R/3)) Ay p(r)a/v
(d) If r > 1/2, then we have
1 1 )1
B < —dy=wp,—————.
v (Be0)) < |, e e = T O

After all this we have the following lemma.

LEMMA 5.5
Forl<p<g<oo,p<n, Tpqe<1l/n, and R>3, it holds that

(5.11) SUp  flg, .n (Br(x))Jp[wp](a:,r)q/p, < 0.
zeR™,r>0
Proof
(a) If r > 1/2, it follows from Lemma 5.3(1) and Lemma 5.4 that we have
/ 11 2vp
Hgp.q:r (BT'(x))Jp[wpr,?‘)q/p S CpgiR— 5 S CpgiR
vp TV Vp

(b) For 0 < r <min{1,|z|}/2, it follows from Lemma 5.3(3) and Lemma 5.4 that
we have

Kgp g:r (Br(fﬂ)) Jp[wp] ({L‘7 r)q/p/

< Cp,q;RIp,q;R (min{ L |z| })Tn

X (cp;R<(A1,R(min{1, z|}) + M)%))W

,
q/p’ _
_ Cp,g;RCp. R ( r )nq(l/n Tp,q)
Aj p(min{1,|z|}) \min{1, |z|}

/

, vy 1 a/p
x ((min{1,|x|}) N Al,R(min{l,lxl}))

Cp,q;RCZ;/g, 1 ( 1 1 )q/p’

Ay (1) 2ra(1/n=7p.4) 27p+A1,R(1)
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(c) Assume that |z|/2 <r <1/2. First we deal with the case |z| +r <1. Then,
from Lemma 5.3(2) and Lemma 5.4 we have

Hgp,q;r (BT(I))JP[’LUPK;L'7 r)q/P,

< Cpain 1T)q/p (cp(1+log +(| |) ))

R(

Vp / /

<cqucq P (1+2 + log( 1/7"))‘1 P
" log R+ log(1/r)

, 1+2v )\a/p

gcpyq;ch/P (max{l,—logR }) .

If |z| +r > 1, then we have r > 1/3. Hence from Lemma 5.3(1) and Lemma 5.4
we have

/ 1 1 1 \a/p
Hgp,q;r (Br(x))Jp[wp}(m,r)Q/T’ < Cp,q;RW<__)

Vp TVP

< 1 (3”@ )Q/P
S w2 \y, ) O
In addition we use the following lemma (cf. [GT, Lemma 7.14]).

LEMMA 5.6
For ue C°(R™), it holds that

(5.12) u(z) = S % dy forxeR"™
Wn JRn y‘

In particular

1
(5.13) lu(z)| < w—Il * [|Vul|](z) for x eR™.
Proof
Noting that
(5.14) u(z) = —/ Vu(r +tw) -wdt for we "1,
0
we immediately have
Vuly)-(z—y) , [ Vulz+y)-y,
rRe | —y" R" ly[™
° tw) -t
,/ / Mﬂ*l dtdS(w)
S’Il—l 0 tL

:_/SH /OOOVu(m—i—tw)-wdtdS(w):/ u(z)dS(w)

Sn—1
= wpu(x). O

Now we are in a position to establish Proposition 5.1.



On the Caffarelli-Kohn-Nirenberg-type inequalities 693

Proof of Proposition 5.1
It follows from Lemmas 5.2, 5.5, and 5.1 that there exists a positive number
Cp,q;r > 0 such that we have

|11 * f”L"(R";gp,q;R) < Cp,q;RHfHLP(Rn;wp) for f € Lp(Rn;wp)-

Then, from Lemma 5.6 we have

lullLg 1) = Ul La@nig, gn) < —Hh* IVullll Lamnsg, )

< Cp,q;R
Tw

IVull e @,

C7;R ©0
_ Z: [VullLrp,) for ue C(By\{0}). O

6. Continuity of the best constants on parameters

In this section we prove that the best constants SP*%7 and CP*%% are continuous
on parameters with p being arbitrarily fixed and we also establish some related
estimates. It is clear from Theorem 2.2(2) and Theorem 2.7(2) that the best
constants in radial spaces S¥'%7 and Cfgﬁ‘R are continuous functions of q,~, R as
well.

6.1. The noncritical case (y # 0)
First in the case v > 0, we study the continuity of SP*%7 on ¢,~. Let us introduce
the next transformation.

DEFINITION 6.1
Let 1 <p < oo, and let v > 0. For u: R™ — R, we set
. 1
T,v(x) = WU(I) for x e R™\ {0}
x
and set

Vo) —y0(a) | Ty (a) da-

Then, it follows from direct calculations and triangle inequalities that we have
the following lemma.

LEMMA 6.1
For1<p<g<oo, Tpq<1/n, and 7,7 >0, we have the following:

=||lv V[T, 0] = P [w] forv €

Assertion (1) ||T v||Lq

T (W (R™)).

Rn) ||Lq Rn | Rn)
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Assertion (2)

T a1 . n
SP4Y — mf{ o ([R] | } vel; 1(W¢:g(R )) \{0}}
Lq n
o PP[u]
=inf{ ———— v € CZ(R™"\ {0 0f -
(bl e [ € O RV OD 01}
Assertion (3)
Sp’qWH”Hig(Rn) < ®Po]  forwv e T’y_l (Wvlg(R"))

In particular,

VIl p oy < @P70] - for v e T (WL H(R™)).

Assertion (4) |<I>M[ Ve — PP < |y — Fllvllpwey for v €
ToH WS ER™) N T (W B (R™)).

Y

Now let us state a crucial lemma (cf. [CW1, Lemma 3.2, Section 3]).

LEMMA 6.2
Let 1 <p<gq<oo, let 74 <1/n, and let v > 0. Assume that {¢;}32, C (p,p”)
satisfies

gj —q asj— oo.

If {v;}52, C O R\ {0}) and {@P7[v;]}52, is bounded, then it holds that

aj 1e
i D957 .y~ 195 gy < O
Proof
For p < ¢ <q<q<p*, let us note that
1 1
0<tllog- < tP for0<t<1,
t = elg—p)
(6.1) B ) )
0<tllogt< ——t7 fort>1.
e(d—17q)

(a) When p < ¢ < p* holds, we choose ¢,, and ¢ such that p<¢<g¢; <g<
q < p* for j > 1. Then it follows from Lemma 6.1 that we have

HUJ| i (R™) — v J”L“ R")

- / (I3 ()] — Jo;(2)|7) Io() da
.

= [ (@0 [ @00l a6) o)

<lay—al(f | i (i ) o)
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+ /{lvj|>1}|vj(x)q(log |vj (2)]) Io(x) dx)

1 Plo(x)dx
<t (o ), @@

71 q
o /{ ) i)

1 » 1 i
<l ~al (=5 1y * s =y 15 g

1 1 1 1 i/p
o L Epn, DY ).
<lay ql(—e(q_pmﬂ [”J”e(q_q)(squ’ &) )*0

as j — o0.

(b) When ¢ = p holds, we choose § and ¢ such that p < ¢; <7< g <p* for
j > 1. Then in a similar way as the argument in (a), we have

)

114 _ ||1P
||U]HLgJ'(Rn) ||UJHL8(R")

< vjxqf—vjxpf x)dx
/{W}u (@)[% — |3 (2)[P) Io )

1
= [ (@) [ @O og oy (0] db ) () de
{lv;j|=1} 0

1 1 ) q/p )
< (g _p)e((j—ﬁ) (Wq)p,'y[vj]) —0 asj—o0.

(c) When ¢ = p* < oo holds, we choose ¢ such as p < ¢ <gq; <p* for j > 1.
Then in a similar way as the argument in (a), we have

q :
1031%, gy = 105075

ijqj—vjxp*lmdx
S/{Ivjlﬁl}( (@) — [0 ()7 ) Io ()

1
* 1
= [ (0 =) [ @ OO o d6) ) da
{lvj 121} 0

[0 ()]

N 1

1 _ .
—qj) — PP y;] -0 as j— oo.

< e(qg —p) P 0

Then we have the following proposition, which gives Theorem 2.3.

PROPOSITION 6.1

Let 1 <p<gqg<oo, let 7,4 <1/n, and let v > 0. Assume that {(qj;fyj)}]‘?‘;l C
(p,p*)%x(0,00) satisfies

q; — q, Y; =7 asj—oo.
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Then, it holds that

SP7Qj§’Yj — SpalJ;"/ as ] — 0.

Proof
(a) We begin by showing that

limsup SP45i7i < P4
j—ro0

For € > 0, it follows from Lemma 6.1(2) that there exists v. € C°(R™\{0})\ {0}

such that
(I)p: [UE] < SP 4y E
HUEHLg(Rn)

By the Lebesgue convergence theorem we have

||Ue||ijq,- (R") ||UEHL‘1 (R} OPi ] — PPV [v,] as j— oo.
0

Hence for some j. € N, we have

PP [y OP [, o
pj[ ] - p[v] <E for j > je.
AR T
We therefore have
PPivi [v] qﬂr'y[ ]

SPai < < +S <SP he for j > g
||U€|| q_] R” HUEHLQ Rn) 2

(b) Second, we show that

SPs‘N'Y S hm inf SPngV‘/j .

J—00
By Lemma 6.1(2) there exists {v;}52; C Cg°(R™\ {0}) \ {0} such that we have
. OPi . 1
P[] =1, > [v3] <SPG 4 — for j > 1.
H’UJHL%(Rn) .7

Then from assertions (3) and (4) of Lemma 6.1 we have
B[ 2 2 @0y V7 — g = eyl ny 2 97y 7 — L g
Y

zl—Ljiﬂ for j > 1.
Y

Combining with (a), we have that there exist j; € N and ¢ > 0 such that
L)

o (R™) =SP4 4 1/5

Letting ¢ satisfy 0 < e < ¢, we find that it follows from Lemma 6.2 that there

exists je > j1 such that

lvs I

ol >ec forj > ji.

qJ (R") — ||UJH LI(R™) +¢e for ] Z]s
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Then from assertions (3) and (4) of Lemma 6.1 we have

. P[] 1 .
97 < o P S e (@[] by = gl e
illLg(rm) illLe (mn)
_ 1 P[] 1/p+| o |||Uj||Lg(Rn) ?
1—e/llo; %4, . \\Tos P, LA TR
LO (R”) LO (Rn) 0 ( )

1 Iy =AY Ny
< SP>45375 _) J f > g,
- 1—€/c(< +j * ct/py orr=d

and this proves the assertion. O

6.2. The critical case (v =0)
In this section we study the continuity of C?%® on the parameters g, R. Let us
introduce the next transformation.

DEFINITION 6.2
Let 1 <p< oo, and let R> 0. For u: By — R, we set

Tp.rv(z) = Al,R(a:)l/p’v(:c) for x € By \ {0}

It follows from direct calculations together with triangle inequalities that we have
the following lemma.

and set
z P Ip(z)

Ar p(z)Vo(z) — %v(m)w A1 r()

LEMMA 6.3
For1l<p<g<oo, Tpq<1/n, and R>1 it holds that:

Assertion (1) ”Tp?Rv”%g;R(Bl) = ”quL‘f;R(Bl)’ HV[TP;RUHEI;(&) — UPR[y] for

ve T, x(Wod (BL)).

Assertion (2)
\ZZE

craR i
v

7 [T (B) \ {0}
L{ r(B1)

—int{ o[ czmm o) (03]

H’UHL‘{;R(Bl)
Assertion (3)

. M — 17
CPER|llhy () S TPR] for v e Ty p(WoR (By)).

)
In particular,
1

(v')P HUH?QR(BI) <UPR[] forve Tp_;ll% (Wolv’é’(Bl)).
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Assertion (4)

/B Vo (@)[P Ay g (2)P " Iy () doe < 27U R[] for v e T, | (Wod(By)).

Further we show the following lemma.

LEMMA 6.4

For 1<p<g<oo, 7,5 <1/n, and R > 1, there exist positive numbers c,.r,
cpg:r > 0 such that forp< ¢<q, R<R< R we have the following:

(1) WPREYP < (14 (ERY YD grB[) 2 for v e C22(By \ {0}).

(2) [P )P — U R]P] < ¢pp(R — R)UPE[] for ve O (B \ {0}).

(3) ellha, iy~ I0llEs )| < oen (R — RYWPER]Y? for v € C(By \
{0}).

Proof
First we have
logR
Arr(z) <A 5(7) 10gRA17R($)7
L _
/ / 1 R—R 1
A, ()P — Ay g(z)V/P :/ — do
L 0o PV OR+(1—0)RA, grq_gr(®)/?
R—-R 1

In a similar way,

1 1 <R—R 1
Ay r(x)VP A ()P = pR Ay g(a)tt/r’

1 1 R—
Aip(z) Ajgp@)~ R

1
yARESE for x € By \ {0}.

(1) From Lemma 6.3(3) we have

Wikl = {/Bl ﬁigg; (Alﬁ(x)Vv(x) - %v(x)#)

1 (x)(l_Al,R(x)> z P Ip(x) dgc}l/”

v Ay n(@) P | A ()
< (f [Ar@vee) - ol 2 )

+ ]} ( /B @) AI‘)% @)
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_ log R
< uP Hl/p+ (logR> ”v”Lpl;ﬁ(Bl)

10gR /p ‘R 1
< p; /p

(2) From assertions (3) and (4) of Lemma 6.3 we have

(WP R/ — PR [y]/P|

/Bl ‘ D)V Ay p(2) 7 )\ Vo()

70 &w—ALR?mlm)“ﬁ\W@dx}”p

LR

< ( / I(R‘; T V) 1) dar)l/p

R— P 1/p
+ ]% </131 (RpRR A1,R(;)1+1/” |v(x)|) Io(aﬂ)d:):)

< BB (( [ el sty e ar) "

p'Rlog R
A o ")
—( 7w

(3) Using that t* < max{l,f }for 0<t<tand w,/(7/q) <wn/(p/q), we

have
wp \ Y@’ wp \ M/ (@/2)
— <maxy1l,{— .
((q/Q)’) { <(p/Q)’) }
Then by the Holder inequality and Lemma 6.3(3), it holds that
100%s, ) = 100, ()]
1 1
= v(x)|? —
Bl| ) (Al r(@) A ()
1
/ fo(@) .
A1 Ay p(z) Ay g(x)
q/q Ip(x) >Q/§
Argr(z )
)

(@/a) 1/(g/q)
(/ < )" de )
A gr(z A1 r(z)

)Io(:zz) dx
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q7
L%;r(B1)

R—R( Wn, )1/(6/61)’

~ RlogR\(q/q)

() )"

In a quite similar way to the argument in Lemma 6.2 we can show the following.

o]l

LEMMA 6.5
Let 1 <p<q<oo,let 7,, <1/n, and let R>1. Assume that {q;}32, C (p,p*)
satisfies
q; —q asj— oo.
If {v;}32, € C(B1\ {0}) and {WPR[v;]}°2, is bounded, then it holds that
: )95 _ 19 <
llgsip(‘|vj||szR(Bl) l|v; HL(IZ;R(Bl)) <0.

By using these we have the following proposition, which gives Theorem 2.8.

PROPOSITION 6.2
Let 1 <p<gq<oo,let 74 <1/n, and let R > 1. Assume that {(q;; R;)}52, C
(p,p*)x(1,00) satisfies
4 — 4, R; - R asj— oo.
Then it holds that

oP Uil o CPOER - gs j 0o,

Proof
(a) In a similar way to the argument in Proposition 6.1(a), we have

lim sup CP%53ft < P
Jj—o0

(b) Next we show that

Pl < lim inf PR

Jj—o0o
To this end, let us take g and R such that
<p* ifp<n
p<g<gd =P UPS" I CR<R; forj>1.
<oo ifp>n,

It follows from Lemma 6.3(2) that there exists {v;}52, C C°(B1\{0})\ {0} such
that

. WP [y ) 1
\IJP’E[UJ-] =1, T [v)] < PR 4~ for j>1.
HUJ'”L?R (B1) J

J
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Since R < R holds, it follows from Lemma 6.4(1) that we have
. 1 1
1 :\IIP’E[Uj] < (1 n ( og R

/P\? R .
logﬁ) WPfy;] for j > 1.
Using assertions (2) and (3) of Lemma 6.4 we also have

WP [V < WP [P + ¢ p| Ry — ROV u;]H/P

= WP [0;]'P + ¢, | R — R,

|99 |99 _ . ;
||UJ||L<11,ZRj(Bl) < “UJ||L(11‘fR(B1) +cpgr|Rj — R| for j>1.

Combining this with (a), we have that there exist j; € N and ¢ > 0 such that
iR [v)] /P

P > T <
||UJ||L3;JR]-(31) T CPeil 1/ T Ry = Bl < Cpg:R

for j > j1.
Now let € satisfy 0 < e < c. Then it follows from Lemma 6.5 that there exists
Je > j1 such that we have
”ijiffR(Bl) < ||vj||1£iR(Bl) +e for j> je.
Then we see

- p/a;
CP»%R<(1 - TR R~ R|) - %)

cdi/p

< cp»q;R<(1 R ] - R|)p/qj - p;)
- |98 . )
”Uj‘ L?féj (B1) ||U]HL‘1??RJ (B1)

CcrGR . .
= (g%, |~ coanl R~ RIPT —¢)
l[v;ll" o, Ly (B1)
L1ij(Bl) 7

CcraR
< el 170, ) —©)
il gy P

JGR||g) . ||P .
cr HUJ”L‘II;R(BI) \I/p,R[ij]

P = v
‘|U1||L(11ij(Bl) ||UJ||L‘1’{RJ_(B1)
1 ‘R
= o2 o (U7 [0]V/P + ¢p| R — RI)P
J Lf‘ij(Bl)

WPt [u;]

Cp:R p
- L+ ot Ry~ R)
||U.1234R_(Bl)( WPl [y, /e

< p,q;; R ) ) PR or ] > 1
(C 7 J+]—.) (1+Cp,R<1 (1 R) )'RJ Rl) frj—k’

and thus, the assertion is established. O
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6.3. Some estimates for the best constants
In this section we establish assertions (5), (6), and (7) of Theorem 2.2. First
Theorem 2.2(7) follows from the next proposition.

PROPOSITION 6.3
Assume that 1 <p < q<g< oo, and assume that 7,53 < 1/n. Then we have

SPaY > (,yqu,a (Sp@wyp,q) YTpa for ~ > 0.
For the proof we employ the following lemma.

LEMMA 6.6
Let 1<p<qg<g<oo, lety>0, and let Q be a domain of R™. Then we have

lull Zitgy < lull g lull g, for we LE(Q) N LE(Q).

Proof
Noting that q74.5/(p7p5) + q7p.q/(@7p5) = 1, we have

Tq,q/Tp,q Tp,a/Tp.q
Il gy = [ (@llel) "™ (e ") ™ Do) o
Then the assertion easily follows from this by the aid of the Holder inequality. [

Proof of Proposition 6.3
For & > 0, there exists a ue € C°(R™\ {0}) \ {0} such that we have

HU/EH%%(Rn) =1, SPET < ||VU’€H L(R™) < SPEY fg,
Then, by Lemma 6.6 and Theorem 2.1 we have
1= e 5y < e 25 e 2225
Ta,q 1 Tp,aq
p
(—”V“e”m ) (g Vel )
1
D,q5Y Tp,q
= AP (SPTY) e (S +e)™,
and this proves the assertion. O

To prove assertions (5) and (6) of Theorem 2.2, we establish the next proposi-
tion. Given Theorem 2.2(3), assertions (5) and (6) of Theorem 2.2 follow from
assertions (1) and (2) and from assertions (2) and (3) of the next proposition,
respectively.

PROPOSITION 6.4
Letn>2, let 1 <p<mn, and let q=p*. Then we have the following.
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Assertion (1)
N Yoo \P e
SPP e pr < (2 — PFY_P) SPPTY for &y >y e
Assertion (2)
SPPTY < PPt for Ay > Yppr-
Assertion (3) When p=2,
52277 < 82270 for 0 <y < 7.

Proof

(1) For € >0, there exists a u. € C°(R™\ {0}) \ {0} such that we have

\|u5||Lp ®) = =1, SPPY < ”Vufuifﬂ(mq <SPPI g,

Since n — vy p=p* =0, it holds that

||T'yp = ’YuEHLp R || Vp,p* —wuellig;p*(m) HUEHLZD R

Noting that n — (1 4+, p-)p =0 and n — p(1 +7) = (Ypp* — 7)p, by the Sobolev
inequality and the Hardy—Sobolev inequality we have

(P2 I <Dy el ey = IV e sty

- (/.

<Vuelze, @ny+ (0 =1 )HUSHL”(R")

T |P 1/p
Vue (@) + (0 = @) [ Tocai (2) )

<Vuelze, @ny+ (0 = 1ppr ) ||Vue||Lff’+ (R™)

Tp.p* * 1/
< (9 2P ) (grp" sy P
< (2 - )(s te)

(2) Let ue CX(R™\ {0})\ {0}, and let e; = (1,0,...,0) € R™. Since p*y >
n and p(1++) >n hold, we have

-l

P r—n

_ Pir d
iy = o W@ T (e ) do

= [ e de =l

/|Vu( WP L1 (2 + 1) da

p
eP(1+7)—n

w2

Ly, (R™)

[Vu(z)|P dz
R‘VL

— p
= IVl

as € — 0.
- e—0
P
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Therefore
SPPY < PPty {U( _a\]_ €p(1+v)—"HV[U(' - 2)] Hpu R)
c (7 f|u(- — <) Hig* (R"))p/p

— EPP 0[] as e — 0,

and this proves the assertion.
(3.a) For ue C(R™\ {0})\ {0}, we set

Clul(y) = E** 7 [ul,,_,] for v>0.
If we note that

2 | u(e)(e Vu(@) @) de= [ " 9 2 rw) dr dS(w) =
f L. s

then we obtain

”V[UITHV]H%%’H(Rn)

Clul(v) =
||u—rn77||ig¥* (B

1
/ (’yzu(x)z — 2yu(z)(z-Vu(z)) + \m|2|Vu(x)|2)Io(x) dz
||uHL2* Rﬂ)
1
(’Y ||u||L2(Rn) + ||Vu||L2 Rn)) for v >0,
|| HLZ* R”)

and so, we see that ([u] is nondecreasing with respect to .
(3.b) For 0 <~ <7, it follows from (a) that we have

s22 0 < g [ | = || o) < ¢ [ 7= ) = B2

n—vy In77 n—y

for u e C=(R™\ {0})\ {0}.

This clearly proves the assertion. O

7. Existence of minimizers for the best constants

In this section we prove the existence of minimizers for SP*%7 by the effective use
of the so-called concentration compactness principle when p < g < p* and v > 0.
We begin by preparing some notations.

DEFINITION 7.1
(1) Let 7/)1;/)1 € Cgo(Rn)rad and pl € Coo(Rn)rad SatiSfy

nglglv plZOa p1>0 Oanv
Y1 =1 on By, Y1=p1=0 onR"\ By,

! 9 n
W="1<0 R0}, Vil <3,

o1l L1y = 1121l L1 Ry = 1
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(2) For e >0

X

vel@) =vella) =1 (2),  dela) =delle) =i (2) =0 ﬂ@)

pe@) =pellel = 2o (L), A@) =pllal =571 (L) forweR™
7.1. Preliminaries

In this section we prepare some well-known properties in the theory of concen-
tration compactness due to P. L. Lions, which are useful in the proof of the
existence of a minimizer of the best constant SP'%7. We omit the proof of the
next fundamental lemma. See [Lil, Lemma 1.1, Section 1.3] for details.

LEMMA 7.1

Assume that {Q; };";1 s a sequence of uniformly bounded and nondecreasing func-
tions on [1,00). Then, there exist a subsequence {Q;, }%>, and a nondecreasing
function @ on [1,00) such that we have

Qj. (1) = Q(t) ask— oo fort>1.
It follows from the Holder inequality that we have the following lemma.
LEMMA 7.2
Forl<p<g<oo,v>0, and R >0, we have
ull L2 B\ Br) < (Wi log2) ™ |ull g (g, \Br) Jor u€ L§(Bar \ B)-

The proof is omitted. It follows from the Rellich lemma that we have the follow-
ing.

LEMMA 7.3

For1l<p<gqg<oo, mq<1l/n, and y>0, assume that Q is a bounded domain of
R"™, and assume that OQ is smooth. Then, the embedding Wig(Q) C
Liﬂ_w \ (Q) is compact.

Proof
For u e C(2\ {0}), we have
n T
V) opnsp ) (@) = L1y (@) PVu(z) + (1 +v - ;)Im(x)l/pu(x)m

for x € Q.

Hence we have

1 n
IV 1uh i llzri@y < Iy Vel + 17 = 1Pl oy

= [|Vul|

14y

n )
@t ‘1 +7 - E‘HUHL%(Q) for u € Wyl,’é)(Q)-
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Therefore, if {u;}32, is bounded in Wl’p(Q), then {u;l14yjn/p}32; should
be bounded in Wy?() (a classical Sobolev space without a weight), and by
the Rellich lemma {u; /14,y }52; has a subsequence {uj, I14~1n/p }52 that
converges in L9(Q). Noting that n — (1 + v+ n/p’) = (n — (1 + v)p)/p and
(mn—QAQ+7y)p)g/p=n—q(l+~v—nry,), we get that {u;, }7°, converges in

LY e, (92) as well. O

Let us recall a sharp Fatou’s lemma, which is essentially due to H. Brézis and E.
Lieb [BL] (see also [LL, Section 1.9]).

LEMMA 7.4

For1 < g <ooandvy >0, assume that {u;}32; is bounded in L1(R"), and assume
that

uj > u  a.e. on R" as j — oo.
Then, we have u € LL(R") and
HU’JHL‘I R") HuJ - u”%g(Rn) — Hu”%g(Rn) as j — oo.

Proof
For 0 < e <1, there exists a positive number ¢, > 0 such that we have

(7.1) [[s+t7— |s|9 — [t|9] <els|? + eqie|t|? for s,t €R.

Since |uj|lyy — |u|llyy a.e. on R™ as j — oo by the hypothesis, it follows from
Fatou’s lemma that

”u”Lq (Rn) = < hmmf [l ”Lq (Rn) = < Sup ([ ”L’I(Rn) < o0

hence we see that u € LZ(R"). Then we have |u|qu7 € LY(R") and
(|9 = Juy — | = u]?] — eu, —u|q)+Iq7 < égelu|?lyy a.e.on R™ for j>1.

Using Lebesgue’s convergence theorem, we have
/R [(Huﬂq —u; —ul? - |u|q’ —elu; — u|q)+IqV] (x)dr—0 asj— oo.
After all this we have

et 13 gy =t = ll gy = L |
< [ Ml =ty =l = | 1) ) o
= [ Tttty =l = b = ey =) 1} 0
+5||UJ UHLG(Rn)

S/Rn[(Huj‘q_|uj_”|q |ul? ‘_E|uj_“| ) qv](m)dx
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q
+s(2su willra n)
jZI;” J”L,Y(R)

q .
E(2sup||uj||Lg(Rn)> as j — oo.
j=>1
Thus the assertion is now established. O

LEMMA 7.5
Forl<p<q<oo, Tpq<1l/n, and~y >0, there exists a positive number ¢y g, >0
such that we have

p p
(HVUHLP L (Blyi/2(v)) + HUHLg(Bxy\m(y)))

forye R"\ {0}, ue W, ’g(R")

p —
Hu”Lg(Blyw(y)) < Cpaiy

Proof
For y e R™\ {0} and u € C*(R™\ {0}) we set
(7.2) Kyu(x) =)y 2(x —y)u(z) for z € R™.

By differentiation we have

VK yul(z) =y /2(x — y)Vu(z) —

T —
for zr € R™.

92 .
Emmmm—wﬂﬂ

Since supp(K,u) C Byy|/2(y) and |z| < 3|y[/2 for x € B),|/2(y), it holds that

|z =yl

VI, (@) < (V@) + Tolule) ) (@) for 2 €R\ o).

Noting that

W@y, @) < [Kyu@)] for s € R,

we have

p
||UHL?Y(BW|/4(?J))

<|IKyullfg

:HUXBl aly ”Lg(Rn) (R™)

Jul P

1 o0 n
< Goam UVl 8, 0w +9Mul Ly By, 00)" for ue CE(R™A\{0}),

V(K] |17ul + 9%

—Spqv ”Lq (R")—Spqv‘

LY (Bly/2(v)

and hence the assertion follows. O

LEMMA 7.6
Let us take {z*}2 C R"\ {0} and L € N such that

oo
k1 a:GR"\{O}
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Then, for 1 <q < oo and v >0 we have
Il ey < ; lelzs s, 40

oo
<3Nl oy < Ellully ey Sor we LYR).

k=1

(R™)

Proof
By the assumption on {z*}$°, and L, it holds that

n
1<Zl B. "|/4(z) Z XBy k20" )( 7)<l forw € RT\{0},

and this proves the assertion. O
Now we verify the following.

LEMMA 7.7
Let 1<p<g<oo, let p<G<oo, let 7,4 <1/n, let 7,5 <1/n, and let v > 0.
Then, there exist positive numbers 6, 4.5 € (0,1) and ¢, 4 5,4 > 0 such that we have

1=0p,4,9
P, ju
l[ull 2 rn) <Cpqq'v||vu||y] (Rn)( R‘i{){o}HUHL%(BM/A;(y)))

forue Wi”g(R").

Proof
(a) Assume that ¢ < ¢. Noting that 1/p — (¢/p—1)/¢4—1/q=(1/p—1/q)(1 —
q/q) <0 we choose g =, , ; such that

11 yq 111
max{—*,——(——l):} - == <-,
p'p \p )T . q

and then we put

q-1/q _ 1/i-1/q

1/@ - 1/6 1/@ - 1/§p,q,(j

Then, noting that ¢ < ¢ < g, ¢ > p, and 7,53 < 1/n, we have that it follows from
Lemmas 6.6, 7.5, and 7.6 that

0= ep,q,d =

% g
(H ”1/‘5—1/5 )Q/(l/dfl/ﬁ)
L“/(B|zk‘/4(zk))
k=1
11, 1[1/41/7 1/d-1/q a/(1/3-1/3)
<
— (HU‘HLQ(B (zk))H ||L%(B|zk‘/4(zk)))
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8

q(1-6)
<SG, o1

=1 B
<S( swp eyl
< sup Ul 7 a ) U ")
=1 \WeR™\{0} L3(Brui/a(w)) L3R LY(B.ky/a(z%))
q(1- 0
<(sw Nl o) Tl

yER™\{0}

Zcpﬂz, ‘VUH L(Bly12() +Hu||1£g(3|y‘/2(y)))

= Lepan (yefigr\){o} ”uHLz(B\ym(y)))q( Hu”i%i(lz:{n)
Tl gy + Nl )
SLEP@W( g ”uHLz(B\ \/4(1/)))(1(1_9)
yeR\{0} ul/all
1 q0—p
'(W”V“”Lﬁmﬂ) (Ivully, ot vl )

_ Ly gy . q(1-0)
= G (1 35 )19l Rn>(y€§‘jl\°{o}”“”Lz(mym»)

for ue W, ’g(R”)

(b) Assume that ¢ <¢. Let us take ¢ =7, , ; such that it satisfies ¢ <q=
Gp.qq <00 and 7,53 < 1/n. Then it follows from (a) that there exist positive

numbers 6,75 € (0,1) and €, 7.5,y > 0 such that we have
= 0p.7.q 1=0p.a.a
||U||LZ(Rn) < Cpﬁ#inVUHL{’M(Rn) (yes{gl\){o} ||u||LZ(B‘y|/4(y)))
for ue W, ’g(Rn)
Then from Lemma 6.6 we have
1/p—1 1/g—1 1/p—1
el mety < Tl el
1 1/g—1 1/p—1 Lpmn
< S Vel (ol ey for wu € WIER).
Therefore we have the desired estimate with
0. _Ya-1/a+0,q41/p—1/q)
p-1/7 -

7.2. Some properties of minimizing sequences
In this section we study minimizing sequences for the best constants SP'%7 by
using the concentration compactness principle on annular domains (cf. [Li2]).
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DEFINITION 7.2
Let 1 <p<q<oo, and let v> 0. For u € le,’g(R") we set

PO u] = Jul Ly + [Vl I 1),

Q@ [ul(t) = sup | w25y for > L

First of all we show that there exists a minimizing sequence for SP*%” that does
not vanish.

PROPOSITION 7.1
Assume that 1 < p < q < oo, assume that 7, 4 < 1/n, and assume that ~ > 0.

Then, there exist {u;}52; C W;,’g(R”) \ {0}, @ nondecreasing function Q : (1,
o0) = R, and positive numbers A, A satisfying
0<A<A<14GPa
such that:
(1) ot oy =1 for 52 LIV5 1y gy = 5747 as j = o0,

@) 1075 0l 52, sy = 5y oy = A Jor 5> 1.
(3) QP [u,l(t) = Q(t) as j — oo fort>1;Q(t) = A as t — oco.

Proof
(1)-(2) From Definition 2.3, there exists a sequence {v;}32; C W,i,’g(R”) \ {0}
such that

(7.3) HUJ'”ng(Rn) =1 forj>1, ||ij||1£,1g — ST as j — o0.

L RY)

Then, from Lemma 7.7 with ¢ = ¢, we have

7.4 liminf su i > 0;
(7.4) 1J_>})O yeRnI\){O}HUJ”LZ(BW\M(?J))

therefore there exist A >0 and {y7}52, C R™\ {0} such that

(7.5) >A forj>1.

14
loillzs s, )

Now putting

(7.6) uj(x) = |y’ vj(ly’lx) for z € R",j > 1,

we see that

@7 Wil iy i) = 10l 2a 1 s o) = W03l 2as, i) > 2
(73) 51 gy = 051 ey =1 for > 1,

(7.9) ”vuj”ifﬂ(rw) = ||ij||1£,1g+7(R") — 8P4 as § — oo.

(3) We see that each QP%7[u;] is nondecreasing on (1,00) and that

{QP %7 [u;]}32, is uniformly bounded on (1,00). Therefore, it follows from
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Lemma 7.1 that there exist, by taking a subsequence if necessary, a nondecreasing
function @ : (1,00) — R and a positive number A € R such that

(7.10)  QP%7[u,;](t) = Q(t) as j— oo for t>1; Q)= A ast—oo.

Noting that
(7.11)

. 5 ) .
Qi) (2) 2 1P 1, B 2 N5, iy =2 o G2,
we have
. 5 . ) 5 .
(112) A< Q] (3 ) < QP us](0) < 07 sl ey For #2552 1.

Letting j — oo, we have

5 _ 5
(7.13) AgQ@)gQ@§1+SW” fort> .
Then by letting ¢ — 0o, we reach the desired estimate A <\ <1+ SP97. ]

To show that no dichotomy occurs in the minimizing sequence that has been
chosen in Proposition 7.1, we prepare the following.

PROPOSITION 7.2

Assume that 1 <p < ¢ < oo, assume that 7, 4 < 1/n, and assume that v > 0.
Let {u;}32, C Wvl”g(R") \ {0} satisfy properties (1), (2), and (3) in Proposi-
tion 7.1. Then for an arbitrary € >0, there exist {ve ;}72, C Wi’g(R"), Je €N,
and €p q.c > 0 such that we have

|pr’qw[ve,j]||L1(Rn) - >‘|

< Epgies 10797 [uj = ve ]l iy — (14 SPEY = A)|
(7.14)

IN

ép#];é"
0< 1= [[vellfa gy = 1ty = Vel fa gy <26 for j = j.

Further it holds that €y 4. — 0 as € — 0.

Proof
Let € > 0.
(a) From Proposition 7.1(3), there exists ¢ > 1 such that we have

(7.15) /\—§<Q(t) <\ fort>t..

Also from Definition 7.2 there exists {rc ;}72; U{R: ;}72; C (0,00) such that we
have
(7.16)

QP ug] (o) < 0" us) 11 5 )Ty

4, REJ' = tg’l“&j for j > 1.

Re, j \BT'E,j
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Further from assertions (1) and (2) of Proposition 7.1, there exists j. € N such
that we have

(7.17) 0 < 11" | ey — (14 5797) <,
Q7)) = QU < 2, QP u)(4) — Qat)] < for j > ji.
(b) Since

(7T18) A== <QUt) < Q" u)(t) + 5 <ol 1, \mr) + 5

175 3] . By < QP ) (8) < Qt) + 5 <A+ 5 for j 2 i,

we see that
(7.19) 07 w32, 5y — Al <& for j >
Hence we see that

16797 sl s gy + 1025 el 1,y = (148257 = )]

= H|Pp’qw[uj”|L1(Rn) _ ||pp’qw[“j]HL1(BRE,j \Br) T (1+ SPE7) + /\’

T2 Pl - (455 + 1025 g,y ~ A
<2 for j>je.
Since
[P [ug]|| 1 (B2r, ;\Br,/2) < QP uy](4t)
(7.21)
<Q4t.)+e<A+e for j>je,
we have
1075 0, B+ 1P sl s, B
(7.22) =Mo" w2 pon, By — 1P il 25, B

<A+e)—(A—¢e)=2¢ forj>j..

(c) Let us set v j(z) = ¥2r, ; (x)(1 — ¢, (x))uj(z) for z € R™,j > 1. Then
from Lemma 7.2 and elementary inequalities,

(7.23) (A+6)P<2P7Y1+1tP),  14+/9< P14 4)P/T for £ >0,
we have

o7 T e i1l 1 ey — ”ppﬂry[uj]HLl(BR&j\Tw)’

B /B2R ,\Br. {W)QREJ (@)u;(2)|*1q ()

——ag., (2)u;(z)

i P
" ‘ ZRE g m + Y2, @)V (x)‘ Ip(1+7)(x)} dx
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of oL@l

Bro j\Br, ;72

+ %j/&re,j (@)uj (@) — + (1=, (x))v“J’(x)‘pIp(lﬂ)(x)} o

|z
_ 3|x| P

< . q p—1 ,

_/BzREj\BREj (|u3(z)| Iy (z)+2 ((2R8’j|uj(:z:)|) I (2)

TGP (@) ) ) do

< . V/Q(uju)m(x)wp—l((i'x'| uy (@)])" I (2)

€]

(7.24) IV (@) Ly (2 )>)dx
< 9P—1|| P aV [y T
<N o, B + 5 10 s, v
p—1 a7y ¢ T
2Pl i, a6, e
< 2P 1-2a+7(((wn10g2) gl e (Bon, B )
+ ((wn log2)™a H“J'HL%(BTW\W))I))
< 292 + = (6w Log2) 1) 24/ | Bre;
< 5 (6w WL (Bar, \Br. )

|19
+ ||u'7 ||L%(Br51j \Br,_:,j/2

r/q
)

1

< 2Pe + 274 (6(wn log2)™)" (2e)P/1 = 2P¢ + (6(wy, log 2) ™) eP/
for j > j..

In a similar way we have

|||Pp’qw[uj - Ue,j]HLl(Rn) - (pr’qw[uj]||L1(Rn\Bquj) + ||Pp’qw[uj]||L1(Br67j))|

/ {(|Uj (@)|" = (1 = 2r. , (2))u;(2)]7) I ()
Bagr \BR j

('vu] ZRE ~Yare; (@) (96)%| + (1 =g, (2))Vu, (@"’)
Ty (@ )}dw
+/ {(|u](x)|q - |¢Tw (z)u;(2)|7) I (2)

BTE,J’ \BTE,J /2
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+ (V@ - | @) + v, @0 )
(7.25) =7

X Iy(1 ) (2) } da

: /BZR \Br j{|uj(x)|qlq’y($) - |Vuj( z)|P1, p(147) (z)

4 op—1 ((211 \uj(:c)|)p1qw(x) + |Vuj(x)|pfp(1+y)(x)> } da

- {10301 0) + (9050 P L2
BTE ]\Bv-E /2

+2r7t <<% |Uj($)‘)p-rqw(x) + |Vuj(x)pjp(1+7)(x)> } o

Tej
<2(2°7! 4+ 1)e + (6(wp log2)™ ) e/ for j > j..
(d) From (7.19), (7.20), (7.24), and (7.25) in (b) and (c), we have
167 % [we sl 1 gy — A < 2% + (6(wn log 2) 1) P9 4 ¢,
(7.26) 1797 [uj — veslll 1 mny — (14 SPE = N)]
< 2(2p_1 +1)e + (6(wn 10g2)TP’q)p€p/q +2¢ for j>j..
Noting that
(7.27) 074+(1-6)¥<1 for0<H<1,
we have
0<1— (¢ar., (@)1= r, (@) = (L= 2r. , (@)1 - ¥, ,(2))*

n o
< Xp,n, \Ba (z) + X5, \Brira (@) forzeR"j2>Je.

Then from this inequality and (b) we have

0<1—|lvell7q

@) ~ 15 = el 7
Hu]”Lq R") ”'U&j”ng(Rn) — lu; — v€7j||ng(R7z)
< Wuslzs o, B T I03lLs s, B
< pr’qw[uj]||L1(BQREJ.\WEJ) + pr’qw[“j]HLl(B A\Bo ) S 2e for j = je.

O

PROPOSITION 7.3

Assume that 1 <p < q < oo, assume that 7, 4 < 1/n, and assume that ~ > 0.
Assume that {u;}32, C W,;g(R”) \ {0} satisfies property (1) of Proposition 7.1.
Then we have A =1+ SP%7,
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Proof

On the contrary we assume that A # 1+ SP'%7. Then from Proposition 7.1 we

should have 0 < A < 1+ SP%7, Let us retain the notations from Proposition 7.2.
(a) Since &p 4. — 0 as € — 0, there exists some ¢ > 0 such that

1 .
(7.28) 0<épge < 5 min{, 1+ SP%Y — A} for 0 <e <ep.
Then from Proposition 7.2 and Theorem 2.1 we have

5)\ SA=Epgie <P e gl L1 meoy

q/p »
= (SP ‘el HV J” Rn)) + ||Vvs,j| LY, (R")
1 N .
5(1 +SPEYT —X) <14 SPFT — X — Ep,gie < || pPr e [ — 0. J]”L ‘R
q/p
< (SP a7y Hv[ Uf,j]||1£117+’y(Rn)> + ||V['LL] - Us’j]”ier,y(R")

for j > j.,0 < e < eop.
Hence, for some > 0, it holds that
||V1)51j||ip (R™) Z 5’
(7.29) o o
|V [u; 71’571]”2@%1@) > B forj>j.,0<e<eg.

(b) Choose a sequence {e;}72, C (0,¢¢) satisfying e, — 0 as k — oco. Then
from Proposition 7.2 we have

(7.30) 0<1-— H”EkJHng(Rn) — lu; — e, jHLq(Rn) <2 forj>jo,,k>1,

and we see that {||ve, ;

ng(Rn)}z"zl and {|ju; — kaJ”Lfly(R")}EOZI are bounded.
Hence, by choosing a subsequence with respect to j, there exists {7}p>, U
{o,,}72, € [0,1] such that we have

(7.31) ||v€k7j||ngl(Rn) — Tk, llu; — Uak,jH%g(Rn) — o0, asj—oo for k> 1.

Since 0 <1 -7y — g, <2, for k> 1, by choosing a subsequence with respect to
k, there exists o € [0, 1] such that we have

(7.32) o — 0, g,—1—0 ask—oo.
(¢) From (a), Proposition 7.2, and Theorem 2.1, we have
max{S“qW(Hvsk,jHiq (R") + lluj — ve, J”Lq R") ), B+ ST
B+ 575 vy s e}

< ||VU€kJ

‘u] - ’ng»j ||Z[),%(Rn)7

(Rn + ||v[ ka;j“V]i’l'_*_’y(Rn)
= ||pp7qw[vfk7j]”Ll(Rn) 177 g = vey sl L1

- (”vsk,j”%g(Rn) + ”uj - vék,j”%g(Rn))
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<A +épgey) +(1+SPIY — XN+ 8,00,)
e il gy = 5 = verillfe my
=SP4 1 = ||vey il Ta oy = 1% = Vel Ta oy + 2paien
for j > je,., k> 1.
Therefore letting j — oo and k — oo and using (b), we have

maX{Sp,qW(Up/q +(1— G)p/q)ﬂ + SPO(1 — U)p/q7 SP:a:Y 5P/ 4 + B}
(7.33)
< SO,

and we have o?/% 4 (1 — 0)P/9 < 1. If we note that
(7.34) OP/1 4 (1—-0)P/7>1 for0<f<1,

we have o € {0,1}. Then it holds that S <0, and this is a contradiction. O
Then we have the following.

PROPOSITION 7.4

Assume that 1 <p < g < oo, assume that 7, 4 < 1/n, and assume that ~ > 0.
Assume that {u;}52, C W,;g(R") \ {0} satifies the properties of Proposition 7.1.
Then, {pP%7 [u;]}52, is tight. Namely, for an arbitrary e >0, there exists a con-
stant R. >0 such that we have

(7.35) 1075 gl ey <& Sor = 1.

In particular, both {|u;j|"1,}52, and {|Vui|PLy14+)}52, are tight as well.

Proof
Let 0 <e <.

(a) From Proposition 7.3 we see that A =14 SP*%7; hence there exists t. > 1
such that we have

(7.36) 1+ SPTY — i <QU)<1+SP97 fort>t..

From assertions (1) and (3) of Proposition 7.1 there exists j. € N such that we
have

: €
1o gl gy <14 SPET + e

(7.37) .
QU f)(k) - QUto) < & for > ..

Further, by Definition 7.2 there exists {re ;}32; U{R. ;}52; C (0,00) such that
we have

. g
(7:38) 1" il i, B

) > QU ul(t) = 2, Rey =tere for j> 1.

Te,j



On the Caffarelli-Kohn-Nirenberg-type inequalities

Therefore it holds that

. . €
pr,qu [’LLJ] ||L1(BR€ ]\TEJ) > va%’y [uj](tg) - Z
(7.39) ’ ’ . 5
> Q(te) — 3 > 14 ST — 1c for j > j..
Then
5 S
(7.40) rej < 1 for j > j..

In fact, if not, we have
(7.41) (Bs/a\ B3a) N (Br, ;, \ Br. ;) =@ for some jo > je;
hence we have

. ;
L SP9Y 4 2> 0P g | 1 ey

(7.42) > ||Pp7qw[“jo]||L1(35/4\m) + pr’qw[ujo]ﬂLl(BREJO \B,. .

£,J0

>A+1+Sp’qw—ga.

Then we have A\ < e, and this is a contradiction.
(b) Let us take a number R. > 0 such that

) . .
(7.43) R. > Ztg, ||pp’q’7[uj]||L1(Rn\B—Rs) <e for1<j<j.—1.

C Bpg, for j > j., we have

Since Bpg, ; \

Te,j
1757 ) 2 g

(7.44) < 74 ]l 2 gy — Hl)p’qw[uj]”;:l(BRg’j \B_)

‘ i 3
<14 §PaY 4 Z _ (1+SP=‘117 — Zs) =e for j>je,

and this proves the assertion.

7.3. Convergence of minimizing sequence

717

In this section we investigate the minimizing sequence {u; };";1 for SP47 which is
introduced in Proposition 7.1, and we finally prove the existence of a minimizer.
To this end we employ the following lemma, which is an easy corollary to [Li2,
Lemma 2.1]. Here, by B(R™) we denote a set of all finite Borel measures on
R", and by §; we denote a Dirac measure with a unit mass at the origin. In a
canonical way we see that L'(R") C B(R"). For v € B(R"), by v, and v we
denote an absolutely continuous part and a singular part of v with respect to the
Lebesgue measure, respectively. In this notation we see that v,. € L'(R™) and

V = Vyc + Vs.

LEMMA 7.8 ([Li2, LEMMA 1.2])

Let 1 <p<qg<oo, let p,v e B(R™), let u,v >0, let suppvs C {0}, and let S > 0.
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Assume that
p/q oo o
a45) ([ [o@lrdv@)"" < [ 6@ dut) for 6 € CERM (0))
n R’VL
Then there exists a constant ag € [0,00) such that we have

(7.46) v = agdp, w> (Sag/q)éo.

For the reader’s convenience, let us briefly recall the notion of weak convergence of
a sequence of measures. Let us denote by BC(R™) a set of all bounded, continuous
functions on R™, then B(R™) is regarded as a subspace of BC(R™)’, which is the
dual of BO(R"). A sequence {v;}32; C B(R") is said to converge weakly to v in
BC(R™)" if {v;}32, converges in a weak-* topology to v in BC(R")’, that is to
say,

(7.47) (x)dvj(xz) — ¢(z)dv(z) as j— oo for any ¢ € BC(R™).

R" R
When {v;}32, C B(R") converges weakly to v in BC(R")’, we simply write

(7.48) v; =~ v weakly as j — oo.

We employ the following lemma. (The proof is omitted.)

LEMMA 7.9
Assume that {v;}52, is bounded in B(R™). If {v;}32, is tight, then {v;}32,
contains a weakly convergent subsequence.

If {u;}32, satisfies the assertions of Proposition 7.1, then from Proposition 7.4
we see that both {[u;|904,}32, and {|Vu;[PI,11+)}52, are tight. Hence from
Lemma 7.9 they both contain weakly convergent subsequences. Further, from
Rellich’s lemma, Lemma 7.3, and Proposition 7.1 we have the following.

PROPOSITION 7.5
Assume that 1 < p < q < oo, assume that 7, o < 1/n, and assume thaty > 0. Then
there exist {u;}52, C Wig(R”) \ {0}, ue Wig(R") \{0}, and p,v € B(R™) such
that we have the following:
(1) ||Uj||ng(Rn,) =1 for j>1, ”vuJ’HifM(Rn) — SP%7Y gs j — oo.
(2) u; — wweakly in WyB(R"),u; — winLi (R* \ {0}) n
(L2 41 ns, Joc(R™), uj = u a.e. on R™ as j — oo.
(3) |uj| gy = v, |Vuj[PIp(14y) — p weakly as j — oo.
(4) Vac = |u|914y a.e. on R™,supprs C {0}.

Proof
We prove assertion (4) only. For & > 0 it follows from assertions (2) and (3) that

(749) | ¢(@)|Vu;(@)[PLpa1q) (@) de — | d(x) du(x),
Rn Rn
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@50 [ ol @ @) e [ ol T, ) d

as j — oo for ¢ € C°(R™ \ Be);
hence it holds that

qb(x)(|u(x)|qlqy(x) - Vac(x)) dx = Rﬂ¢($> dVS({E)

for ¢ € C°(R"™\ B.).

(7.51) R"

Therefore, |u|1,, — v, coincides with vy as measures on R" \ B.. Since they
are absolutely continuous and singular with respect to the Lebesgue measure,
respectively, they should be vanishing as measures on R" \ B.. Hence we have

w9y —Vae =0 a.e. on R"\ B,,suppvs C B-.
ay

Since € > 0 is arbitrary, we conclude that

|u|1gy —Vac =0 a.e. on R", suppvs C {0}. O
DEFINITION 7.3
For ¢ € BC(R") satisfying ¢ > 0 on R", we set
1/p
152 Nulwzrgmn = ([ V@ T @)ota) dz)

By W,i:g [¢](R™) we denote the completion of C°(R™ \ {0}) with respect to the

normn |- [lyyz. )

In this definition we have
(7.53) ||U||W71vp[¢](Rn) < ||¢HL°°(R”)HVUHL’I’JW(R")U € Wi}’g(R”);
hence we have a continuous imbedding W,;’g (R™) C Wi’g [¢](R™). From this fact

we have the next lemma.

LEMMA 7.10
For 1 <p<oo and v >0, assume that {u;}32, C Wﬂ}”g(R") for u e Wijg(R")
and p € B(R™) satisfy

u; =~ u  weakly in V[/'A}”E"‘)’(R")7
(7.54)
\Vuj|pfp(1+7) —u  weakly as 5 — 0.
Then, we have
(7.55) Vul? Iy 1) < e

Proof
For ¢ € C.(R™) with ¢ >0 on R", it suffices to show that

(7.56) O(@)|[Vu(@)[P Iy (2) de < | () dp().
R Rn
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(a) First we show this inequality to be valid assuming that ¢ € BC(R") sat-
ifies ¢ > 0 on R™. Since the imbedding Wijg (R™) C W,i:g [¢](R™) is continuous,
we see that

u; —u weakly in Wvl”g[gzﬁ](R") as j — oo.

Therefore we have

p — p < limi P
An¢(x)|vu(x)| Ip(l-"’)’)(‘r) dx ||UHWF§TJ[¢](R~”) —lbnilolgf”ujnw_iwp[(b](Rn)

(757) = Jim [ $(@)| Vg () Py () d

j—roo Rn

¢(x) dp(z).
R"

(b) Second we consider the case in which ¢ € C.(R") and ¢ >0 on R". For
e >0 it holds that p,. * ¢ € BC(R"™) and p. * ¢ >0 on R™. Then, from (a) we
have

| P b@Vu@ P Lyriy @) de < [ pad(e)du(e) for 20,
R~ R™

Here noting that ¢ is uniformly continuous on R”, for any n > 0 we have that
there exists a number 7, > 0 such that

(7.58) |p(x —y) —¢(x)|<n forzecR",ycB,, .
Then
[ P ol Vu) o @) da = [ 9@ V@) Py )

- ‘/Rn/nﬁe(y)((b(x—y)—d)(x)ﬂVu( x)|P1 (1+7)( )dydgc‘
S/n(/ npf(y)dy—"/n\B2||¢||L°°(Rn)ﬁ5(y)dy)|Vu( WP Ly 14my () da

n

< (+ 206l = 171 2 o) IVl gy 2 2IVul2

as € — 0;
hence
[ et V@) Ty ) d

(7.59)

H/ () [Vu() [P Ip14q)(x)dr ase— 0.
In a similar way we have
(7.60) [ poro@duta) > [ o@)duta) as= o

n RTI,

and the assertion follows. O

Then we have the following proposition.
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PROPOSITION 7.6

Assume that 1 <p < q < oo, assume that 7,4 < 1/n, and assume that v > 0.
Then, in Proposition 7.5, there exists a constant ag € [0,00) such that we have

(7.61) v=|u|y +aoo, > |VulPLyys + (SP57al/ 7).

Proof
(a) Take an arbitrary ¢ € C°(R™) satistying supp ¢ C Bg. Then it follows from
Lemma 7.4 that we have

(7.62) w1601 — )%y gy = [ul%y ey 25 5 0,

and from Proposition 7.5(3) we have

oy = [ 10NNy ()T (0) o

(7.63)
— Rn\(/)(m)ﬁdu(m) as j — oo.
Hence we have
(64 0 =gy = [ 160 dola) = [l gy 25T
Since 1/p =7, 4+ 1/q, from Hélder’s inequality and Proposition 7.5(2) we have
[l (w; _“)V(ZSHL?;M(Rn) = H|V¢|(Ua‘ —u)

< ‘|V¢||L1/Tp,q(Rn) ” (uj - U)Il+'y+n/p’ ”L“(BR)
(7.65)

= Hvﬁz’”Ll/fp,q(Rn)”Uj UHL?H_1 nrp.q (BR)
—0 asj—oo0.

Here we used the relations p(n — (1+~y+n/p’)) =n—p(l+~) and g(n — (1 +
v+n/p))=n—q(l++v—n7p4). By Proposition 7.5(3) we have

6Vl ey = [ [B@P V0@ Ty (@) da
(7.66)

= [ @) P du(e) as j— o
R'IL

Then, letting j — oo in the inequality
(SPET) P (ug — )| g ()
< IVI8(u; — Wlllze, . o
(7.67) <[169[u; = ulllog, mony + 11 — 0 Vellrg, @
)1/p

<2V UoVusllze @mm +19Vullie g

+ | (ug — U)V¢||L1;+W(Rn) for j > 17
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we get

ey ( [ o@tant) - [ 6@ T ) dr)

@) <2 ([ jotlrauta) + [ 16@PIVa@P R @) ds)
for ¢ € C°(R™).

Since supp(v — |u|?14y)s C {0} by Proposition 7.5(4), it follows from Lemma 7.8
that we have for some ag € [0, 0)

(7.69) v — ||y = apdo.
Further by letting 7 — oo in the inequality
(SPIN P gu; | Lo mey < I VIdw]le,

14y

<loVujllrr, wn)+lu;Vollrr, wn) forj=>1,

(R™)

we have

. 1
- (8PP ([l ul| g ey + a0l6(0)]7)

1/
< ([ 10l dute)) "+ [uT6l1g, ey for € CERY.

(b) Let € >0, and let ¢, be given as in Definition 7.1. Noting that 1/p =
Tp.q +1/q, by Holder’s inequality we have

laVeellze,

1

= ([ (@i 1oy )
Sl(/Rn(|1/35(:r:)|le)l/rp"‘lo(a?)cl:c)f'j’q(/B (Ju(@)||2]) To (= )dm) 1/a

9
=

(7.71)

= ||¢1 HLl/Tp,q(Rn) ||UHL%(B£)~
Hence, by virtue of (a) we have

(Sp,qw)l/pa(l)/q < (Sp’q”)l/”(||¢au||%g re) T ao)l/q

1/
[ e anta) " + 100y,

[ aut@)”" 4 1l

= W(BYP 1l 17 oy Il 3 ) — O M? s € 0

IN

ullze(s.)

<(
(7.72)
(

hence

(7.73) p({0}) > SPwabt > (§PTal/ )6,
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On the other hand, by Lemma 7.10 [Vu[PI},14,) < p holds, and we have

(7.74) > [VulP Ly + (SP57ab ). O
After all this we have the following proposition, which proves Theorem 2.4(2).

PROPOSITION 7.7
Assume that 1 < p < ¢ < oo, assume that 7,4 < 1/n, and assume that v > 0.
Then, in Proposition 7.6, it holds that ag =0 and

(7.75) by ey =1 IVullhy gy =577,

Proof
By Proposition 7.5(3) we have

/ 4 ()| g () d = | (),
R" R"

/ |Vu;(2)|P L1 4 (7) do — - du(x) as j— oo.

Combining Proposition 7.5(1) with Proposition 7.6 we have

(7.76) 1= / dv(e) = / u(@)| Iy (@) da + ag > ap, S = / du(a).

Moreover by Proposition 7.6 and Theorem 2.1 we have

sr1 = [ du@)= | [Vu@)P Ly (o) do + 570

(7.77) > g (( [ it @)™ q)

= SPaY((1— ao)?/1 + ag/q),

and then (1 — ag)?/? + ag/q <1 and a¢ =0 follow. In particular, we have

1= [u(@)|" gy (x) d,
(7.78) / 8

SPa = | due) 2 / V(@) [P Iy14) () dz,

and this proves the assertion. O

8. Proofs of Propositions 2.1 and 2.2 and some assertions

In this section we establish Propositions 2.1 and 2.2 and the propositions on the
nonexistence of minimizers and the failure of some embedding inequalities whose
proofs have been postponed.

8.1. Proofs of Propositions 2.1 and 2.2
To prove Propositions 2.1 and 2.2, let us prepare a cutoff function.
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DEFINITION 8.1
For 0<e<1and 0<n<1/4 we set

1 for z € Bs.,,
(8.1) e (@) = Gen(|2]) = { TEEEAAL  for 2 € Boi_y) \ Bsen,
0 for x € R™\ B.(1—y),
and we set
(8.2) Ve (@) = the,n(|2]) = dep * pen(x)  for z € R™.
LEMMA 8.1

Let 1<p<qg<oo, let v>0, let R>1, and let 0 < < 1/p’. Then there exist
positive numbers Cp., Cpiars > 0 such that we have for 0 <e <1 and 0 <n<
1/8 the following:

(1) Ve € CP(R™)raq, 0 < Yy <1 on R™,¢ey =1 on Bocy, ey =0 on
R"\ B-.

() ldenlley

14y

QP#]'-,O‘

cpiye” ; 0

1 Tog(1/m) ifv>0,

®Rn) < Cpy€ , ||V7/)6,77||L‘1’+7(Rn) < S ea ify=0
(log(1/m) /7" T=

(3) HV[A(lx,RwE’U}”L’f(BQ < EZNCYALR(E)Q((log(l/ln))l/p’ + AI,R(]é)l/p')i

QPY(UQ

1A rYenlls (B1) = Tz

Proof
We see that ¢, , € WH>°(R"), and the first derivatives of ¢., in a distribution
sense are given by

1 T
(83) - Voenl®) = i@ ) B B e

for a.e. z€ R™.

Particularly we have

1
v < —(2) forae zeR"
(8.4) VOenlo = Lot fa] ooy () T 200 2 ERE,
' 1 1
—y)| < —(z) forae z€R"y€EB.,.
Ve n(z—y)| < Tog(1/ (@) 12| _enXBE\BZE"(x) or a.e. t € R",y € By,

Here we note that

O S ¢67n(x) S XBE(1771)(1’1)7

(8.5)
0<¢en(r—y)<x, (v) forae zeR"yE By,

Assertion (1) is now clear, hence we prove assertions (2) and (3) below.
Assertion (2)

||1/J€,n ||L‘1’+W(R")

) (/ ( Penle = Penly) dy)plp(lﬂ)(x) dx> "

R n
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= (/B ( /Bev, Pen(y) dy)p Lt (@) dm) 1/p

)

- </ " (/ n IV6en(@ = )lpen(y) dy)plp(yrv) () d:c) N

1 P 1/p
e I
</B \Baey / log 1/ 4n)) |z| —gnp n(Y) dy) p(14) (T) dx)

1 1/p
~ R o T2 )

< 2 (/ I (x)d )1/p
= 11/ (A x)dx
log(1/n) \Jp\ 5™
wa \1/PeT(1-(2n)") wp\1/P e
_ {2(m) Tog(1/(dn)) < 2(m) log(lE/(4n)) if >0,

1/p
1/p (log(1/(2n))) o
2w S oy if v =0,

Assertion (3)
AT RV nllLe(By)

B (/Bl (/ " (Ve n(® = y)|pen(y) dy) pAl,R(x)pa[p(x) dx) 1/p
- </BE\B2E7; (/BEW log(1}(4n)) |z| isnpan(y) dy>pA17R(l‘)paIp(x) dx) 1/p

1 Aq p(x)® \P 1/p
~ ) o () T )

A1 r(e)™ 1/p
<o) Uy e 0))

ot oy 1080/ @)
= 20/ Ay, R (&) T

142 VIAT RIl L2 (1)

— In(x) 1/p
« ( . Q/Js,n(l‘)pW dx)

Io(z) 1/p
< A S A
= </BE Ay p(x)p(i=2) dw)

_a( Wn )1/1’ 1
= p(l/p/ _ a) ALR(E)l/p/_aa
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[VenAT Rl L2 o (B1)

Ip(x) 1/q
_ q
(o )

Io(z) 1/q W\ 1

> = .

- </32 Ay p(2)t+aQ/p=e) x) <q(1/p’ - a)> Ay, g(2en)t/P' e
Il

By virtue of these we are able to verify Propositions 2.1 and 2.2.

Proof of Proposition 2.1

(1) For v > 0 it suffices to show that C2°(R™) C Wi’g(R"). Take and fix a u €
C>(R"™). Then, for 0 < e <1 and 0 <7 < 1/8 we see that u(1 —1.,) € C(R™\
{0}) holds; hence by Lemma 8.1(2), we obtain

IVl = e n) = ulll p gy

= [ VIutbe nlllzy

11, (R™)

<|[VulL=@mmYenlice, @ + lullL=@m Ve nllr,  @m

1+~

< pr(||vu||L°°(Rn)€1+7 + [lull Lo (rny ) —0 ase—0,7—0.

&7
log(1/7)
Assertion (2) is now clear; hence we proceed to assertion (3).
(3). It suffices to prove C(By) C W()l”g(Bl). Let uw € C°(By). Then, for
0<e<1land0<n<1/8, wesee that u(l —1.,) € C> (B \{0}), and hence by
Lemma 8.1(2) we have

IV[u(l = 4e.n) = ulll Lo (B,
= IViuenlllLz )
<|IVull Ly WenllLr sy + 1l Vel iz s,
1
< cpo (llVU||L°°(Bl)€ + ||u||LM(Bl)W) —+0 ase—0,n—0.

O

Proof of Proposition 2.2
(a) First we show that if 0 < < 1/p/, it holds that

1
(8.8) A ey €Wo(B1) for0<e<1,0<n< 5

For 0 < ¢ < min{2en,1/8}, noting that A gt (1 —ss) € C°(B1 \ {0}) and
e ns,5 = 5,5, we have that it follows from Lemma 8.1(3) that

HV[A?,RwEJI(l - ¢575) - A?,Rwem] HL’I’(Bl)
= HV[A?,RwE,nw&,é]”Lﬁ’(Bl)
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= | VIAT r¥s.slll L2 (B)

1 1
S Ep;a‘Al,R(é)a (

(log(1/0)77 Ay n(0)7

(b) By the assumption, for an arbitrary € > 0 there exists 0 < 7. < 1/8 such
that we have

)—>0 as § = 0.

Io(z —
ALR(+)1)+W <ew(z) forall ze B, \{0}.

Then, if 0 <n <., we see that
AT rYn.n

(8.9)

|LZ;R(BI) = ||A‘1X,R1/’n,n |LZ;R(B%)

< EHA?,anm”L‘I(B%;M = EHA?,an,n |L‘1(Bl;w)'

Hence using Lemma 8.1(3), we have

IVIAS gtonnlllLe ()
| AY r¥n.n

IVIAT gtonalll e (5,)
B HA(ll,Rme”LZ;R(Bl)

‘Lq(Bl;w)

8.10
( ) < Cpia A R(W)a( 1 n 1 )Al R(2n2)1/p/_a5
- Qp,q;a ' (10g(1/77))1/p/ Al,R(n)l/p, '
A SR PN}
Epgia
Thus the assertion follows. O

8.2. Nonexistence of minimizers
In this section we verify Theorem 2.4(4), Proposition 2.3, and Proposition 2.4.
We remark that both Theorem 2.4(4) and Proposition 2.4 follow from improved
Hardy—Sobolev inequalities with sharp missing terms.

First Theorem 2.4(4) follows from the next lemma whose proof can be found
in [Ho2, Lemma 4.2, Section 4].

LEMMA 8.2 (HORIUCHI)
Ifn>3,p=2<q=2*=2n/(n—2), and v > Ya2- = (n — 2)/2, then S>2"7 =

2,2% 1y ox _ @202 72,2%
S 22t =8 and

2,2*; P
||VUH2L§M(RTL) > S HUH%g @ T (7 = 7320)

( ) |U||2L3(Rn)
8.11
forue Wvlg(R”)

Proposition 2.4 follows from Lemma 8.3 below, which can be found in [AHI,
Theorem 2.1(2), Section 2]. Here we put for R > e

(8.12) Ao gp(x)= Az r(|z|) =log A1 r(x) =log (log ER‘) for z € By \ {0}.
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LEMMA 8.3 (ANDO-HORIUCHI)

For 1 <p=gq < oo there exist positive numbers R, >0 and C >0 such that we
have for R> R,

1 Io(.’t)
P p p
L) = (p')P ”u”Lﬂ;R(Bl) * C/B1 [u()] Ay r(7)P A g(7)2

forue Wol,’(];(Bl).

dx

[Vl
(8.13)

Now we proceed to the proof of Proposition 2.3. To this end we employ the next
proposition.

PROPOSITION 8.1
Let 1<p=q< oo, and let v> 0. If w e C(R™\ {0}) satisfies
log(1 p
(8.14) w(x)>0 forxzeR"™\ {0}, %w(m)—)m as x — 0,
Py

then it holds that

®ny — (SPPYVYP||u| 1o (g

(Iul,, o
inf{ we CER™\ {0})\ {0}}
||UHLP(R”;w)
(8.15)
=0.
Proof
(a) If R> 1, then it follows from the assumption that we have
A 1+p/p’ A P
(8.16) LR(T) w(@) = 1R (7) w(x) > o0 asx—0.

Io(z) Tpyin(2) Ty ()
Hence by Proposition 2.2

(8.17) inf{( IVellsts )p)vech(Bl\{o})\{o}}zo.

||U|\LP(Bl;w/IM+n)

(b) On the contrary we assume that the assertion is false. Since SPPY =P
holds, there exists a number C' > 0 such that we have

(8.18) [ Vullzz, w2 Yulliz e + Cllullprmo) for ue C2(R™\ {0)).
Using Lemma 6.1 we have
Mollezwey + CllvliLamnw/ 1,y 40

=Tyl mny + CIT VI Lrmn sy < IVIT0lllp, Ry
T

-([., P

<|IVolrmry + 0l rmny  for ve CZ(R™\ {0}),
IVollLesyy = ClivllLrBisw/1,, .y for ve CZ (B \ {0}).
This contradicts (a). O

Vo(x) —~you(x) ‘plp(ac) d:c) v
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Let us recall the result due to [AH1, proof of Theorem 2.1, Section 4.1].

LEMMA 8.4 (ANDO-HORIUCHI)

1, .
Assume that 1 < p=q < oo, and assume that v >0. If u € W {(R")\ {0} is
a minimizer for SPPY | then u is radially symmetric with respect to the origin
and has a constant sign. Moreover if u>0 on R™, then u is a monotonically
decreasing function of r = |x| and satisfies

(8.19) u(z)|z]” =0 as|z|—0, u(z)|z|" =0 as |z| — oco.
From this we have the next proposition from which Proposition 2.3 follows.

PROPOSITION 8.2

Assume that 1 < p=q < oo, and assume that v > 0. Then, there exists no mini-
mizer for SPPY in W,;”g(R") \ {0}.

Proof
(a) Assume that there exists a minimizer u € Wi”g(R”) \ {0} for SPP*¥. Then it
follows from the variational principle that we have

[ 19U u(e) - V(@) 110 () da
(8.20)
=P / ) u(@)[P?u(@)p(x) [py (v) dz for ¢ € W H(R™).

By Lemma 8.4 u should be radially symmetric and satisfies

(8.21) u>0 onR", % <0 on R™\{0}.

Hence we have for ¢ € le”g (R™)rad

(8.22) _/Ooo (—%(M)Z)il%(ﬂr”“*”)‘l dr = ’yp/ooou(r)p_lgi)(r)rp'y—l dr

Since u : (0,00) — (0,u(0)) is surjective, we have the inverse R : (0,u(0)) —
(0,00), and by Lemma 8.4 it holds that

(8.23) R()"e=u(R(e))R(e)” -0 ase—0.
(b) For 0 < e < u(0), we set

u(x) —e for x € By,

(8.24) ue(2) = (u(x) —¢) , = {0 for z € R" \ Bgye).

Then u. € Wvl,’g (R™);aa and its derivative in a sense of distribution is given by

Ou, (2) = g—’:(x) for x € Bg(s),
or 0 for z € R® \ BR(E)'

(8.25)
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Therefore from (a) we have

oo —1 o0
(8.26) —/0 (—%(r))p %(r)rp“*'”_l dr:WP/O u(r)P~ tug (r)yrP " dr,

R(e) ou p
_Zz p(1+y)—1
/0 ( 5 (r)) T dr

R(e) R(e)
= ’yp/ u(r)PrP " Ldr — 67”/ u(r)P~ Py,
0 0

Setting
(8.27) v(r)=u(r)r” for r >0,
we have
R(e) 1
(8.28) = 'yp/o (v(r) — 51“7)1)(7’)”71; dr  for 0 <e <u(0),

v(R(c)) =u(R(e))R(e)” =0 ase—0.

(c) Since there exists a number ¢, > 0 such that
2

we have for r >0

(o)~ 22))”

v v
> Pu(r)” = py" ()T o () + ey o

By using Lemma 8.4, we have

P fle) 2 p—ll
~ /0 (v(r) —er™)u(r) dr

r

(8.30) ” ,
> [ (ruert -t S
v U(T)Pa—ﬁ(r)%
o P o g
R 1 v(r)p% r)?r . »
=7 (v(r)p— T 20(r)2 4+ :" pOu () 27"2) dr — " W(R(E))
s / PR+ (P RE)

for 0 < e < u(0).
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Therefore we have

(8.32) <

and then, if we let € — 0, it follows from (b) that

o0 v(?‘)pg—:(r)% - —
(8.33) /0 Y20(r)2 + v(r)P 8L (r)2r2 dr =0.

Thus we have a constant ¢ such that

0 2 0
0= U(T)p/Qa—Z(T) =i 2or [wPT2/2](r), c=v(r)=u(r)r" forr>0,
and this contradicts Lemma 8.4. O

8.3. Failure of embedding inequalities
In this section we prove CP%! = 0 provided that n > 2 and p < q. Combining this
fact with assertions (1) and (2) of Proposition 4.2, we have Theorem 2.6(2).

PROPOSITION 8.3

Assume that n > 2, assume that 1 <p < ¢ < oo, assume that 7,4 < 1/n, and
assume that R =1. Then it holds that CP>%' = 0.

Let us set
B.={2'eR" " ||a| <r} forr>0, (B1)4+ ={z=(2',2) € By |z, > 0},

and let us prepare the following.

LEMMA 8.5
Forn>2, we set

(5.34) p(z) = p(a’,zn) = (2 ,<pn(96)),1/2

(@) = pu(@2a) = (L= [P)/* — 2y fora=(2,2,) € (Br)s.

Then we have the following:
(1) ¢:(B1)y — (B1)4 is a diffeomorphism and ¢~!
ular, we have

= s valid. In partic-

on(p(@)) =z, forz e (Br)y4.

(2) det Dp(x) = —1 for x € (B1)+.
(3) L=y <[o(@)] = (|2 + n(2)*)/* <1+ 2y for x € (Br)y.
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Proof of Proposition 8.3
(a) Let us fix an a> 0. For 0 <e < 1/2 we set

ue(z) = {%(w))@n(mw for ¢ € (B

(8.35)
0 fOF$€Bl\(Bl)+.

Here 1. is given as in Definition 7.1. Then, we see that u. € Wol”éj(Bl) and

TjTn,

0r,[lell(w) = s ey (1<isn-1),
N CO R
Orullell(@) = =775 for € (By)s
Then we have
V@) = (2 ¢|E:€S|)) on(@han -+ (1+ @) (o)) ona) 117 /L'P
(LD e s ot e
L
= 2(;1/’?;%5)'2) on () (|2 P22 + (1= 2/ [*)on(2)?)
(836) 2a
+(1+a)’y. (ap(w))z) f”(ng

@n(x)Qa
1—|a']?

< 2(5%1;5 (‘P(x))z‘pn(x)z +(1+a)". ((‘O(x))Q)
for z € (By)4.

(b) By using (a) and Lemma 8.5 we have
(8.37) |ue (o) | = ¥=(¥)yn ™,

2c

Vue) (o) [* < 2(6%1/?5@)21/2 +(1+0)%0e)?) 7 QUTW

81l - oo 2 2\, 20
< Z2(=
< (5000 + 1+ 0)*0.)?)
for RS (B1)+ N B1/2.
Noting Lemma 8.5(3) and

1 1
. 21 <2log2 f <3
(3.39) (BT SosR r0sis gy
we see that

1 2 n
39) I > Tr1ar —\3
(8.39) 0(90(2/)) = (1+1/2)" (3) ’

ot <ma (1) () 2



On the Caffarelli-Kohn-Nirenberg-type inequalities 733

A1 (e(y)) = log <log

1 < (2log2)yn for y € (B1)+ N Byys.
~Yn

1
le(y)]

Then, we also have

Io(x)
q — q
Hus”Lg;l(Bl) - /(Bl)+|us(x)| A1,1($)1+q/p/

- /( e () | 0P,

dzx

Bi)y Ay (p(y)) e’
1 2\ "
8.40 Z/ ws Yy y:L-‘,-oz q (= dy
540 (Bl)mBa/z( ") ((2log2)yy,)1+a/p <3)
1 2 n/ ~
>— (= yg(aﬂ/p) ldy
(2log2)t+alr (3) BL,,%(0,¢/4)
_ 1 (2)”17 Wn—1 (6)”*1+Q(0¢+1/p)
 (210g2) /7" \3/) ¢ (n—1)(1+pa) \4 ’
and
IVucllyay = [ V@I ds
(B1)+
= [ el Py (ot)
(B1)+
8/1 -~ 2\ o p/2
sy o= [ (GO e P)i) 2y
(B1)+NBe €
/2
<amrl(So+ara®) [ ey
3 B/ x(0,e)
8 p/2 Wn—1
:2|n—p\ ° 1 2 _ Yn-l  ntpa
(GO+0rn) ot

Since n+pa — (p/q)(n — 1+ g(a+1/p)) = (n —1)(1 — p/q) > 0 holds, we have

FP@l(y) =0 ase—0. O

Appendix: Proof of Proposition 4.5

Proof of Proposition 4.5

In this Appendix we give a proof of Proposition 4.5, which had been postponed
in Section 4.2. According to Definition 4.2, by p1 we denote the (n-dimensional)
Lebesgue measure, and hence by p; [u] and R4 [u] we denote the distribution func-
tion and the rearrangement function of f with respect to the constant function
1, respectively.

REMARK A.1
If u € C.(R"™) is Lipschitz continuous, then w is differentiable almost everywhere
on R™ and the first-order derivatives of u in the distribution sense du/dz; : R™ —
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R (1 <i<n) coincide with those of u in the classical sense almost everywhere
on R", that is,
ou
ox;

Here e; = (8;j)1<j<n € R™ is a unit vector on the z;-axis.

(x) = D;u(z) (: tlg% % (u(a + te;) — u(x))) for a.e. ze R™ (1 <i<n).

DEFINITION A.1
For an admissible f and a Lipschitz continuous u € C.(R"™), we define the fol-
lowing:
(1) Zu] ={z € R™ | u is differentiable at = and Vu(x) # 0},
Zplu) = {x € R"™ | u is differentiable at z and Vu(z) = 0}.
(2) hylul(t) = pg(Zolu] N {|u| > t}) for t > 0.

REMARK A.2
When u € C.(R™) is Lipschitz continuous, by Remark A.1 we see that
i (R (Z[u] U Zolu])) =0,

Further it follows from Definitions 4.2 and A.1 that ps[u], h¢[u] : (0,00) — [0, 00)
are nonincreasing and right-continuous.

To study R [u], we employ the next lemma concerning single-variable functions.
When n =1, we set uy = fiy in Definition 4.2(1) temporarily.

LEMMA A1
Assume that I CR is an open interval, and assume that v: I — R is a bounded
variation and right-continuous. Then we have the following:

(1) The distributional derivative v' of v is a Borel measure on I and we have

v(s1) —v(sg) :/ dv'  for (so,s1) C I.

(s0,81]

Moreover for an arbitrary Borel set A C I, we can set

hﬂ@=AWW

(2) v is differentiable almost everywhere on I and we have

Du(s) (: %ijrg)%(v(s +1t)— v(s))) = [V]ac(s) for a.e. s€l.

Here, [V']ac denotes the absolutely continuous part of v' with respect to (the 1-
dimensional Lebesgue measure) fiy.

By using Lemma A.1 we can show the next lemma.

LEMMA A2

Assume that g € L}

1c([0,00)), assume that g >0 a.e. on [0,00), assume that
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v € C.([0,00)) is nonincreasing, and Lipschitz continuous, and assume that v >0
on [0,00). Let us set

Z [v] = {s € (0,00) ’v is differentiable at s and Dv(s) #0},
Z {s € (0,00) ’v is differentiable at s and Dv(s) = 0}
hglv] (t) = ji,(Zolv]N{v>1t}) fort>0.
Then we have the following:
(1) 1 ((0,00) \ (Z[v] U Zo[v])) = 0, fia (v(Zo[v])) = 0.
(2) hglv]:(0,00) = [0,00) is nonincreasing and right-continuous. In particu-
lar, hy[v] is a bounded variation, and hy[v]" is a Borel measure on (0,00). Further,
for an arbitrary Borel set A C (0,00), we have

fig(Zo[v) N {v € A}) = [hy[0] |(A).
Here, {ve A} ={s €[0,00) | v(s) € A}.
(3) [hg[v])']ac =0 a.e. on (0,00).

Proof
(1) Since v is absolutely continuous on [0,00), v is differentiable almost every-
where in (0,00) and

Dv=v" a.e. on (0,00), v'=[']ac in D'((0,00)).

In particular we have ji; ((0,00)\ (Z[v]U Z[v])) = 0. Moreover it follows from
Lemma A.1(1) that

1 (v((s0, 1)) S/ [v'(s)|ds  for (so,s1] C 1,

(s0,s1]

and we have for an arbitrary Borel set A C (0, 00)

/\v )| ds.

Here, v(A) = {v(s) | s € A}. Particularly we have
ia(v(Zalol)) < [ (o)]ds= [ [Do(s)lds=o.
Zo[v] Zo[v]

(2) We easily see that hy[v] is nonincreasing and right-continuous. Then, it follows
from Lemma A.1(1) that

,ug(Zo ﬂ{UE to,tl]}) g(Zo[’U]ﬂ{U>t0}) —ﬂg(ZO[U]ﬁ{U>t1})
= hyv](to) = hylv](t1)
== al

[
/(Md[h o) = /wl]d'ﬁg[””

= |hg[v)'|((to,t1]) for (to,t1] C (0,00),

and this proves the assertion.
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(3) From assertion (1) of this lemma we have ji; (v(Zo[v])) = 0; hence there exists
a Borel set F[v] C (0,00) such that v(Zy[v]) C F[v], fir(F[v]) = 0. Since Zy[v] C
{ve F[u]} and Zy[v]N{ve (0,00)\ F[v]} = @, it follows from assertion (2) of
this lemma that we have

ﬁgv'ac dt = ﬁgv’ dt < dﬁgv’
/(Om)u (o) e ()] /(Om)\F[U}H '], (0] dt /(Om)\w |

= |hg[v])|((0,00) \ F[v])
= fig(Zo[v) N {v € (0,00) \ F[v]}) =0,

and this proves the assertion. O
By this lemma and Sard’s lemma we have the next proposition.

PROPOSITION A1
Let f be admissible, and let u € CL(R™). Then we have the following:

(1) [hf[Rf[u]]’]aC:O a.e. on (0,00).
(2) [hf[u]']ac =0 a.e. on (0,00).

Proof
(1) Let us set

gf(S):f((win)l/n), vf[u}(s)znf[u]((win)”") for s > 0.

Then we see that gy € L .([0,00)), g¢ > 0 almost everywhere on [0,00), vf[u] €

loc
C.([0,00)) is nonincreasing, and v¢[u] >0 on [0,00). Further we have

Zo [vplu]] = {s € (0,00) ’ (f)l/nel € Zo[Ry[ul] }

n

Noting that f,R¢[u] are radially symmetric, we also have

ilgf [vf[u]] (t) = fig, (Zo [vf[u]] N {vf[u] > t})

s \1/n
- (G)7)e
Zoloslullnfoslu >t} \ \@n

= nwn/ fr)yr"tar
{re(0,00)|re1€Zo[R¢[u]],Rs[u](re1)>t}

:n/ f(@)dz =nps(Zo[Ry[u]] N {Rys[u] >t})
Zo[R¢[W]]N{R s [u]>t}

=nhy [Rf[uﬂ (t) fort>0.
Thus the assertion follows from Lemma A.2(3).

(2) First, from Sard’s lemma we see f[i1(|u|(Zp[u])) = 0, where |u|(Zy[u]) =
{Ju(z)| | x € Zp|u]}. Since supp w is compact, for ¢t € (0,00) \ |u|(Zp[u]) there exists
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g > 0 satisfying {t — ey < |u| <t+e:} N Zplu] = @ such that we have
Zolu] N {|ul > s} = Zolu] N {|u] > t},
hylu)(s) = hylul(t) for se (t—ey,t+ey).
Then
Dl 0) =0 for t € (0,00)\ |ul (Zol]),
and hence from Lemma A.1(2) we have

[hslu]'], (t) = D[hs[u]](t) =0 for a.e. t>0. O
By H"~! we denote the (n — 1)-dimensional Hausdorff measure.
LEMMA A.3

Let 1 <p<oo, and let f be admissible. Then we have the following:

(1) For an arbitrary Borel set A C R™ satisfying 0 < u1(A) < 0o, we have

/ dHTL—l S dHn_l.
8B,,.f[A] O0A

(2) For an arbitrary u € C.(R™), we have

/ dH™ ! S/ dH"™ 1 for a.e. t>0.
{R ¢ [u]=t} {lul=t}

Proof
(1) Since Rilx,| = x4 a’ from Proposition 4.4(2) we have
1

15 (Br,ya)) = ur(A) = /

@@ | Ril @R @) de

R”

[ X, @@ do =g (B )

Then we see that r¢[A] <r1[A], B, (4] C By, [a)- Noting that 13 (A) = p1 (B, 4)),
we have that it follows from the isometric inequality that

/ dH"—lg/ dH"—lg/ dH" "
9B, (a) 9B, (4] HA

(2) If t € (||ul| L (rn),00), then the assertion clearly holds. Now we set
Hiylu] = {t € (0, [|ullp=@m)] | p1 ({Rslu] =t}) > 0}.
Then we see that fi; (Hs[u]) = 0. Then for ¢ € (0, ||u|| L @) \ Hy[u], we have
{Rf[u} = t} = (’){Rf[u] > t} = 8Brf[{\u|>t}]7 8{|u| > t} = {|u| = t}.
Therefore the assertion follows from assertion (1). O

In the subsequent argument we employ the following co-area formula (see, e.g.,
[Ma, Theorem 1.2.4]).
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LEMMA A4 (THE CO-AREA FORMULA)

Let 1 <p < oo. Assume that u € C.(R™) is Lipschitz continuous, and assume
that g >0 a.e. on R™. Then we have

[ wutrsteae= [ [ 9ot amm-iaas

From this we have the following proposition (cf. [CF, Lemma 3.1]).

PROPOSITION A.2

Assume that f is admissible, and assume that u € C.(R™) is Lipschitz continuous.
Then we have

pg[u)(t) = hylu)(t) —l—/too /{ ooz }|sz(¢2)| dH" Y(z)ds fort>0.

Proof
For ¢t > 0, setting p=1 and

X (a5}
gi(x) = %f(ﬂﬂ) for x € Z[ul,

0 for x e R\ Z[u],

we apply Lemma A.4 to obtain

s (2l {1l > 1) = [ N ]xﬂubt}(x)f(x)dx: [ 9 la)@) o)
/ / ) dH" () ds
{lul= S}

X{‘ubt}() T =) ds
/ /{ul sinzi)  [Vu(z)] Wy @A (2)d

f(z) -1
= dH" ™" () ds.
/t /{|u_s}ﬂZ[u] [Vu(z)]
Therefore we see that

prlul(t) = pg ((Zolu] U Z[ul) 0 {Jul > t})
= py(Zolu] N {Jul > t}) + pp(Zu] O {Ju| > t})

_ U > f(x) n—1 ) ds
=l ](t)+/t /{|u|—s}nz[u] Vu(z)| dH" (z) ds. 0

Using this we show the next proposition.

PROPOSITION A3
Assume that f is admissible, and assume that uw € CL(R™). Then we have the
following:
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Assertion (1)

f(il?) n—1 ) = f(il?) n—1 T
/{Rf[uJ—t}nZ[Rf[un [V[R¢[u]](z)| 4" ) -/{ul—t}ﬁZ[u]|vu(x)| i ()

for a.e. t > 0.

Assertion (2)

/{Rf[ul—t}ﬂsz[un( f(x) ) i ()

[Vu(@)[\P=t s
< /{|u—t}( ) dH" " (z) for a.e. t>0.

f(x)
Proof
(1) By Proposition A.2, we have
pr [Rylul] (1)

=hs[Ry| / / dH" () ds,
s Ryl (R} [u]=s}NZ[R s [u ]WRf“ )| :

prlul(t) = hylul(t) +/t /{| . |Vu:(ra37)| dH" Y (x)ds for t > 0.

Then, by Proposition A.1, we have

’ _ f(z) n—1(,
s IR Tul)], (8) = /{ e TR @)

/ _ f(x) e
(05 [u] ]ac(t) = _/{lu oz [Vu(@)] dH" (z) for a.e. t>0.

Noting that pr[Rslu]] = ps[u] holds by Proposition 4.3(1), we have that the
assertion follows.
(2) By virtue of Sard’s lemma, first we see that

/ dH" Y(x)=0 for a.e. t>0,
{lul=t}nZo[u]

and then by Holder’s inequality we have

</{|u=t}mZ[u]dHn_l(x))p
flx) NV [ Vu(@) NV
:</{|u_t}m2[u]<vu($)|> ( f(x) ) i (x)>

I@) 1) Vu@l\ Pt
=St @) oy G ) a0

for t > 0.

Since f,R[u ‘V Rrlu ‘ are radially symmetric, we have
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( / dH"—l(x))p
(R [ul=0}nZ[R  u]

_ f(.’E) n—1 T p=l
B (/{Rf[u]—t}ﬂZ[Rf[u]] VIR s[u]](z)| 4™ )>

M v n=l(g or
></{Rf[u] t}nZ[Rf[u]]( f(z) ) dH"" (z) fort>0.

Therefore, using assertions (1) and (2) of Lemma A.3, we have

/{Rf[ul—t}nsz[un< f(z) ) i (@)

(f{Rf[u]:t} dH"(x))"

/(@) n=1(z))?"*
(f{nf[u]:t}mz[nf[u]] VIR ¢ [u]](z) (I))

(f{|u\ —}(Z[u]uZo[u]) P ")
dH"=(z))""

<

@ I
(f{w:t}mzw Vu(a)]

(f{|u| —t}NZ[u] dH"~(z))"
dH"(z))""

_f(z) 1
(I{WI =t}NZ[u] [Vu(z)]

Vul) \ P
S/{lu t}( @) ) dH" () for a.e. t € (0, ||ul| Lo (mr))-

Therefore the assertion follows. O

After all this, Proposition 4.5 follows from Lemma A.4 and Proposition A.3(2).

Proof of Proposition 4.5
By Lemma A.4 and Proposition A.3(2), we have

p 1
[ R A) @) s o

B /Z /{Rf[u]_t} VIRl () gy A )
) /O°° /{Rf AR (W)p_l JH™ () di
S /uu:t} (S ™ anm o ar
LT

p_ 1 -
:/nwu(x)\ T O
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