
On the homotopy types of the
independence complexes of grid graphs
with cylindrical identification

Kouyemon Iriye

Abstract We herein investigate the homotopy types of the independence complexes of
square grid graphs Cm,n with cylindrical identification for m = 3 and n = 6,7. We show
that they are all homotopy equivalent to a wedge of spheres.

1. Introduction

Let G = (V,E) be a graph without loops, where V denotes the vertex set of
G = (V,E) and E is defined as a subset of V × V such that (u, v) ∈ E if u and v

are adjacent. A set of vertices σ ⊂ V is said to be independent if for all u, v ∈ σ

we have (u, v) /∈ E. The independence complex I(G) of G is a simplicial set for
which the set of vertices is V and the simplices are all the independent sets of G.
For any simplicial set Δ there is a graph G for which the independence complex
is homeomorphic to Δ, where we identify a simplicial set with its geometric
realization.

We are interested in the homotopy type of the independence complexes of
square grid graphs Cm,n with cylindrical identification. The vertex set of Cm,n

is {1,2, . . . ,m} × Zn, and there is an edge between (u1, u2) and (v1, v2) if u1 = v1

and u2 = v2 ± 1 or if |u1 − v1| = 1 and u2 = v2.
When we draw a picture of the graph Cm,n and its independent set, we

reverse the order of the first and second coordinates to save vertical space.
Figure 1 shows the graph C3,4 and its independent set {(1,2), (1,4), (2,3),

(3,1)}, where the edges on both sides indicate that (i,1) and (i,4) are adjacent
for i = 1,2,3.

In 1999, Kozlov [6] determined the homotopy type of I(C1,n).

THEOREM 1.1

We have

I(C1,3k+i) �

⎧⎪⎪⎨
⎪⎪⎩

∨
2 Sk−1 if i = 0,

Sk−1 if i = 1,

Sk if i = 2,

Kyoto Journal of Mathematics, Vol. 52, No. 3 (2012), 479–501
DOI 10.1215/21562261-1625172, © 2012 by Kyoto University
Received May 12, 2011. Revised November 18, 2011. Accepted December 6, 2011.
2010 Mathematics Subject Classification: Primary 05C10, 05C69.

http://dx.doi.org/10.1215/21562261-1625172
http://www.ams.org/msc/


480 Kouyemon Iriye

Figure 1. C3,4 and its independent set

where
∨

j X denotes a wedge of j copies of X.

Later, Thapper [8] obtained the following results.

THEOREM 1.2

We have

I(C2,4k+i) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∨
3 S2k−1 if i = 0,

S2k−1 if i = 1,

S2k if i = 2,

S2k+1 if i = 3,

I(C2k+i,2) �
{

Sk−1 if i = 0,

Sk if i = 1,

I(C3k+i,3) �

⎧⎪⎪⎨
⎪⎪⎩

S2k−1 if i = 0,∨
2 S2k if i = 1,

S2k+1 if i = 2,

I(C2k+i,4) �
{∨

2k+1 S2k−1 if i = 0,∨
2k S2k if i = 1,

I(C2k+i,5) �
{

S2k−1 if i = 0,

S2k+1 if i = 1.

The explicit results of the present study are presented in the following theorems.

THEOREM 1.3

We have

I(C3,8k+i) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
5 S6k−1 if i = 0,

S6k−1 if i = 1,

S6k+1 if i = 2,

S6k+1 if i = 3,∨
3 S6k+2 if i = 4,

S6k+3 if i = 5,

S6k+3 if i = 6,

S6k+5 if i = 7.
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THEOREM 1.4

For i = 0,1,2,3, we have

I(C4k+i,7) � S6k+2i−1

COROLLARY 1.5

We have

I(C3,2k+1) � I(Ck,7).

THEOREM 1.6

We have

I(C6k+i,6) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S8k−1 ∨
∨

2(S
8k ∨ S8k+1 ∨ · · · ∨ S9k−1) if i = 0,∨

2 S8k+1 ∨
∨

2(S
8k+1 ∨ S8k+2 ∨ · · · ∨ S9k) if i = 1,

S8k+2 ∨
∨

2(S
8k+3 ∨ S8k+4 ∨ · · · ∨ S9k+2) if i = 2,

S8k+3 ∨
∨

2(S
8k+4 ∨ S8k+5 ∨ · · · ∨ S9k+3) if i = 3,∨

2 S8k+5 ∨
∨

2(S
8k+5 ∨ S8k+6 ∨ · · · ∨ S9k+5) if i = 4,

S8k+6 ∨
∨

2(S
8k+7 ∨ S8k+8 ∨ · · · ∨ S9k+6) if i = 5.

Here, if s > t, then (Ss ∨ Ss+1 ∨ · · · ∨ St) denotes a point.

Let Δ be a family of subsets of a finite set. We define the partition function
Z(Δ; z) of Δ as

Z(Δ; z) =
∑
σ∈Δ

z|σ|

and write Z(Δ) = Z(Δ; −1), where |σ| denotes the cardinality of the set σ. If Δ
is a finite simplicial set, where we assume that the empty set ∅ is in Δ, then we
have

Z(Δ) = 1 − χ(Δ),

where χ denotes the unreduced Euler characteristic.
Jonsson [4] investigated Z(Cm.n) = Z(I(Cm,n)) and conjectured that

Z(Cm,n) = 1 for odd n, unless gcd(m − 1, n) is a multiple of three, in which
case Z(Cm,n) = −2. This conjecture was solved affirmatively by Thapper [8] and
Jonsson [5].

For even n, the situation appears to be far more complicated.

COROLLARY 1.7

We have

Z(Cm,4) =

{
m + 1 if m is even,

−m if m is odd,
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Z(Cm,6) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if m ≡ 2,5,6,9 (mod 12),

1 if m ≡ 0,3,8,11 (mod 12),

2 if m ≡ 1,10 (mod 12),

4 if m ≡ 4,7 (mod 12).

The first result of Corollary 1.7 is taken from [8].
Through the explicit calculation of the homology groups of the independence

complexes for small sizes, Thapper conjectured that, for j, k ≥ 1,

H∗
(
I(Cj,2k+1)

) ∼= H∗
(
I(Ck,2j+1)

)
.

All of the results obtained herein indicate that the following two conjectures
hold.

CONJECTURE 1.8

If n > 1 I(Cm,n) is homotopy equivalent to a wedge of spheres.

CONJECTURE 1.9

For j, k ≥ 1, I(Cj,2k+1) is homotopy equivalent to I(Ck,2j+1).

2. Discrete Morse theory and matching tree

In this section we recall the discrete Morse theory, which was introduced by
Forman [3]. The discrete Morse theory is a method by which to construct a
CW-complex with a simpler structure, which is homotopy equivalent to a given
simplicial set. We also recall the matching tree in [2] and [8] to define a Morse
matching on the independence complex of a graph.

The following explanation of the discrete Morse theory is taken from [7].

DEFINITION 2.1

(1) A partial matching in a poset P is a subset M ⊂ P × P such that
(i) (a, b) ∈ M implies a ≺ b, that is, a < b, and there is no c ∈ P such that

a < c < b,
(ii) each a ∈ P belongs to at most one element in M .

When (a, b) ∈ M , we write a = d(b) and b = u(a).
(2) A partial matching on P is said to be acyclic if there does not exist a

cycle

b1 � d(b1) ≺ b2 � d(b2) ≺ · · · ≺ bn � d(bn) ≺ b1,

with n ≥ 2, and all bi being distinct.

For a simplicial set Δ we define the face poset P (Δ) on Δ as the set of faces in Δ
ordered by inclusion. We remark that P (Δ) has the empty set as the minimum
element.
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DEFINITION 2.2

A Morse matching M on a simplicial set Δ is a partial matching in the face poset
P (Δ), which is acyclic. If there are no unmatched elements, the Morse matching
is perfect.

The main theorem of the discrete Morse theory can be stated as follows, using
the notion of Morse matching.

THEOREM 2.3

Let Δ be a simplicial set with a Morse matching M . Assume that for each i ≥ 0,
there are ci unmatched i-dimensional simplices. Then, Δ is homotopy equivalent
to a CW-complex with exactly ci cells of each positive dimension i, and c0 + 1
cells of dimension 0.

COROLLARY 2.4

Let Δ be a simplicial set with a Morse matching M such that cj = 0 for all j but
one i. Then, for this particular i,

Δ �
∨
ci

Si.

That is, Δ is homotopy equivalent to a wedge of ci i-dimensional spheres.

COROLLARY 2.5

Let Δ be a simplicial set with a perfect Morse matching M . Then, Δ is con-
tractible.

The matching tree in [2] and [8] is a method by which to construct a Morse
matching on the independence complex of a graph.

For a graph G = (V,E) and a vertex a ∈ V , we define N(a) = NG(a) and
N [a] = NG[a] by N(a) = {b ∈ V | (a, b) ∈ E} and N [a] = N(a) ∪ {a}. For a subset
A of V , N(A) is defined by N(A) =

⋃
a∈A N(a).

For the independence complex I(G) of a graph G we will construct a finite,
plane rooted tree in which each internal node has either one or two children.
Each node is a subset of I(G) of the form

I(A,B) = I(G)(A,B) =
{
σ ∈ I(G)

∣∣ A ⊂ σ and B ∩ σ = ∅
}
,

where A and B are two subsets of V such that

(1) A is an independent set, A ∩ B = ∅ and N(A) ⊂ B.

The root is I(∅, ∅) = I(G), and other nodes will be defined recursively as
follows. If the node is the empty set (no unmatched elements), we declare the
node a leaf. Otherwise, the node is of the form I(A,B), which is a nonempty set.

If A ∪ B = V , then I(A,B) = {A} is a node with an unmatched element of
cardinality |A|, and we also declare this node a leaf.

We are left with nodes of the form I(A,B), with A ∪ B �= V . Choose a vertex
p in V ′ = V \ (A ∪ B) and proceed as follows.
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(i) If p has at most one neighbor in V ′, define Δ(A,B,p) to be the subset of
I(A,B) formed of sets that do not intersect N(p):

Δ(A,B,p) =
{
σ

∣∣ A ⊂ σ and B ∩ σ = σ ∩ N(p) = ∅
}
.

Then,

M(A,B,p) =
{
(σ,σ ∪ {p})

∣∣ σ ∈ Δ(A,B,p) and p /∈ σ
}

gives a perfect matching of Δ(A,B,p). In this case, we call p the pivot of
this matching. Assign to the node I(A,B) a unique child, namely, the set U =
I(A,B) \ M(A,B,p) of unmatched elements. This set is empty if p has no neigh-
bor in V ′. In this case, we say that p is a free vertex of I(A,B). If p has exactly
one neighbor v in V ′, then U = I(A ∪ {v},B ∪ N(v)). We say that the triple
(A,B,p) is a matching site of the tree.

(ii) Otherwise, node I(A,B) has two children. The left child is I(A,B ∪ {p}),
and the right child is I(A ∪ {p},B ∪ N(p)). The union of these sets is I(A,B).
Here, (A,B,p) is said to be a splitting site of the tree. In this case, we refer to p

as the pivot of this splitting.
Unless they are empty, the new nodes satisfy condition (2.1).
In a figure showing a matching tree, the vertices of A and B are described

in black and white, respectively. The pivots are denoted by triangles (e.g., see
Figure 2).

The following theorem was proved in [2] and [8].

THEOREM 2.6

For any graph G and any matching tree of G, the matching of I(G) obtained by
taking the union of all partial matchings M(A,B,p) performed at the matching
sites is a Morse matching.

3. Matching tree and star clusters

A simplicial set is hereinafter referred to simply as a complex. In this section,
we recall the notion of a star cluster introduced by Barmak [1]. The (simplicial)
star stK(σ), or simply st(σ), of a simplex σ in a complex K is the subcomplex
of simplices τ such that σ ∪ τ ∈ K.

DEFINITION 3.1

Let σ be a simplex of a complex K. We define the star cluster of σ in K as the
subcomplex

SC(σ) =
⋃
v∈σ

stK(v).

A complex K is said to be a clique complex if for each nonempty set of vertices
σ such that {v,w} ∈ K for every v,w ∈ σ, we have σ ∈ K. By definition the
independence complex I(G) of a graph G is a clique complex.
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Although, in general, SC(σ) is not contractible, Barmak [1] proved the fol-
lowing.

LEMMA 3.2

Let K be a clique complex, let σ be a simplex of K, and let σ0, σ1, . . . , σr be a
collection of faces of σ (r ≥ 0). Then,

r⋃
i=0

⋂
v∈σi

stK(v)

is contractible. In particular, the star cluster of a simplex in a clique complex is
contractible.

Next, using Lemma 3.2, he obtained the following results.

THEOREM 3.3

Let G be a graph, and let v be a nonisolated vertex of G that is not contained in
any triangle. Then, NG(v) is a simplex of I(G), and

I(G) � Σ
(
st(v) ∩ SC(NG(v))

)
.

Now, using the star cluster, we explain how a matching tree M of a graph G

describes the homotopy type of its independence complex.
A simplex σ is said to be extensible to v if σ ∩ N [v] = ∅.
We assume that (∅, ∅, u1) is a matching site, and u1 has exactly one neighbor

v1. Then, according to Theorem 3.3, we have

I(G) � Σ
(
st(u1) ∩ st(v1)

)
.

The simplices of the complex st(u1) ∩ st(v1) are exactly the independent sets
of G that are extensible to both u1 and v1. Therefore, st(u1) ∩ st(v1) is the
independence complex of subgraph G1 of G induced by vertices other than v1 or
any of its neighbors, that is, G1 = G \ N [v1]. Thus, we have

I(G) � ΣI(G1).

The child of the root is I(v1,N(v1)), and again we assume that (v1,N(v1), u2)
is a matching site and that u2 has exactly one neighbor v2 in G1. By the same
argument, we have

I(G) � ΣI(G1) � Σ2I(G2),

where G2 = G1 \ NG1 [v2] = G \ (NG[v1] ∪ NG[v2]).
Let ({v1, v2, . . . , vk },

⋃k
i=1 N(vi), v) be the first splitting site from the root.

Then, by an inductive argument, we see that

I(G) � ΣkI(Gk),

where Gk = G \
⋃k

i=1 NG[vi]. The matching tree M defines the matching tree Mk

of the graph Gk as follows. The root of Mk is I(Gk)(∅, ∅). To a node I(G)(A,B)
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in the tree M , which is a successor of the node I(G)
(

{v1, v2, . . . , vk },
⋃k

i=1 N(vi)
)
,

we associate the node I(Gk)
(
A \ {v1, v2, . . . , vk },B \

⋃k
i=1 N(vi)

)
of Mk. Then,

Mk is a matching tree of Gk and is isomorphic to the subtree of M consisting of
I(G)

(
{v1, v2, . . . , vk },

⋃k
i=1 N(vi)

)
and its successors.

Since we are interested in I(Gk), we use the matching tree Mk.
The root has two children. The left child is

I(Gk)(∅, {v}),

and the right child is

I(Gk)
(

{v},N(v)
)
.

Let lk(v) be the link of vertex v in I(Gk). Then, I({v},N(v)) ∪ lk(v) is a cone
over the link lk(v). Thus,

I(Gk) = I(∅, {v}) ∪ I
(

{v},N(v)
)

= I(∅, {v}) ∪
(
I({v},N(v)) ∪ lk(v)

)
= I(∅, {v}) ∪ C lk(v).

Let H = Gk \ N [v]. Then, I(H) = lk(v), and we have a cofiber sequence

I(H) → I(Gk)(∅, {v}) → I(Gk) → ΣI(H),

which induces another cofiber sequence

ΣkI(H) → ΣkI(Gk)(∅, {v}) → I(G) � ΣkI(Gk) → Σk+1I(H).

Repeating the same argument as above for the two children, we obtain two cofiber
sequences that describe the homotopy types of I(Gk)(∅, {v}) and I(H). In this
way, we can describe the homotopy type of I(G).

4. Independence complex of C3,n

We construct a matching tree of the graph C3,n with the following properties.

LEMMA 4.1

There is a matching tree of the graph C3,n with

(i) five unmatched elements of cardinality 6k if n = 8k,
(ii) a unique unmatched element of cardinality 6k if n = 8k + 1,
(iii) a unique unmatched element of cardinality 6k+2 if n = 8k+2 or 8k+3,
(iv) three unmatched elements of cardinality 6k + 3 if n = 8k + 4,
(v) a unique unmatched element of cardinality 6k +4 if n = 8k +5 or 8k +6,
(vi) a unique unmatched element of cardinality 6k + 6 if n = 8k + 7.

Then, Theorem 1.3 follows from Lemma 4.1 by Corollary 2.4 and Theorem 2.6.

Proof
Figure 2 shows the splitting sites of the tree that we are going to construct. For
simplicity, we show only the case n = 3.
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Figure 2. Splitting sites of the tree

Figure 3. Subtree (A)

A remaining subtree of (A) is shown in Figure 3, which shows that

(i) there is a unique unmatched element of cardinality 3k if n = 4k or 4k +1,
(ii) there is no unmatched element if n = 4k + 2 or 4k + 3.

In the following, to shorten the tree, we take two or more pivots at the same
time for a matching site if doing so causes no confusion.

A remaining subtree of (B) is shown in Figure 4, which shows that

(i) there is a unique unmatched element of cardinality 6k if n = 8k,
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Figure 4. Subtree (B)

(ii) there is no unmatched element if n = 8k + 1,8k + 2,8k + 4, or 8k + 7,
(iii) there is a unique unmatched element of cardinality 6k +2 if n = 8k +3,
(iv) there is a unique unmatched element of cardinality 6k + 4 if n = 8k + 5

or 8k + 6.

Since node (C) is isomorphic to node (B), there is a remaining subtree of
node (C) that is isomorphic to that of node (B).

A remaining subtree of (D) is shown in Figure 5, which shows that

(i) there is a unique unmatched element of cardinality 3k if n = 4k,
(ii) there is no unmatched element if n = 2k + 1,
(iii) there is a unique unmatched element of cardinality 3k +2 if n = 4k +2.
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Figure 5. Subtree (D)

Figure 6. Subtree (E)

A remaining subtree of (E) is shown in Figure 6, which shows that

(i) there is a unique unmatched element of cardinality 3k if n = 4k,
(ii) there is no unmatched element if n = 4k + 1 or 4k + 2,
(iii) there is a unique unmatched element of cardinality 3k +3 if n = 4k +3.

In the matching tree that we have constructed, there are

(i) five unmatched elements of cardinality 6k if n = 8k,
(ii) a unique unmatched element of cardinality 6k if n = 8k + 1,
(iii) a unique unmatched element of cardinality 6k + 2 if n = 8k + 2,
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Figure 7. Splitting sites for n = 8k + 5 or 8k + 6

(iv) two unmatched elements of cardinality 6k+2 and an unmatched element
of cardinality 6k + 3 if n = 8k + 3,

(v) three unmatched elements of cardinality 6k + 3 if n = 8k + 4,
(vi) an unmatched element of cardinality 6k+3 and two unmatched elements

of cardinality 6k + 4 if n = 8k + 5,
(vii) two unmatched elements of cardinality 6k + 4 and an unmatched ele-

ment of cardinality 6k + 5 if n = 8k + 6,
(viii) a unique unmatched element of cardinality 6k + 6 if n = 8k + 7.

Hence, unless n = 8k + 3, 8k + 5, or 8k + 6, the above-described matching
tree is a desired matching tree for Lemma 4.1. For the case of n = 8k +3, 8k +5,
or 8k + 6, we just construct a new matching tree to prove Lemma 4.1.

For n = 8k+5 or 8k+6, we use the following matching tree shown in Figure 7.
For n = 8k + 5, as before, we can construct a matching tree such that there

is a unique unmatched element of cardinality 6k + 4 in the remaining subtree of
(D) and there are no unmatched elements in other subtrees.

Similarly, for n = 8k + 6, we can construct a matching tree such that there
is a unique unmatched element of cardinality 6k + 4 in the remaining subtree of
(A) and there are no unmatched elements in other subtrees.

Thus, Lemma 4.1 is proven for these cases.
For n = 8k + 3 > 3, we use the matching tree shown in Figure 8, and we

can construct a matching tree such that there is a unique unmatched element of
cardinality 6k + 2 in the remaining subtree of (A) and there are no unmatched
elements in other subtrees.

For n = 3 it is easy to construct a matching tree with a unique unmatched
element of cardinality 2.

Thus, we complete the proof of Lemma 4.1. �
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Figure 8. Splitting sites for n = 8k + 3

5. Independence complex of Cm,7

We prove Theorem 1.4 by using the same method used to prove Theorem 1.3.

LEMMA 5.1

There is a matching tree of the graph Cm,7 with a unique unmatched element of
cardinality 6k + 2i if m = 4k + i for 0 ≤ i < 4.

First, we split both on u = (1,2) and v = (1,4).

LEMMA 5.2

There are perfect matchings in I(Cm,7)({v}, {u}) and I(Cm,7)({u}, {v}).

Proof
To simplify the description, a part of the matching tree shown in Figure 9 is
drawn simply as shown in Figure 10.

Figure 11 shows that if I(Cm−2,7)({v}, {u}) can be perfectly matched, so
can I(Cm,7)({v}, {u}). For m = 1,2, it is easy to see that I(Cm,7)({v}, {u})
can be perfectly matched. Thus, I(Cm,7)({v}, {u}) can be perfectly matched
for any m.

Since I(Cm,7)({u}, {v}) is isomorphic to I(Cm,7)({v}, {u}), the proof is com-
pleted. �

Proof of Lemma 5.1
It is easy to construct a matching tree of I(Cm,7)(∅, {u, v}) for m ≤ 4 with a
unique unmatched element of cardinality 2 if m = 1, no unmatched element if
m = 2,3, and a unique unmatched element of cardinality 6 if m = 4.

In Figure 12, the right-hand node is isomorphic to I(Cm,7)({v}, {u}) and
therefore is perfectly matched.
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Figure 9

Figure 10

Then, Figure 12 shows that there is a matching tree for I(Cm,7)(∅, {u, v})
with a unique unmatched element of cardinality 6k + 2 if m = 4k + 1, no
unmatched element for m ≡ 2,3 (mod 4), and a unique unmatched element of
cardinality 6k + 6 if m = 4k + 4.

Next, Figure 13 shows that there is a matching tree for I(Cm,7)({u, v}, ∅)
with a unique unmatched element of cardinality 6k + 4 if m = 4k + 2, a unique
unmatched element of cardinality 6k+6 if m = 4k+3, and no unmatched element
if m ≡ 0,1 (mod 4).

Thus, we have proven Lemma 5.1, which completes the proof of Theorem 1.4.
�

6. Independence complex of Cm,6

Let s = (1,1), t = (1,2), u = (1,3), and v = (1,5). We first prove the following
lemma.
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Figure 11. A matching tree for I(Cm,7)({v}, {u})

LEMMA 6.1

We have

I(C6k+i,6 \ {s,u}) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S8k−1 ∨ S8k ∨ · · · ∨ S9k−1 if i = 0,

S8k+1 ∨ S8k+1 ∨ · · · ∨ S9k if i = 1,

S8k+i ∨ S8k+i+1 ∨ · · · ∨ S9k+i if i = 2,3,

S8k+i+1 ∨ S8k+i+2 ∨ · · · ∨ S9k+i+1 if i = 4,5.

Proof
By induction on m = 6k + i, we prove the lemma. It is easy to show that the
lemma holds for m ≤ 4. Let m > 4, and consider the following cofiber sequence:

I
(
Cm,6 \ ({s,u} ∪ N [v])

)
→ I(Cm,6 \ {s,u, v}) → I(Cm,6 \ {s,u}).

Figure 14 shows that

I(Cm,6 \ {s,u, v}) � I(Cm−2,6 \ {s,u, v})

�
{

S(3m/2)−1 m ≡ 0 (mod 2),

∗ m ≡ 1 (mod 2),

and that

I
(
Cm,6 \ ({s,u} ∪ N [v])

)
� Σ3I(Cm−3,6 \ {s,u}).

In the cofiber sequence
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Figure 12. A matching tree for I(Cm,7)(∅, {u, v})

Σ3I(Cm−3,6 \ {s,u}) → I(Cm,6 \ {s,u, v}) → I(Cm,6 \ {s,u}),

the first inclusion map is null-homotopic by the following table, in which we know
the homotopy types of Σ3I(Cm−3,6 \ {s,u}) by induction:

m Σ3I(Cm−3,6 \ {s,u}) I(Cm,6 \ {s,u, v})
2k + 1 a wedge of spheres ∗
6k S8k−2 ∨ S8k−1 ∨ · · · ∨ S9k−3 S9k−1

6k + 2 S8k+1 ∨ S8k+2 ∨ · · · ∨ S9k S9k+2

6k + 4 S8k+4 ∨ S8k+5 ∨ · · · ∨ S9k+3 S9k+5

Thus, we have

I(Cm,6 \ {s,u}) � Σ4I(Cm−3,6 \ {s,u}) ∨ I(Cm,6 \ {s,u, v}),

which proves the lemma. �
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Figure 13. A matching tree for I(Cm,7)({u, v}, ∅)

LEMMA 6.2

We have

I(C6k+i,6 \ {s}) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S8k−1 ∨ S8k ∨ · · · ∨ S9k−1 if i = 0,

S8k+1 ∨ (S8k+1 ∨ S8k+2 ∨ · · · ∨ S9k) if i = 1,

S8k+i ∨ S8k+i+1 ∨ · · · ∨ S9k+i if i = 2,3,

S8k+5 ∨ (S8k+5 ∨ S8k+6 ∨ · · · ∨ S9k+5) if i = 4,

S8k+6 ∨ S8k+7 ∨ · · · ∨ S9k+6 if i = 5.

Proof
We consider the cofiber sequence

I
(
Cm,6 \ ({s} ∪ N [u])

)
→ I(Cm,6 \ {s,u}) → I(Cm,6 \ {s}).

Figure 15 shows that

I
(
Cm,6 \ ({s} ∪ N [u])

)
� Σ3I

(
Cm−3,6 \ ({s} ∪ N [u])

)
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Figure 14. A matching tree for I(Cm,6 \ {s,u})

�
{

S(4(m−1))/3 m ≡ 1 (mod 3),

∗ m �≡ 1 (mod 3).

Since, from the dimension, the inclusion map

I
(
Cm,6 \ ({s} ∪ N [u])

)
→ I(Cm,6 \ {s,u})

is null-homotopic, we have the homotopy equivalence

I(Cm,6 \ {s}) � ΣI
(
Cm,6 \ ({s} ∪ N [u])

)
∨ I(Cm,6 \ {s,u}).

Then, by the same argument used in the proof of Lemma 6.1, we obtain the
lemma. �

LEMMA 6.3

We have

I(C3k+i,6 \ {s, t}) �

⎧⎪⎪⎨
⎪⎪⎩

S4k−1 if i = 0,

∗ if i = 1,

S4k+2 if i = 2.

Proof
In Figure 16, the last remaining graph of the left-hand node is isomorphic to
I(Cm−2,6 \ ({s} ∪ N [u])). Thus, as is proven in the proof of Lemma 6.2, there is a
matching tree for I(∅, {s, t, v}) with a unique unmatched element of cardinality
4k if m = 3k and no unmatched element if m �≡ 0 (mod 3). Similarly, there is a
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Figure 15. A matching tree for I(Cm,6 \ {s})

matching tree for I({v}, {s, t}) with a unique unmatched element of cardinality
4k +3 if m = 3k +2 and no unmatched element if m �≡ 2 (mod 3). Thus, we have
proven the lemma. �

Proof of Theorem 1.6
Since

I(Cm,6) = I(Cm,6 \ {s}) ∪ I(Cm,6 \ {t}),

we have the following pushout diagram:

I(Cm,6 \ {s, t}) −−−−→ I(Cm,6 \ {t})⏐⏐� ⏐⏐�
I(Cm,6 \ {s}) −−−−→ I(Cm,6)
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Figure 16. A matching tree for I(Cm,6 \ {s, t})

We have the following table according to Lemmas 6.1–6.3:

m I(Cm,6 \ {s, t}) I(Cm,6 \ {s}) � I(Cm,6 \ {t})
6k S8k−1 S8k−1 ∨ S8k ∨ · · · ∨ S9k−1

6k + 1 ∗ S8k+1 ∨ (S8k+1 ∨ S8k+2 ∨ · · · ∨ S9k)
6k + 2 S8k+2 S8k+2 ∨ S8k+3 ∨ · · · ∨ S9k+2

6k + 3 S8k+3 S8k+3 ∨ S8k+4 ∨ · · · ∨ S9k+3

6k + 4 ∗ S8k+5 ∨ (S8k+5 ∨ S8k+6 ∨ · · · ∨ S9k+5)
6k + 5 S8k+6 S8k+6 ∨ S8k+7 ∨ · · · ∨ S9k+6

If m ≡ 1 (mod 3), the above table shows that

I(Cm,6) � I(Cm,6 \ {s}) ∨ I(Cm,6 \ {t}),

which implies the theorem in this case.
To prove the other cases, we need the following lemma.

LEMMA 6.4

There is a matching tree for Cm,6 with

(i) an unmatched element of cardinality 8k and two unmatched elements of
cardinality 8k + j for j = 1,2, . . . , k if m = 6k,

(ii) an unmatched element of cardinality 8k+3 and two unmatched elements
of cardinality 8k + 3 + j for j = 1,2, . . . , k if m = 6k + 2,

(iii) an unmatched element of cardinality 8k+4 and two unmatched elements
of cardinality 8k + 4 + j for j = 1,2, . . . , k if m = 6k + 3,
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(iv) an unmatched element of cardinality 8k+7 and two unmatched elements
of cardinality 8k + 7 + j for j = 1,2, . . . , k if m = 6k + 5.

Proof
In the proof of Lemma 6.2, we constructed a matching tree for I(∅, {s}) with

(i) an unmatched element of cardinality 8k+ j for j = 0,1,2, . . . , k if m = 6k,
(ii) an unmatched element of cardinality 8k + 3 + j for j = 0,1,2, . . . , k if

m = 6k + 2,
(iii) an unmatched element of cardinality 8k + 4 + j for j = 0,1,2, . . . , k if

m = 6k + 3,
(iv) an unmatched element of cardinality 8k + 7 + j for j = 0,1,2, . . . , k if

m = 6k + 5.

In the proof of Lemma 6.1, we constructed a matching tree for I(∅, {s,u})
with

(i) an unmatched element of cardinality 8k + 2 + j for j = 0,1,2, . . . , k − 1 if
m = 6k + 1,

(ii) an unmatched element of cardinality 8k + 3 + j for j = 0,1,2, . . . , k if
m = 6k + 2,

(iii) an unmatched element of cardinality 8k + 6 + j for j = 0,1,2, . . . , k if
m = 6k + 4,

(iv) an unmatched element of cardinality 8k + 7 + j for j = 0,1,2, . . . , k if
m = 6k + 5.

Thus, Figure 17 shows that there is a matching tree for I({s}, ∅) with

(i) an unmatched element of cardinality 8k + j for j = 1,2, . . . , k if m = 6k,
(ii) an unmatched element of cardinality 8k + 3 + j for j = 1,2, . . . , k if m =

6k + 2,
(iii) an unmatched element of cardinality 8k + 4 + j for j = 1,2, . . . , k if

m = 6k + 3,
(iv) an unmatched element of cardinality 8k + 7 + j for j = 1,2, . . . , k if

m = 6k + 5.

Thus, we have proven the lemma. �

Now, we consider the case in which m = 6k. In this case, we have the following
pushout diagram:

S8k−1 −−−−→ S8k−1 ∨ S8k ∨ · · · ∨ S9k−1⏐⏐� ⏐⏐�
S8k−1 ∨ S8k ∨ · · · ∨ S9k−1 −−−−→ I(Cm,6)
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Figure 17. A matching tree of I(Cm,6)({s}, ∅) for m �≡ 1 (mod 3)

Thus,

I(Cm,6) � X ∨
∨
2

(S8k ∨ S8k+1 ∨ · · · ∨ S9k−1),

where X = (S8k−1 ∨ S8k−1) ∪ e8k.
On the other hand, by Theorem 2.3 and Lemma 6.4, I(Cm,6) is homotopy

equivalent to a CW-complex with one cell in dimension 8k − 1, two cells in
dimension 8k, . . . , and two cells in dimension 9k − 1. Thus, X must be homotopy
equivalent to S8k−1, and thus we obtain the theorem.

The above arguments also prove the theorem for other cases. �
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