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Abstract In this paper, we consider the spatially homogeneous Boltzmann equation
without angular cutoff. We prove that every L1-weak solution to the Cauchy problem
with finite moments of all orders acquires the C∞-regularity in the velocity variable for
all positive time.

1. Introduction

Consider the Cauchy problem for the spatially homogeneous Boltzmann equation,

(1.1)

{
ft(t, v) = Q(f, f)(t, v), t ∈ R

+, v ∈ R
3,

f(0, v) = f0(v),

where f = f(t, v) is the density distribution function of particles with velocity
v ∈ R

3 at time t. The right-hand side of (1.1) is given by the Boltzmann bilinear
collision operator

Q(g, f) =
∫

R3

∫
S2

B(v − v∗, σ)
{
g(v′

∗)f(v′) − g(v∗)f(v)
}

dσ dv∗,

which is well defined for suitable functions f and g specified later. Notice that
the collision operator Q(·, ·) acts only on the velocity variable v ∈ R

3. In the
following discussion, we will use the σ-representation, that is, for σ ∈ S2,

v′ =
v + v∗

2
+

|v − v∗ |
2

σ, v′
∗ =

v + v∗
2

− |v − v∗ |
2

σ,

which give the relations between the post- and precollisional velocities. For mono-
atomic gas, the nonnegative cross section B(z,σ) depends only on |z| and the
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scalar product z
|z| · σ. As in [6]–[8], we assume that it takes the form

(1.2) B(v − v∗, cosθ) = Φ(|v − v∗ |)b(cosθ), cosθ =
v − v∗

|v − v∗ | · σ,0 ≤ θ ≤ π

2
,

in which it contains a kinetic factor given by

(1.3) Φ(|v − v∗ |) = Φγ(|v − v∗ |) = |v − v∗ |γ ,

with γ > −3 and a factor related to the collision angle with singularity,

(1.4) b(cosθ)θ2+2s → K, when θ → 0+,

for some positive constant K and 0 < s < 1.
The main purpose of this paper is to show the smoothing effect of the spa-

tially homogeneous Boltzmann equation; that is, any weak solution to the Cauchy
problem (1.1) acquires regularity as soon as t > 0. Let us recall the precise defi-
nition of weak solution for the Cauchy problem (1.1) given in [16] (see also [17]).
To this end, we introduce the standard notation, 〈v〉 = (1 + |v|2)1/2,

‖f ‖Lp
�

=
(∫

R3
|f(v)|p〈v〉�p dv

)1/p

, for p ≥ 1, � ∈ R,

‖f ‖Hm
�

=
(∫

R3

∣∣〈D〉m
(

〈v〉�f(v)
)∣∣2 dv

)1/2

, for m,� ∈ R,

‖f ‖L logL =
∫

R3
|f(v)| log

(
1 + |f(v)|

)
dv,

and we denote a+ = max{a,0} for a ∈ R.

DEFINITION 1.1

Let f0 ≥ 0 be a function defined on R3 with finite mass, energy, and entropy;
that is, ∫

R3
f0(v)

[
1 + |v|2 + log

(
1 + f0(v)

)]
dv < +∞.

We say that f is a weak solution of the Cauchy problem (1.1), if it satisfies the
following conditions:

f ≥ 0, f ∈ C
(
R

+; D ′(R3)
)

∩ L1
(
[0, T ];L1

2+γ+(R3)
)
,

f(0, ·) = f0(·),∫
R3

f(t, v)ψ(v)dv =
∫

R3
f0(v)ψ(v)dv for ψ = 1, v1, v2, v3, |v|2,

f(t, ·) ∈ L logL,

∫
R3

f(t, v) log f(t, v)dv ≤
∫

R3
f0 log f0dv, ∀t ≥ 0,

∫
R3

f(t, v)ϕ(t, v)dv −
∫

R3
f0(v)ϕ(0, v)dv −

∫ t

0

dτ

∫
R3

f(τ, v)∂τϕ(τ, v)dv

=
∫ t

0

dτ

∫
R3

Q(f, f)(τ, v)ϕ(τ, v)dv,
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where ϕ ∈ C1(R+;C∞
0 (R3)). Here, the last integral on the right-hand side given

above is defined by∫
R3

Q(f, f)(v)ϕ(v)dv

=
1
2

∫
R6

∫
S2

Bf(v∗)f(v)
(
ϕ(v′) + ϕ(v′

∗) − ϕ(v) − ϕ(v∗)
)
dv dv∗ dσ.

Hence, this integral is well defined for any test function ϕ ∈ L∞([0, T ];W 2,∞(R3))
(see [16, p. 291]).

To state the main theorem in this paper, we introduce the entropy dissipation
functional by

D(g, f) = −
∫ ∫ ∫

R3×R3×S2
B(g′

∗f ′ − g∗f) log f dv dv∗ dσ,

where f = f(v), f ′ = f(v′), g∗ = g(v∗), g′
∗ = g(v′

∗).

THEOREM 1.2

Let the cross section B in the form (1.2) satisfy (1.3) and (1.4) with 0 < s < 1.
(1) Suppose that γ > max{ −2s, −1}. Let f be a weak solution of the Cauchy

problem (1.1). For 0 ≤ T0 < T1, if f satisfies

(1.5) |v|�f ∈ L∞(
[T0, T1];L1(R3)

)
for any � ∈ N,

then

f ∈ L∞(
[t0, T1]; S(R3)

)
,

for any t0 ∈ ]T0, T1[.
(2) When −1 ≥ γ > −2s, the same conclusion as above holds if we have the

following entropy dissipation estimate:∫ T1

T0

D
(
f(t), f(t)

)
dt < +∞.(1.6)

The existence of weak solutions to the Cauchy problem (1.1) was proved by
Villani [16] when γ ≥ −2, assuming additionally in the case γ > 0 that f0 ∈
L1

2+δ for some δ > 0. One important property of the weak solution for the hard
potentials (namely, when γ > 0) is, according to the work by Wennberg [18]
(cf. also Bobylev [9]), the moment gain property. It means that f satisfies (1.5)
for arbitrary T0 > 0 when the initial data only satisfies finite mass, energy, and
entropy. However, without assuming the moment condition (1.5), we can still
consider the smoothing effect in the case of mild singularity (0 < s < 1/2) for the
hard potential (γ > 0), and the argument is similar to the one used in [13] (see
Theorem 5.2 in Section 5).

The regularization property given by the above theorem has been studied
by many authors (cf. [2], [3], [12]–[15]). However, to our knowledge, it has not
yet been completely established in the sense that the kinetic factor Φ(|z|) was
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modified to avoid the singularity at the origin except for the Maxwellian molecule
case in previous works, and moreover, some extra conditions other than those in
Definition 1.1 of weak solution were required in [3] and [12].

We would like to emphasize that the result of Theorem 1.2 gives the full
regularization property for any weak solution satisfying some natural bounded-
ness condition in some weighted L1 and L logL-space and do not require any
differentiability assumption on the solution. Therefore, by our result, Villani’s
weak solutions in [16] are proved to be smooth by Theorem 1.2 together with the
moment gain property when γ > 0.

To compare with a recent work [10], it was proved therein that W 1,1
p ∩ H3

(strong) solutions gain full regularity in the case 0 < s < 1/2. Their method is
based on a priori estimates of the smooth solution, together with results given in
[11] about the propagation of the norm W 1,1

p and the uniqueness of this strong
solution. Departing from [10], we start from the weak solution given in Definition
1.1 without any known uniqueness result. Therefore, an a priori estimate for the
smooth function is not enough to show the regularity for the weak solution in L1

with moments. For the proof of Theorem 1.2, some suitable mollifier, acting on
the weak solution, becomes necessary, so that its commutator with the collision
operator requires some subtle analysis.

More precisely, the mollifier with symbol having time-dependent order (see
Section 4) was first used in [14], where the Maxwellian molecule case (γ = 0)
was studied together with the Gevrey regularity of solutions for the linearized
Boltzmann equation, and in [13] the same mollifier led to the smoothing effect
of weak solutions for the spatially homogeneous Boltzmann equation with the
modified kinetic factor Φ̃(|z|) = 〈z〉γ , using the pseudodifferential calculus on the
commutator between Φ̃ and the mollifier. In the spatially inhomogeneous case,
the regularity and the existence of classical solutions were studied by [4] for
the modified kinetic factor Φ̃, and by [5]–[8] for the singular kinetic factor Φ. As
stated in the preceding paragraph, the commutator between the mollifier and the
collision operator with the singular kinetic factor requires some subtle analysis
developed in [8] and [7].

Throughout this paper, we will use the following notation: f � g means that
there exists a generic positive constant C such that f ≤ Cg; while f � g means
that f ≥ Cg. And f ∼ g means that there exist two generic positive constants c1

and c2 such that c1f ≤ g ≤ c2f .
The rest of the paper will be organized as follows. In the next section, we

will prove a uniform coercivity estimate which improves on the one given in [1]
and which has its own interest. The mollifier and the commutator estimate will
be given in Section 3. In Section 4 we will prove the smoothing effect of a weak
solution with extra L2-assumption. Finally, the last section will be devoted to
the proof of Theorem 1.2.
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2. A uniform coercive estimate

In this section, we will improve the coercive estimate for the collision operator
obtained in [1], where local Hs

loc-estimates were discussed (cf. (2.2), (2.3) below).
In view of the definition of the weak solution, for D0,E0 > 0 we set

U (D0,E0) =
{
g ∈ L1

2 ∩ L logL;g ≥ 0, ‖g‖L1 ≥ D0, ‖g‖L1
2
+ ‖g‖L logL ≤ E0

}
.

Set B(R) = {v ∈ R
3; |v| ≤ R} for R > 0, and let B0(R,r) = {v ∈ B(R); |v − v0| ≥

r} for a v0 ∈ R3 and r ≥ 0. It follows from the definition of U (D0,E0) that there
exist positive constants R > 1 > r0 depending only on D0,E0 such that

(2.1) g ∈ U (D0,E0) implies χB0(R,r0)g ∈ U (D0/2,E0),

where χA denotes a characteristic function of the set A ⊂ R
3. In fact, noticing

that for R,M > 0,

R2

∫
{ |v|>R}

g dv + log(1 + M)
∫

{g>M }
g dv ≤ E0,

we have ∫
{ |v|≤R} ∩ {g≤M }

g dv ≥ 3D0/4

if R ≥ 2
√

2E0/D0 and log(1 + M) ≥ 8E0/D0, and moreover, we have∫
{ |v−v0|<r0} ∩ {g≤M }

g dv ≤ D0/4

if r0 ≤
(
3D0/(16π exp(8E0/D0))

)1/3.

PROPOSITION 2.1

Suppose that the cross section B of the form (1.2) satisfies (1.3) and (1.4) with
0 < s < 1 and γ > −3. Let g ∈ U (D0,E0) for D0,E0 > 0.

(1) If γ + 2s > 0, then there exist positive constants c0,C depending only on
D0,E0 such that for any f ∈ S(R3),

−
(
Q(g, f), f

)
L2 ≥ c0‖ 〈v〉γ/2f ‖2

Hs − C‖〈v〉γ/2f ‖2
L2 .(2.2)

(2) If γ + 2s ≤ 0 and if g belongs to L
3/(3+γ+2s′)
|γ| for s′ ∈ ]0, s[, then there

exists a C1 > 0 independent of g such that for any f ∈ S(R3),

−
(
Q(g, f), f

)
L2 ≥ c0‖ 〈v〉γ/2f ‖2

Hs − (C + C1‖g‖
L

3/(3+γ+2s′)
|γ|

)‖〈v〉γ/2f ‖2
Hs′ ,(2.3)

where c0,C are similar constants to those in (2.2).

REMARK 2.2

It should be noted that the above coercive estimates are more precise than those
provided by [10, Theorem 1.2] and more adaptable to prove the regularity of
solutions. In fact, the coercive estimate (2.2) is uniform with respect to g, which
is a crucial point in the proof of Theorem 1.2. Though the estimate (2.3) is not
used in the present paper, such a coercive estimate plays an important role in
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the study of the regularity of classical solutions for the spatially inhomogeneous
Boltzmann equation given in [4] and [5], where solutions are constructed in Hm

�

with respect to the velocity variables v. More precisely, thanks to the coercive
estimates (2.2) and (2.3), [7, Theorem 1.1] shows that the bounded classical
solutions to the Cauchy problem given in [5] possess C∞-regularity under the
suitable nonvanishing initial condition (see [4, Theorem 1.2]). Furthermore, we
notice that if γ + 4s > 0 and D(g, g) < ∞, then g belongs to L

3/(3+γ+2s′)
|γ| for

s′ ∈ ]0, s[ with 0 > γ + 2s′ > −2s, provided that g ∈ L1
� for a sufficiently large �.

In fact, it follows from the proof of Corollary 2.4 below that D(g, g) < ∞ implies√
g ∈ Hs

γ/2 and hence 〈v〉γg ∈ L3/(3−2s) by means of the Sobolev embedding
theorem, which together with Lemma 3.10 below leads us to this conclusion.

Proof
Put

Cγ(g, f) =
∫ ∫ ∫

R3×R3×S2
b(·)|v − v∗ |γg∗(f ′ − f)2 dv dv∗ dσ,

and note that(
Q(g, f), f

)
= − 1

2
Cγ(g, f) +

1
2

∫ ∫ ∫
Φbg∗(f ′2 − f2)dv dv∗ dσ.

It follows from the cancellation lemma and [1, Remark 6] that∣∣∣∫ ∫ ∫
b|v − v∗ |γg∗(f2 − f ′2)dv dv∗ dσ

∣∣∣ �
∣∣∣∫ ∫

|v − v∗ |γg∗f2
∣∣∣dv dv∗

(2.4)
� ‖g‖L1

|γ|
‖f ‖2

H
(−γ/2)+
γ/2

,

where the last inequality in the case γ ≥ 0 is trivial, while for γ < 0, this follows
from the fact that

|v − v∗ |γ � 〈v〉γ
{
1|v−v∗ |≥〈v〉/2 + 1|v−v∗ |<〈v〉/2〈v∗ 〉 −γ |v − v∗ |γ

}
,(2.5)

and the Hardy inequality supv∗

∫
|v − v∗ |γ |F (v)|2 dv � ‖F ‖2

H−γ/2 for F = 〈v〉γ/2f .
Furthermore, if γ + 2s′ < 0 for some s′ ∈ (0, s), then it follows from the Hardy–
Littlewood–Sobolev inequality that∣∣∣∫ ∫

|v − v∗ |γg∗f2
∣∣∣dv dv∗ � ‖g‖L1 ‖F ‖2

L2 +
∫ ∫ 〈v∗ 〉 |γ|g(v∗)F (v)2

|v − v∗ | −γ
dv dv∗

� ‖g‖L1 ‖F ‖2
L2 + ‖〈v〉 |γ|g‖L3/(3+γ+2s′) ‖F 2‖L3/(3−2s′)

� (‖g‖L1 + ‖g‖
L

3/(3+γ+2s′)
|γ|

)‖f ‖2
Hs′

γ/2
,

where we have used the Sobolev embedding inequality in the last inequality. Since
we can replace the factor 〈v∗ 〉 −γ |v − v∗ |γ in (2.5) by 〈v∗ 〉 −γ+ε|v − v∗ |γ−ε for any
ε > 0 we have∣∣∣∫ ∫

|v − v∗ |γg∗f2
∣∣∣dv dv∗ � (‖g‖L1 + ‖g‖

L
3/(3+γ−ε+2s′)
|γ−ε|

)‖f ‖2
Hs′

γ/2

if γ − ε + 2s′ < 0.



Smoothing effect of weak solutions 439

For the proof of both (1) and (2) of the proposition, it now suffices to consider
only the quantity Cγ(g, f) because one can apply the interpolation inequality

‖f ‖2

H
(−γ/2)+
γ/2

≤ ε‖f ‖2
Hs

γ/2
+ Cε‖f ‖2

L2
γ/2

to (2.4) when γ + 2s > 0. The case γ = 0 is obvious. In fact, by [1, Corollary 3,
Proposition 2], there exists a c0 = c0(D0,E0) > 0 depending only on D0,E0 > 0
such that

(2.6) C0(g, f) ≥ c0

∫
{ |ξ|≥1}

∣∣|ξ|sf̂(ξ)
∣∣2 dξ, ∀f ∈ S(R3),

where f̂(ξ) is the Fourier transform of f with respect to the variable v ∈ R
3.

From the proof in [1], it should be noticed that (2.6) holds for any f ∈ L2 such
that the left-hand side is finite.

We now consider the case γ �= 0, following the argument used in the proof
of [1, Lemma 2]. Choose R,r0 such that (2.1) holds. Let ϕR be a nonnegative
smooth function not greater than one, which is 1 for |v| ≥ 4R and 0 for |v| ≤ 2R.
In view of

〈v〉
4

≤ |v − v∗ | ≤ 2〈v〉 on supp(χB(R))∗ϕR,

we have

4|γ|Φ(|v − v∗ |)g∗(f ′ − f)2 ≥ (gχB(R))∗(〈v〉γ/2ϕR)2(f ′ − f)2

≥ (gχB(R))∗
[1
2
(
(〈v〉γ/2ϕRf)′ − 〈v〉γ/2ϕRf

)2

−
(
(〈v〉γ/2ϕR)′ − 〈v〉γ/2ϕR

)2
f ′2

]
.

It follows from the mean value theorem that for a τ ∈ (0,1),∣∣(〈v〉γ/2ϕR)′ − 〈v〉γ/2ϕR

∣∣ � 〈v + τ(v′ − v)〉γ/2−1|v − v∗ | sin
θ

2

� 〈v∗ 〉 |γ/2−1| 〈v′ − v∗ 〉γ/2 sin
θ

2

� 〈v∗ 〉 |γ/2|+|γ/2−1| 〈v′ 〉γ/2 sin
θ

2
,

because |v − v∗ |/
√

2 ≤ |v′ − v∗ | ≤ |v + τ(v′ − v) − v∗ | ≤ |v − v∗ | for θ ∈ [0, π/2].
Therefore, we have

Cγ(g, f) ≥ 2−1−2|γ| C0(gχB(R), ϕR〈v〉γ/2f) − CR‖g‖L1 ‖f ‖2
L2

γ/2
,(2.7)

for a positive constant CR ∼ R|γ|+|γ−2|. For a set B(4R) we take a finite covering

B(4R) ⊂
⋃

vj ∈B(4R)

Aj , Aj =
{

v ∈ R
3; |v − vj | ≤ r0

4

}
.
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For each Aj we choose a nonnegative smooth function ϕAj which is 1 on Aj and
0 on {|v − vj | ≥ r0/2}. Note that

r0

2
≤ |v − v∗ | ≤ 6R on supp(χBj(R,r0))∗ϕAj .

Then we have

Φ(|v − v∗ |)g∗(f ′ − f)2

� min{rγ+

0 ,R−(−γ)+ }(gχBj(R,r0))∗ϕ2
Aj

(f ′ − f)2

� R−γ+
min{rγ+

0 ,R−(−γ)+ }(gχBj(R,r0))∗

×
[1
2
(
(〈v〉γ/2ϕAj f)′ − 〈v〉γ/2ϕAj f

)2 −
(
(〈v〉γ/2ϕAj )

′ − 〈v〉γ/2ϕAj

)2
f ′2

]
.

Since |(〈v〉γ/2ϕAj )
′ − 〈v〉γ/2ϕAj | � R|γ|+1〈v′ 〉γ sinθ/2 if |v∗ | ≤ R, we obtain

Cγ(g, f) � min
{
(r0/R)γ+

,R−(−γ)+
}

C0(gχBj(R,r0), ϕAj 〈v〉γ/2f)
(2.8)

− C ′
R,r0

‖g‖L1 ‖f ‖2
L2

γ/2
,

for a positive constant C ′
R,r0

∼ R2+2|γ|. It follows from (2.6)–(2.8) that there
exist c′

0,C,C ′ > 0 depending only on D0,E0 such that

Cγ(g, f) ≥ c′
0

(
‖ 〈D〉sϕR〈v〉γ/2f ‖2 +

∑
j

‖〈D〉sϕAj 〈v〉γ/2f ‖2
)

− C‖f ‖2
L2

γ/2

(2.9)
≥ c′

0‖ 〈v〉γ/2f ‖2
Hs − C ′ ‖f ‖2

L2
γ/2

,

because ϕ2
R +

∑
j ϕ2

Aj
≥ 1 and commutators [〈D〉s, ϕR], [〈D〉s, ϕAj ] are L2-bound-

ed operators. �

REMARK 2.3

The estimate (2.9) holds for any f ∈ L2
γ/2 such that Cγ(g, f) is finite, because of

the remark just after (2.6). Similarly, (2.2) holds for any f ∈ L2
γ/2 if γ ≥ 0 and if

its left-hand side is finite.

COROLLARY 2.4

Let f(t) ∈ L1
max{2,γ} ∩ L logL be a weak solution. Suppose that the cross section

B is the same as in Propostion 2.1. Assume that for a fixed T > 0 we have∫ T

0

D
(
f(τ), f(τ)

)
dτ < ∞.(2.10)

Then there exist positive constants cf and Cf > 0 such that

(2.11) cf

∫ T

0

‖
√

f(τ)‖2
Hs

γ/2
dτ ≤

∫ T

0

D
(
f(τ), f(τ)

)
dτ + Cf

∫ T

0

‖f(τ)‖L1
γ+

dτ.



Smoothing effect of weak solutions 441

Proof
We first consider the case γ < 0. Note that

D(f, f) = −
∫ ∫ ∫

B(f ′
∗f ′ − f∗f) log f dv dv∗ dσ

=
1
4

∫ ∫ ∫
B(f ′f ′

∗ − ff∗)(log f ′f ′
∗ − log ff∗)dv dv∗ dσ

≥ 1
4

∫ ∫ ∫
b(·)〈v − v∗ 〉γ(f ′f ′

∗ − ff∗)(log f ′f ′
∗ − log ff∗)dv dv∗ dσ,

because (x − y)(logx − log y) ≥ 0 and Φ(|v − v∗ |) ≥ 〈v − v∗ 〉γ . Then we have

D(f, f) ≥ −
∫ ∫ ∫

b(·)〈v − v∗ 〉γ(f ′
∗f ′ − f∗f) log f dv dv∗ dσ

=
∫ ∫ ∫

b(·)〈v − v∗ 〉γf∗
(
f log

f

f ′ − f + f ′
)

dv dv∗ dσ

+
∫ ∫ ∫

b(·)〈v − v∗ 〉γf∗(f − f ′)dv dv∗ dσ

≥
∫ ∫ ∫

b(·)〈v − v∗ 〉γf∗(
√

f ′ −
√

f)2 dv dv∗ dσ − C‖f ‖2
L1 ,

where we have used x log(x/y) − x+ y ≥ (
√

x − √
y)2 and the cancellation lemma

in the last inequality, which was used similarly in the proof of [1, Theorem 1].
Since the proof of Proposition 2.1 still works with Φ replaced by 〈v − v∗ 〉γ , we
obtain the desired estimate in view of Remark 2.3. The case γ ≥ 0 is easier
because we do not need to replace Φ by 〈v − v∗ 〉γ when the cancellation lemma
is applied. �

3. Mollifier and commutator estimates

Since a weak solution is only in L1, we cannot use it directly as a test function
in the definition of weak solution to get the energy estimate. To overcome this
difficulty, we need to mollify with some suitable mollifiers so that considering the
commutators between the mollifiers and the collision operator becomes necessary.

Let λ,N0 ∈ R, let δ > 0, and put

Mδ
λ(ξ) =

〈ξ〉λ

(1 + δ〈ξ〉)N0
, 〈ξ〉 = (1 + |ξ|2)1/2.(3.1)

Then Mδ
λ(ξ) belongs to the symbol class Sλ−N0

1,0 of pseudodifferential operators
and belongs to Sλ

1,0 uniformly with respect to δ ∈ ]0,1]. The associated pseudo-
differential operated is denoted by Mδ

λ(Dv). By direct calculation, we see that
for any α there exists a Cα > 0 independent of δ such that

(3.2) |∂α
ξ Mδ

λ(ξ)| ≤ CαMδ
λ(ξ)〈ξ〉− |α|.
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LEMMA 3.1

There exists a constant C > 0 independent of δ such that

|Mδ
λ(ξ) − Mδ

λ(ξ − ξ∗)|

≤ C〈ξ〉λ1〈ξ∗ 〉≥
√

2|ξ| + CMδ
λ(ξ − ξ∗)

{
1〈ξ∗ 〉 ≥ |ξ|/2 +

〈ξ∗ 〉
〈ξ〉 1|ξ|/2>〈ξ∗ 〉

}
(3.3)

+ CMδ
λ(ξ − ξ∗)

(Mδ
λ(ξ∗)(1 + δ〈ξ − ξ∗ 〉)N0

〈ξ − ξ∗ 〉λ

)
1√

2|ξ|>〈ξ∗ 〉 ≥ |ξ|/2.

Moreover, if p ≥ N0 − λ,

|Mδ
λ(ξ) − Mδ

λ(ξ − ξ∗)|

≤ CMδ
λ(ξ − ξ∗)

{( 〈ξ∗ 〉
〈ξ〉

)p

1〈ξ∗ 〉≥
√

2|ξ|(3.4)

+
(Mδ

λ(ξ∗)(1 + δ〈ξ − ξ∗ 〉)N0

〈ξ − ξ∗ 〉λ
+ 1

)
1√

2|ξ|>〈ξ∗ 〉 ≥ |ξ|/2 +
〈ξ∗ 〉

〈ξ〉 1|ξ|/2>〈ξ∗ 〉

}
.

Proof
We first note that

(3.5)

⎧⎪⎪⎨
⎪⎪⎩

〈ξ〉 � 〈ξ∗ 〉 ∼ 〈ξ − ξ∗ 〉, on supp1〈ξ∗ 〉≥
√

2|ξ|,

〈ξ〉 ∼ 〈ξ − ξ∗ 〉, on supp1〈ξ∗ 〉 ≤ |ξ|/2,

〈ξ〉 ∼ 〈ξ∗ 〉 � 〈ξ − ξ∗ 〉, on supp1√
2|ξ|≥〈ξ∗ 〉 ≥ |ξ|/2 .

Since 〈ξ〉pMδ
λ(ξ) is increasing with respect to 〈ξ〉, we have

〈ξ〉pMδ
λ(ξ) � 〈ξ∗ 〉pMδ

λ(ξ∗) ∼ 〈ξ∗ 〉pMδ
λ(ξ − ξ∗) on supp1〈ξ∗ 〉≥

√
2|ξ|,

and also trivially,

Mδ
λ(ξ) ≤ 〈ξ〉λ.

Note that

Mδ
λ(ξ) ∼ Mδ

λ(ξ∗)

∼ Mδ
λ(ξ − ξ∗)

Mδ
λ(ξ∗)(1 + δ〈ξ − ξ∗ 〉)N0

〈ξ − ξ∗ 〉λ
on supp1√

2|ξ|≥〈ξ∗ 〉 ≥ |ξ|/2.

By the mean value theorem, we have

|Mδ
λ(ξ) − Mδ

λ(ξ − ξ∗)| ≤
∫ 1

0

∣∣(∇ξM
δ
λ)

(
ξ + τ(ξ − ξ∗)

)∣∣dτ |ξ∗ |

� Mδ
λ(ξ − ξ∗)

〈ξ∗ 〉
〈ξ〉 on supp1〈ξ∗ 〉 ≤ |ξ|/2.

Here we have used (3.2) and the second formula from (3.5). The above estimates
imply (3.4) and (3.3). �

As regards the kinetic factor |v − v∗ |γ , we need to take into account its singular
behavior close to |v − v∗ | = 0 except γ = 0. Therefore, we decompose the kinetic
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factor in two parts. Let 0 ≤ φ(z) ≤ 1 be a smooth radial function with value 1
for z close to 0, and 0 for large values of z. Set

Φγ(z) = Φγ(z)φ(z) + Φγ(z)
(
1 − φ(z)

)
= Φc(z) + Φc̄(z).

Then correspondingly we can write

Q(f, g) = Qc(f, g) + Qc̄(f, g),

where the kinetic factors in these collision operators are defined according to the
previous decomposition. Note that Φc̄(z) is smooth, and Φc̄(z) � Φ̃γ(z), where
Φ̃γ(|z|) = (1 + |z|2)γ/2 is the regular kinetic factor studied in [4]. Then Qc̄(f, g)
has similar properties as QΦ̃γ

(f, g) does with regard to the upper bound and
commutator estimations. In particular, let us recall [4, Proposition 2.9].

PROPOSITION 3.2

Let λ ∈ R, and let M(ξ) be a positive symbol in Sλ
1,0 in the form of M(ξ) =

M̃(|ξ|2). Assume that there exist constants c,C > 0 such that for any s, τ > 0,

c−1 ≤ s

τ
≤ c implies C−1 ≤ M̃(s)

M̃(τ)
≤ C,

and M(ξ) satisfies

|M (α)(ξ)| = |∂α
ξ M(ξ)| ≤ CαM(ξ)〈ξ〉− |α|,

for any α ∈ N
3. Then, if 0 < s < 1/2, for any N > 0 there exists a CN > 0 such

that ∣∣(M(Dv)Qc̄(f, g) − Qc̄(f,M(Dv)g), h
)
L2

∣∣
(3.6)

≤ CN ‖f ‖L1
γ+

(
‖M(Dv)g‖L2

γ+
+ ‖g‖Hλ−N

γ+

)
‖h‖L2 .

Furthermore, if 1/2 < s < 1, for any N > 0 and any ε > 0 , there exists a CN,ε > 0
such that∣∣(M(Dv)Qc̄(f, g) − Qc̄(f,M(Dv)g), h

)
L2

∣∣
(3.7)

≤ CN,ε‖f ‖L1
(2s+γ−1)+

(
‖M(Dv)g‖H2s−1+ε

(2s+γ−1)+
+ ‖g‖Hλ−N

γ+

)
‖h‖L2 .

When s = 1/2 we have the same estimate as (3.7) with (2s + γ − 1) replaced by
(γ + κ) for any small κ > 0.

REMARK 3.3

In the case γ > 0 and 0 < s < 1/2, it follows from [13, Lemma 3.1] and its proof
that (3.6) can be replaced by∣∣(M(Dv)Qc̄(f, g) − Qc̄(f,M(Dv)g), h

)
L2

∣∣
≤ CN ‖f ‖L1

γ

(
‖M(Dv)g‖L2

γ/2
+ ‖g‖Hλ−N

γ/2

)
‖h‖L2

γ/2
.

From now on, we concentrate on the study for the singular part Qc(f, g).
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PROPOSITION 3.4

Assume that 0 < s < 1, γ + 2s > 0. Let 0 < s′ < s satisfy γ + 2s′ > 0 and 2s′ ≥
(2s − 1)+. If

(3.8) 5 + γ ≥ 2(N0 − λ),

then we have the following.
(1) If s′ + λ < 3/2, then∣∣(Mδ

λ(Dv)Qc(f, g) − Qc(f,Mδ
λ(Dv)g), h

)∣∣ � ‖f ‖L1 ‖Mδ
λ(Dv)g‖Hs′ ‖h‖Hs′ .

(2) If s′ + λ ≥ 3/2, then∣∣(Mδ
λ(Dv)Qc(f, g) − Qc(f,Mδ

λ(Dv)g), h
)∣∣

� (‖f ‖L1 + ‖f ‖H(λ+s′ −3)+ )‖Mδ
λ(Dv)g‖Hs′ ‖h‖Hs′ .

Furthermore, if s > 1/2 and γ > −1, then the assumption (3.8) can be relaxed to

(3.9) 4 + γ + 2s > 2(N0 − λ).

Proof
We shall follow some of the arguments from [8]. By using the formula from [1,
Appendix], we have(

Qc(f, g), h
)
=

∫ ∫ ∫
R3×R3×S2

b
( ξ

|ξ| · σ
)
[Φ̂c(ξ∗ − ξ−) − Φ̂c(ξ∗)]

× f̂(ξ∗)ĝ(ξ − ξ∗)ĥ(ξ)dξ dξ∗ dσ,

where ξ− = (1/2)(ξ − |ξ|σ). Therefore(
Mδ

λ(D)Qc(f, g) − Qc(f,Mδ
λ(D)g), h

)
=

∫ ∫ ∫
b
( ξ

|ξ| · σ
)
[Φ̂c(ξ∗ − ξ−) − Φ̂c(ξ∗)]

×
(
Mδ

λ(ξ) − Mδ
λ(ξ − ξ∗)

)
f̂(ξ∗)ĝ(ξ − ξ∗)ĥ(ξ)dξ dξ∗ dσ

=
∫ ∫ ∫

|ξ− |≤(1/2)〈ξ∗ 〉
· · · dξ dξ∗ dσ +

∫ ∫ ∫
|ξ− |≥(1/2)〈ξ∗ 〉

· · · dξ dξ∗ dσ

= A1(f, g, h) + A2(f, g, h).

Then, we write A2(f, g, h) as

A2 =
∫ ∫ ∫

b
( ξ

|ξ| · σ
)
1|ξ− |≥(1/2)〈ξ∗ 〉Φ̂c(ξ∗ − ξ−) · · · dξ dξ∗ dσ

−
∫ ∫ ∫

b
( ξ

|ξ| · σ
)
1|ξ− |≥(1/2)〈ξ∗ 〉Φ̂c(ξ∗) · · · dξ dξ∗ dσ

= A2,1(f, g, h) − A2,2(f, g, h).

On the other hand, for A1 we use the Taylor expansion of Φ̂c of order 2 to have

A1 = A1,1(f, g, h) + A1,2(f, g, h),
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where

A1,1 =
∫ ∫ ∫

bξ− · (∇Φ̂c)(ξ∗)1|ξ− |≤(1/2)〈ξ∗ 〉
(
Mδ

λ(ξ) − Mδ
λ(ξ − ξ∗)

)
× f̂(ξ∗)ĝ(ξ − ξ∗)¯̂h(ξ)dξ dξ∗ dσ,

and A1,2(f, g, h) is the remaining term corresponding to the second-order term
in the Taylor expansion of Φ̂c.

We first consider A1,1. By writing

ξ− =
|ξ|
2

(( ξ

|ξ| · σ
) ξ

|ξ| − σ

)
+

(
1 −

( ξ

|ξ| · σ
))

ξ

2
,

we see that the integral corresponding to the first term on the right-hand side
vanishes because of the symmetry on S

2. Hence, we have

A1,1 =
∫ ∫

R6
K(ξ, ξ∗)

(
Mδ

λ(ξ) − Mδ
λ(ξ − ξ∗)

)
f̂(ξ∗)ĝ(ξ − ξ∗)¯̂h(ξ)dξ dξ∗,

where

K(ξ, ξ∗) =
∫

S2
b
( ξ

|ξ| · σ
)(

1 −
( ξ

|ξ| · σ
))

ξ

2
· (∇Φ̂c)(ξ∗)1|ξ− |≤(1/2)〈ξ∗ 〉 dσ.

Note that | ∇Φ̂c(ξ∗)| � 1/〈ξ∗ 〉3+γ+1, from [8, Appendix]. If
√

2|ξ| ≤ 〈ξ∗ 〉, then
sin(θ/2)|ξ| = |ξ− | ≤ 〈ξ∗ 〉/2 because 0 ≤ θ ≤ π/2, and we have

|K(ξ, ξ∗)| �
∫ π/2

0

θ1−2s dθ
〈ξ〉

〈ξ∗ 〉3+γ+1
� 1

〈ξ∗ 〉3+γ

( 〈ξ〉
〈ξ∗ 〉

)
.

On the other hand, if
√

2|ξ| ≥ 〈ξ∗ 〉, then

|K(ξ, ξ∗)| �
∫ π〈ξ∗ 〉/(2|ξ|)

0

θ1−2s dθ
〈ξ〉

〈ξ∗ 〉3+γ+1
� 1

〈ξ∗ 〉3+γ

( 〈ξ〉
〈ξ∗ 〉

)2s−1

.

Hence we obtain

|K(ξ, ξ∗)| � 1
〈ξ∗ 〉3+γ

{( 〈ξ〉
〈ξ∗ 〉

)
1〈ξ∗ 〉≥

√
2|ξ|

(3.10)

+ 1√
2|ξ|≥〈ξ∗ 〉 ≥ |ξ|/2 +

( 〈ξ〉
〈ξ∗ 〉

)2s−1

1|ξ|/2≥ 〈ξ∗ 〉

}
.

Similarly to A1,1, we can also write

A1,2 =
∫ ∫

R6
K̃(ξ, ξ∗)

(
Mδ

λ(ξ) − Mδ
λ(ξ − ξ∗)

)
f̂(ξ∗)ĝ(ξ − ξ∗)¯̂h(ξ)dξ dξ∗,

where

K̃(ξ, ξ∗) =
∫

S2
b
( ξ

|ξ| · σ
)∫ 1

0

(1 − τ)(∇2Φ̂c)(ξ∗ − τξ−) · ξ− · ξ−1|ξ− |≤ 1
2 〈ξ∗ 〉 dτ dσ.

Again from [8, Appendix], we have

|(∇2Φ̂c)(ξ∗ − τξ−)| � 1
〈ξ∗ − τξ− 〉3+γ+2

� 1
〈ξ∗ 〉3+γ+2

,
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because |ξ− | ≤ 〈ξ∗ 〉/2, which leads to

|K̃(ξ, ξ∗)| � 1
〈ξ∗ 〉3+γ

{( 〈ξ〉
〈ξ∗ 〉

)2

1〈ξ∗ 〉≥
√

2|ξ|
(3.11)

+ 1√
2|ξ|≥〈ξ∗ 〉 ≥ |ξ|/2 +

( 〈ξ〉
〈ξ∗ 〉

)2s

1|ξ|/2≥ 〈ξ∗ 〉

}
.

It follows from (3.4) of Lemma 3.1, (3.10), and (3.11) that if p = N0 − λ, then

| A1| � | A1,1| + | A1,2| � A1 + A2 + A3,

where

A1 =
∫ ∫

R6

∣∣∣ f̂(ξ∗)
〈ξ∗ 〉3+γ

∣∣∣|Mδ
λ(ξ − ξ∗)ĝ(ξ − ξ∗)| |ĥ(ξ)|

(3.12)
×

( 〈ξ∗ 〉
〈ξ〉

)p−1

1〈ξ∗ 〉≥
√

2|ξ| dξ∗dξ,

A2 =
∫ ∫

R6

∣∣∣ f̂(ξ∗)
〈ξ∗ 〉3+γ

∣∣∣|Mδ
λ(ξ − ξ∗)ĝ(ξ − ξ∗)| |ĥ(ξ)|

×
(Mδ

λ(ξ∗)(1 + (δ〈ξ − ξ∗ 〉)N0)
〈ξ − ξ∗ 〉λ

+ 1
)
1√

2|ξ|>〈ξ∗ 〉 ≥ |ξ|/2 dξ∗dξ,

A3 =
∫ ∫

R6

∣∣∣ f̂(ξ∗)
〈ξ∗ 〉3+γ

∣∣∣|Mδ
λ(ξ − ξ∗)ĝ(ξ − ξ∗)| |ĥ(ξ)|

( 〈ξ〉
〈ξ∗ 〉

)2s−1

1|ξ|/2>〈ξ∗ 〉 dξ∗dξ.

Setting Ĝ(ξ) = 〈ξ〉s′
Mδ

λ(ξ)ĝ(ξ) and Ĥ(ξ) = 〈ξ〉s′
ĥ(ξ), we get

|A1|2 � ‖f̂ ‖2
L∞

(∫
R3

dξ∗
〈ξ∗ 〉3+γ+2s′

∫
R3

ξ

|Ĥ(ξ)|2 dξ
)

×
(∫

R3

dξ

〈ξ〉3+γ+2s′

∫
R3

( 〈ξ〉
〈ξ∗ 〉

)3+γ−2(p−1)

1〈ξ∗ 〉≥
√

2|ξ| |Ĝ(ξ − ξ∗)|2 dξ∗

)

� ‖f ‖2
L1 ‖Mδ

λg‖2
Hs′ ‖h‖2

Hs′ ,

because γ + 2s′ > 0, and 3 + γ − 2(p − 1) ≥ 0 from (3.8). Here we have used the
fact that 〈ξ∗ 〉 ∼ 〈ξ − ξ∗ 〉 if 〈ξ∗ 〉 ≥

√
2|ξ|.

We consider the case s > 1/2, γ > −1. For s > s′ > 1/2 we have

|A1|2 � ‖f̂ ‖2
L∞

(∫
R3

dξ∗
〈ξ∗ 〉3+γ+1

∫
R3

ξ

|Ĥ(ξ)|2 dξ
)

×
(∫

R3

dξ

〈ξ〉3+γ+1

∫
R3

( 〈ξ〉
〈ξ∗ 〉

)3+γ+(2s′ −1)−2(p−1)

×
1〈ξ∗ 〉≥

√
2|ξ|

〈ξ〉2(2s′ −1)
|Ĝ(ξ − ξ∗)|2 dξ∗

)

� ‖f ‖2
L1 ‖Mδ

λg‖2
Hs′ ‖h‖2

Hs′ ,
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if 3 + γ + (2s′ − 1) − 2(p − 1) > 0. Thus (3.8) can be relaxed to (3.9) to get the
desired estimate for A1. Here we remark that (3.8) and (3.9) are only required
to estimate the part A1.

Noticing the third formula of (3.5), we get

|A2|2 �
{∫

R3

|f̂(ξ∗)|2 dξ∗
〈ξ∗ 〉6+2γ+2s′

∫
〈ξ−ξ∗ 〉�〈ξ∗ 〉

( 〈ξ∗ 〉2λ

〈ξ − ξ∗ 〉2(λ+s′)

+
〈ξ∗ 〉2(λ−N0)

〈ξ − ξ∗ 〉2(λ−N0+s′)
+

1
〈ξ − ξ∗ 〉2s′

)
dξ

}

×
(∫ ∫

R6
|Ĝ(ξ − ξ∗)|2|Ĥ(ξ)|2 dξ dξ∗

)
.

If λ + s′ < 3/2, then

|A2|2 �
∫

R3

|f̂(ξ∗)|2
〈ξ∗ 〉3+2(γ+2s′)

dξ∗ ‖Mδ
λg‖2

Hs′ ‖h‖2
Hs′

� ‖f ‖2
L1 ‖Mδ

λg‖2
Hs′ ‖h‖2

Hs′ .

If λ + s′ ≥ 3/2, then

|A2|2 �
∫

R3

|f̂(ξ∗)|2〈ξ∗ 〉2(λ+s′+ε)

〈ξ∗ 〉6+2(γ+2s′)
dξ∗ ‖Mδ

λg‖2
Hs′ ‖h‖2

Hs′

� ‖f ‖2
Hλ+s′ −3 ‖Mδ

λg‖2
Hs′ ‖h‖2

Hs′ .

Since 2s′ ≥ 2s − 1 and γ + 2s′ > 0, we have

|A3|2 � ‖f̂ ‖2
L∞

(∫
R3

dξ∗
〈ξ∗ 〉3+γ+2s′

∫
R3

|Ĥ(ξ)|2 dξ
)

×
(∫

R3

dξ∗
〈ξ∗ 〉3+γ+2s′

∫
R3

( 〈ξ∗ 〉
〈ξ〉

)2{2s′ −(2s−1)}
1|ξ|/2≥ 〈ξ∗ 〉 |Ĝ(ξ − ξ∗)|2 dξ

)

� ‖f ‖2
L1 ‖Mδ

λg‖2
Hs′ ‖h‖2

Hs′ .

The above four estimates yield the desired estimate for A1(f, g, h).
Next consider A2(f, g, h) = A2,1(f, g, h) − A2,2(f, g, h). Since |ξ− | = |ξ| ×

sin(θ/2) ≥ 〈ξ∗ 〉/2 and θ ∈ [0, π/2], we have
√

2|ξ| ≥ 〈ξ∗ 〉. Write

A2,j =
∫ ∫

R6
Kj(ξ, ξ∗)

(
Mδ

λ(ξ) − Mδ
λ(ξ − ξ∗)

)
f̂(ξ∗)ĝ(ξ − ξ∗)¯̂h(ξ)dξ dξ∗.

Then we have

|K2(ξ, ξ∗)| =
∣∣∣∫ b

( ξ

|ξ| · σ
)
Φ̂c(ξ∗)1|ξ− |≥ 1

2 〈ξ∗ 〉 dσ
∣∣∣

� 1
〈ξ∗ 〉3+γ

〈ξ〉2s

〈ξ∗ 〉2s
1√

2|ξ|≥〈ξ∗ 〉

� 1
〈ξ∗ 〉3+γ

{
1√

2|ξ|≥〈ξ∗ 〉 ≥ |ξ|/2 +
( 〈ξ〉

〈ξ∗ 〉
)2s

1|ξ|/2≥ 〈ξ∗ 〉

}
,
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which shows the desired estimate for A2,2, in exactly the same way as the esti-
mation on A2 and A3.

As for A2,1, it suffices to work under the condition |ξ∗ · ξ− | ≥ (1/2)|ξ− |2. In
fact, on the complement of this set, we have |ξ∗ − ξ− | > |ξ∗ |, and Φ̂c(ξ∗ − ξ−) is
the same as Φ̂c(ξ∗). Therefore, we consider A2,1,p, which is defined by replacing
K1(ξ, ξ∗) by

K1,p(ξ, ξ∗) =
∫

S2
b
( ξ

|ξ| · σ
)
Φ̂c(ξ∗ − ξ−)1|ξ− |≥(1/2)〈ξ∗ 〉1|ξ∗ ·ξ− |≥(1/2)|ξ− |2 dσ.

By writing

1 = 1〈ξ∗ 〉 ≥ |ξ|/21〈ξ−ξ∗ 〉≤2〈ξ∗ −ξ− 〉 + 1〈ξ∗ 〉 ≥ |ξ|/21〈ξ−ξ∗ 〉>2〈ξ∗ −ξ− 〉 + 1〈ξ∗ 〉<|ξ|/2,

we decompose, respectively,

A2,1,p = B1 + B2 + B3.

On the sets corresponding to the above integrals, we have 〈ξ∗ − ξ− 〉 � 〈ξ∗ 〉,
because of |ξ− | � |ξ∗ |, which follows from |ξ− |2 ≤ 2|ξ∗ · ξ− | � |ξ− | |ξ∗ |. Further-
more, on the sets for B1 and B2 we have 〈ξ〉 ∼ 〈ξ∗ 〉, so that 〈ξ∗ − ξ− 〉 � 〈ξ〉 and
b1|ξ− |≥(1/2)〈ξ∗ 〉1〈ξ∗ 〉 ≥ |ξ|/2 is bounded. Putting again Ĝ(ξ) = 〈ξ〉s′

Mδ
λ(ξ)ĝ(ξ) and

Ĥ(ξ) = 〈ξ〉s′
ĥ(ξ), by Lemma 3.1 we have

|B1|2 �
[∫ ∫ ∫ ∣∣∣ Φ̂c(ξ∗ − ξ−)

〈ξ∗ − ξ− 〉s′

∣∣∣2|f̂(ξ∗)|2

×
{

Mδ
λ(ξ∗)2

(1〈ξ−ξ∗ 〉�〈ξ∗ −ξ− 〉

〈ξ − ξ∗ 〉2(s′+λ)
+

δ2N01〈ξ−ξ∗ 〉�〈ξ∗ −ξ− 〉

〈ξ − ξ∗ 〉2(s′+λ−N0)

)

+
1〈ξ−ξ∗ 〉�〈ξ∗ −ξ− 〉

〈ξ − ξ∗ 〉2s′

}
dξ dξ∗ dσ

](∫ ∫ ∫
|Ĝ(ξ − ξ∗)|2|Ĥ(ξ)|2 dσ dξ dξ∗

)
.

Noticing that 〈ξ∗ 〉 ∼ 〈ξ〉 ∼ 〈ξ+〉 � 〈ξ+ − u〉 + 〈u〉 with u = ξ∗ − ξ−, and moreover,
〈u〉 � 〈ξ∗ 〉, we see that if λ ≥ 0, then

Mδ
λ(ξ∗)2 � 〈ξ+ − u〉2λ + 〈u〉2λ

(1 + δ〈u〉)2N0
.

This is true even if λ < 0. Therefore, if s′ + λ < 3/2 we have

|B1|2 � ‖f ‖2
L1

∫
〈u〉−(6+2γ+2s′)

×
{∫

〈ξ+−u〉 ≤ 〈u〉

(〈ξ+ − u〉2s′
+ 〈u〉2λ)

(1 + δ〈u〉)2N0

×
( 1

〈ξ+ − u〉2(s′+λ)
+

δ2N0

〈ξ+ − u〉2(s′+λ−N0)

)
dξ+

+
∫

〈ξ+−u〉 ≤ 〈u〉

dξ+

〈ξ+ − u〉2s′

}
du ‖Mδ

λ(D)g‖2
Hs′ ‖h‖2

Hs′

� ‖f ‖2
L1 ‖Mδ

λ(D)g‖2
Hs′ ‖h‖2

Hs′

∫
du

〈u〉3+2(γ+2s′)
.
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Here we have used the change of variables (ξ, ξ∗) → (ξ+, u) whose Jacobian is∣∣∣∂(ξ+, u)
∂(ξ, ξ∗)

∣∣∣ =
∣∣∣∂ξ+

∂ξ

∣∣∣ =
|I + (ξ/|ξ|) ⊗ σ|

8

=
|1 + (ξ/|ξ|) · σ|

8
=

cos2(θ/2)
4

≥ 1
8
, θ ∈

[
0,

π

2

]
.

If s′ + λ ≥ 3/2, in view of γ + 2s′ > 0 we have

|B1|2 �
∫

|f̂(ξ∗)|2
{

〈u〉2λ−(6+2γ+2s′) log〈u〉
}

dξ∗ ‖Mδ
λ(D)g‖2

Hs′ ‖h‖2
Hs′

� ‖f ‖2
H(λ+s′ −3)+ ‖Mδ

λ(D)g‖2
Hs′ ‖h‖2

Hs′ ,

because 〈u〉 � 〈ξ∗ 〉 on the set of the integral.
As for B2, we first note that, on the set of the integration, ξ+ = ξ − ξ∗ + u

implies

〈ξ − ξ∗ 〉
2

≤ 〈ξ − ξ∗ 〉 − |u| ≤ 〈ξ+〉 ≤ 〈ξ − ξ∗ 〉 + |u| � 〈ξ − ξ∗ 〉,

so that (
Mδ

λ(ξ) ∼
)
Mδ

λ(ξ+) ∼ Mδ
λ(ξ − ξ∗),

and hence we have by the Cauchy–Schwarz inequality

|B2|2 � ‖f ‖2
L1

∫ ∫ ∫ |Φ̂c(ξ∗ − ξ−)|
〈ξ∗ − ξ− 〉2s′ |Ĝ(ξ − ξ∗)|2 dσ dξ dξ∗

×
∫ ∫ ∫ |Φ̂c(ξ∗ − ξ−)|

〈ξ∗ − ξ− 〉2s′ |Ĥ(ξ)|2 dσ dξ dξ∗

� ‖f ‖2
L1 ‖Mδ

λ(D)g‖2
Hs′ ‖h‖2

Hs′ ,

because γ + 2s′ > 0.
On the set of the integration for B3 we recall 〈ξ〉 ∼ 〈ξ − ξ∗ 〉 and

|Mδ
λ(ξ) − Mδ

λ(ξ − ξ∗)| � 〈ξ∗ 〉
〈ξ〉 Mδ

λ(ξ − ξ∗),

so that

|B3|2 � ‖f ‖2
L1

∫ ∫ ∫
b1|ξ− |≥(1/2)〈ξ∗ 〉

|Φ̂c(ξ∗ − ξ−)| 〈ξ∗ 〉
〈ξ〉2s′+1

|Ĝ(ξ − ξ∗)|2 dσ dξ dξ∗

×
∫ ∫ ∫

b1|ξ− |≥(1/2)〈ξ∗ 〉
|Φ̂c(ξ∗ − ξ−)| 〈ξ∗ 〉

〈ξ〉2s′+1
|Ĥ(ξ)|2 dσ dξ dξ∗.

We use the change of variables ξ∗ → u = ξ∗ − ξ−. Note that |ξ− | ≥ (1/2)〈u + ξ− 〉
implies |ξ− | ≥ 〈u〉/

√
10, and that

〈ξ∗ 〉 � 〈ξ∗ − ξ− 〉 + |ξ| sinθ/2.

Then we have∫ ∫
b1|ξ− |≥(1/2)〈ξ∗ 〉

|Φ̂c(ξ∗ − ξ−)| 〈ξ∗ 〉
〈ξ〉2s′+1

dσ dξ∗
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�
∫ 1〈u〉�|ξ|

〈u〉3+γ+2s′

( 〈u〉
〈ξ〉

)2s′

×
(∫

b1|ξ− |�〈u〉
〈u〉

〈ξ〉 dσ +
∫

b sin(θ/2)1|ξ− |�〈u〉 dσ
)

du,

from which we can also obtain the desired bound for B3 if γ + 2s′ > 0. In fact,
the first integral on the sphere is bounded from above by 〈u〉1−2s/〈ξ〉1−2s, and
the second integral has the same bound when s > 1/2. On the other hand, the
second integral is bounded by a constant when s < 1/2 and by | log(〈ξ〉/〈u〉)|
when s = 1/2. The proof of (1) and (2) of the proposition is then completed. �

REMARK 3.5

As seen from the above proof, the restrictions (3.8) and (3.9) on the pair (N0, λ)
in the formula (3.1) are only required to estimate the part A1. It follows from
(3.3) of Lemma 3.1, (3.10), and (3.11) that A1 can be replaced by

Ã1,λ =
∫ ∫

R6

|f̂(ξ∗)|
〈ξ∗ 〉3+γ

|ĝ(ξ − ξ∗)| |ĥ(ξ)| 〈ξ〉λ1〈ξ∗ 〉≥
√

2|ξ|
〈ξ〉

〈ξ∗ 〉 dξ dξ∗.(3.13)

Consequently, for any pair (N0, λ), assertion (1) holds if Ã1,λ is added on the
right-hand side of the estimate.

The combination of Proposition 3.4 and Proposition 3.2 together with its remark
yields the following theorem.

THEOREM 3.6

Assume that 0 < s < 1, γ + 2s > 0. Let 0 < s′ < s satisfy γ + 2s′ > 0,2s′ ≥ (2s −
1)+. Assume that the pair (N0, λ) satisfies (3.8). Then

(1) if s′ + λ < 3/2, we have∣∣(Mδ
λ(Dv)Q(f, g) − Q(f,Mδ

λ(Dv)g), h
)∣∣

(3.14)
� ‖f ‖L1

γ++(2s−1)+
‖Mδ

λ(Dv)g‖Hs′
γ++(2s−1)+

‖h‖Hs′ ;

(2) if s′ + λ ≥ 3/2, we have∣∣(Mδ
λ(Dv)Q(f, g) − Q(f,Mδ

λ(Dv)g), h
)∣∣

� (‖f ‖L1
γ++(2s−1)+

+ ‖f ‖H(λ+s′ −3)+ )‖Mδ
λ(Dv)g‖Hs′

γ++(2s−1)+
‖h‖Hs′ .

Furthermore, if s > 1/2 and γ > −1, then the same conclusion as above holds
even when the condition (3.8) is replaced by (3.9). When 0 < s < 1/2 and γ > 0,
we can use ‖Mδ

λ(Dv)g‖Hs′
γ/2

‖h‖Hs′
γ/2

for the corresponding terms in the above
estimates with smaller weight in the variable v.

REMARK 3.7

It follows from Remark 3.5 that for any pair (N0, λ) the commutator estimate
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∣∣(Mδ
λ(Dv)Q(f, g) − Q(f,Mδ

λ(Dv)g), h
)∣∣

(3.15)
� ‖f ‖L1

γ++(2s−1)+
‖Mδ

λ(Dv)g‖Hs′
γ++(2s−1)+

‖h‖Hs′ + Ã1,λ

holds, instead of (3.14), where Ã1,λ is defined by (3.13).

We recall also the following upper-bound estimate, [7, Proposition 2.1], where
the assumption γ + 2s > 0 is needed (see also [4, Theorem 2.1]).

PROPOSITION 3.8

Let γ + 2s > 0, and let 0 < s < 1. For any r ∈ [2s − 1,2s] and � ∈ [0, γ + 2s] we
have ∣∣(Q(f, g), h

)
L2(R3)

∣∣ � ‖f ‖L1
γ+2s

‖g‖Hr
γ+2s−�

‖h‖H2s−r
�

.

In the following analysis, we shall need an interpolation inequality concerning
weighted-type Sobolev spaces with respect to variable v (see, for instance, [12],
[13]).

LEMMA 3.9

For any k ∈ R, p ∈ R+, δ > 0,

‖f ‖2
Hk

p (R3
v) ≤ Cδ ‖f ‖Hk−δ

2p (R3
v)‖f ‖Hk+δ

0 (R3
v).

And we need also another interpolation inequality in Lq given by the following
lemma.

LEMMA 3.10

Let 1 < q < p. Assume that f ∈ Lp, and assume that 〈v〉�f ∈ L1 for any �. Then
〈v〉�f ∈ Lq for any �. More precisely, we have

‖f ‖Lq
�

≤ 2‖f ‖(p(q−1))/(q(p−1))
Lp ‖f ‖(p−q)/(q(p−1))

L1
�q(p−1)/(p−q)

.

Proof
For any λ > 0, we can write

‖f ‖q
Lq

�
=

∫
〈v〉�q |f(v)|q−p ≤λ

〈v〉�q |f(v)|q dv +
∫

〈v〉�q |f(v)|q−p>λ

〈v〉�q |f(v)|q dv

≤ λ‖f ‖p
Lp + λ(q−1)/(q−p)‖f ‖L1

�q(p−1)/(p−q)
.

Taking

λ = ‖f ‖(p−q)/(p−1)

L1
�q(p−1)/(p−q)

‖f ‖ −(p(p−q))/(p−1)
Lp ,

we obtain the desired estimate. �

4. Smoothing effect of L2-weak solutions

We start from a weak solution in L2 having finite moments of all orders.
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THEOREM 4.1

Assume that 0 < s < 1, γ + 2s > 0. Let f be in L∞([t0, T ];L2
�(R

3)) for any � ∈ N

and a nonnegative weak solution of (1.1). Then, for any t0 < t̃0 < T , we have

f ∈ L∞(
[t̃0, T ]; S(R3)

)
.

Proof
Without loss of generality, let t0 = 0. Assume that, for some a ≥ 0, we have

sup
[0,T ]

‖f(t, ·)‖Ha
�

< ∞ for any � ∈ N.(4.1)

Take λ(t) = Nt+a for N > 0. Choose N0 = a+(5+γ)/2. Then the pair (N0, λ(t))
satisfies (3.8). If we choose N,T1 > 0 such that NT1 = (1 − s), then

λ(T1) − N0 − a ≤ λ(T1) − N0 < −3/2,

from which we have, for t, t′ ∈ [0, T1],

(4.2) Mδ
λ(t)f(t′) ∈ L∞(

[0, T1] × [0, T1];H
3/2
� (R3) ∩ L∞(R3)

)
,

because of (4.1). We show in Lemma 4.3 below that (see also [14]):

(4.3) Mδ
λ(t)f(t) ∈ C

(
[0, T1];L2(R3)

)
,

and for any t ∈ ]0, T1], we have

1
2

∫
R3

(
Mδ

λ(t)f(t)
)2

dv − 1
2

∫ t

0

∫
R3

f(τ)
(
∂τ (Mδ

λ(τ))
2
)
f(τ)dv dτ

=
1
2

∫
R3

(Mδ
λ(0)f0)2 dv

(4.4)

+
∫ t

0

(
Q(f(τ),Mδ

λ(τ)f(τ)),Mδ
λ(τ)f(τ)

)
L2 dτ

+
∫ t

0

(
Mδ

λ(τ)Q(f(τ), f(τ)) − Q(f(τ),Mδ
λ(τ)f(τ)),Mδ

λ(τ)f(τ)
)
L2 dτ,

by taking (Mδ
λ(t))

2f(t) as a test function in the definition of the weak solution,
though it does not belong to L∞([0, T1];W 2,∞(R3)).

Noticing that

∂tM
δ
λ(t) = N(log〈ξ〉)Mδ

λ(t),

it follows from Theorem 3.6 that we have

1
2

‖(Mδ
λf)(t)‖2

L2 ≤ 1
2

‖f(0)‖2
Ha +

∫ t

0

(
Q(f(τ), (Mδ

λf)(τ)), (Mδ
λf)(τ)

)
dτ

+ Cf

∫ t

0

‖(Mδ
λf)(τ)‖Hs′

γ++(2s−1)+
‖(Mδ

λf)(τ)‖Hs′ dτ(4.5)

+ CN

∫ t

0

‖(log〈D〉)1/2(Mδ
λf)(τ)‖2

L2 dτ.
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Since the uniform coercive estimate (2.2) together with interpolation in the
Sobolev space yields(

Q(f(τ), (Mδ
λf)(τ)), (Mδ

λf)(τ)
)

≤ −cf ‖(Mδ
λf)(τ)‖2

Hs
γ/2

+ Cf ‖f(τ)‖2
H−2

γ/2
,

by means of Lemma 3.9 we have

‖(Mδ
λf)(t)‖2

L2 + cf

∫ t

0

‖(Mδ
λf)(τ)‖2

Hs
γ+/2

dτ ≤ ‖f(0)‖2
Ha + Cf

∫ t

0

‖f(τ)‖2
Ha

�
dτ.

(4.6)

Taking δ → +0 and t = T1, we have f(T1) ∈ Hλ(T1) = HNT1+a. This is true for
any 0 < T1 ≤ T . Choosing N = (1 − s)T −1

1 , we have that for any 0 < T1 ≤ T ,

f(T1) ∈ H(1−s)+a.

Fix 0 < s0 < (1 − s). Then, by using Lemma 3.9 and the assumption (4.1), we
see that for any 0 < t1 < t̃0 and any �,

sup
[t1,T ]

‖f(t, ·)‖
H

s0+a
�

< ∞.

We can restart by replacing a by a + s0 = a1 and t0 by t1. By induction, for
a0 = 0, ak = ks0, and tk = t̃0 − (2k)−1(t̃0 − t0), we have for any k ∈ N and any �,

f ∈ L∞(
[tk, T ];Hak

� (R3)
)
,

which concludes the proof of Theorem 4.1. �

REMARK 4.2

When 0 < s < 1/2 and γ > 0 we can use
∫ t

0
‖(Mδ

λf)(τ)‖2
Hs′

γ/2
dτ for the corre-

sponding term in (4.5). Hence, instead of (4.6), we can obtain

‖(Mδ
λf)(t)‖2

L2 ≤ ‖f(0)‖2
Ha + Cf

∫ t

0

‖f(τ)‖2
H−2

γ/2
dτ,

which shows that f(t) ∈ L∞([0, T ];L2 ∩ L1
2(R

3)) implies f(t) ∈ H∞(R3) for t > 0.

LEMMA 4.3

Let T1 > 0, and let Mδ
λ(t)(ξ) be defined by (3.1) with λ = λ(t) = Nt+a for NT1 <

1 and a ∈ R. Suppose that

f ∈ L1
(
[0, T1];L1

max{γ+2s,2}(R3)
)

∩ L∞(
[0, T1];Ha(R3)

)
.

If there exists s1 > s such that

Mδ
λ(t)f(t′, v) ∈ L∞(

[0, T1]t × [0, T1]t′ ;Hs1
�0

(R3
v)

)
for �0 = max{γ/2 + s, γ+ + (2s − 1)+}, then we have (4.3), and (4.4) for any
t ∈ [0, T1]. Furthermore, if 0 < s < 1/2 and γ > 0 we can take �0 = γ/2 + s.
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Proof
In Definition 1.1, taking ϕ(t, v) = ψ(v) ∈ C∞

0 (R3) as a test function independent
of the t-variable, we get∫

R3
f(t)ψ dv −

∫
R3

f(t′)ψ dv =
∫ t

t′
dτ

∫
R3

Q
(
f(τ), f(τ)

)
ψ dv, 0 ≤ t′ ≤ t ≤ T1.

(4.7)

For any fixed t̄ ∈ [0, T1], we can take a sequence {ψj(v)}∞
j=1 ⊂ C∞

0 (R3
v) such

that (Mδ
λ(t̄ ))

−1ψj → Mδ
λ(t̄ )f(t̄ ) in Hs

�0
. Because all terms in (4.7) make sense for

ψ = (Mδ
λ(t̄ ))

2f(t̄ ), we can set it as a test function in (4.7). In fact, we have∣∣∣∫
R3

f(t)(Mδ
λ(t̄ ))

2f(t̄ )dv
∣∣∣ ≤ ‖Mδ

λ(t̄ )f(t)‖L2 ‖Mδ
λ(t̄ )f(t̄ )‖L2 < +∞,

and by noticing that(
Q(f, f), (Mδ

λ)2f
)
=

(
Q(f,Mδ

λf),Mδ
λf

)
+

(
Mδ

λQ(f, f) − Q(f,Mδ
λf),Mδ

λf
)
,

we have∣∣∣∫ t

t′
dτ

∫
R3

Q
(
f(τ), f(τ)

)
(Mδ

λ(t̄ ))
2f(t̄ )dv

∣∣∣
�

∫ t

t′
‖f(τ)‖L1

γ+2s
dτ

(
sup

τ,t̄∈[0,T1]

‖Mδ
λ(t̄ )f(τ)‖Hs

γ/2+s
‖Mδ

λ(t̄ )f(t̄ )‖Hs
γ/2+s

)
(4.8)

+
(∫ t

t′
‖f(τ)‖L1

γ++(2s−1)+
dτ + |t − t′ | sup

τ ∈[0,T1]

‖f(τ)‖Ha

)

×
(

sup
τ,t̄∈[0,T1]

‖Mδ
λ(t̄ )f(τ)‖Hs

γ++(2s−1)+
‖Mδ

λ(t̄ )f(t̄ )‖Hs

)
,

thanks to Proposition 3.8 and Theorem 3.6. Setting ψ = (Mδ
λ(t̄ ))

2f(t̄ ) with t̄ =
t, t′, and taking the sum, we obtain∫

R3

(
Mδ

λ(t)f(t)
)2

dv −
∫

R3

(
Mδ

λ(t′)f(t′)
)2

dv

=
∫

R3
f(t)

(
(Mδ

λ(t))
2 − (Mδ

λ(t′))
2
)
f(t′)dv(4.9)

+
∫ t

t′
dτ

∫
R3

Q
(
f(τ), f(τ)

)(
(Mδ

λ(t))
2f(t) + (Mδ

λ(t′))
2f(t′)

)
dv.

The second term goes to zero if t′ → t thanks to (4.8). By the mean value theorem,
the first term on the right-hand side of (4.9) is estimated by

|t − t′ | sup
0≤t′<τ̃<t≤T1

‖Mδ
λ(τ̃)f(t)‖L2 ‖(log〈D〉)Mδ

λ(τ̃)f(t′)‖L2 .

Hence, (4.9) gives

lim
t′ →t

∫
R3

(
Mδ

λ(t′)f(t′)
)2

dv =
∫

R3

(
Mδ

λ(t)f(t)
)2

dv.(4.10)
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Taking the difference, instead of (4.9), we get∫
R3

(
Mδ

λ(t)f(t)
)2

dv +
∫

R3

(
Mδ

λ(t′)f(t′)
)2

dv

=
∫

R3
f(t)

(
(Mδ

λ(t))
2 + (Mδ

λ(t′))
2
)
f(t′)dv

+
∫ t

t′
dτ

∫
R3

Q
(
f(τ), f(τ)

)(
(Mδ

λ(t))
2f(t) − (Mδ

λ(t′))
2f(t′)

)
dv,

which shows

lim
t′ →t

∫
R3

f(t)
(
(Mδ

λ(t))
2 + (Mδ

λ(t′))
2
)
f(t′)dv = 2

∫
R3

(
Mδ

λ(t)f(t)
)2

dv,

and moreover,

(4.11) lim
t′ →t

∫
R3

(
Mδ

λ(t)f(t)
)(

Mδ
λ(t′)f(t′)

)
dv =

∫
R3

(
Mδ

λ(t)f(t)
)2

dv.

By (4.10) and (4.11) we have

lim
t′ →t

‖Mδ
λ(t′)f(t′) − Mδ

λ(t)f(t)‖2
L2 = 0,

which is (4.3), namely, Mδ
λ(t)f(t) ∈ C([0, T1];L2(R3)). Taking

ψ = (log〈D〉)2(Mδ
λ(t̄ ))

2f(t̄ )

with t̄ = t, t′, similarly we have

(log〈D〉)Mδ
λ(t)f(t) ∈ C

(
[0, T1];L2(R3)

)
.

To prove (4.4), we need to mollify the solution with respect to moment as
well as regularity, so we introduce the following mollifier:

Mδ,κ
λ(t)(D,v) =

Mδ
λ(t)(D)

1 + κ〈D〉 · 1
(1 + κ〈v〉)γ+/2+s

,

with a new parameter κ > 0. Divide [0, t] into k subintervals with the same length,
and put tj = jt/k for j = 0, . . . , k. Similarly to (4.9), we have∫

R3

(
Mδ

λ(t)fκ(tj)
)2

dv −
∫

R3

(
Mδ

λ(tj−1)
fκ(tj−1)

)2
dv

=
∫

R3
fκ(tj)

(
(Mδ

λ(tj)
)2 − (Mδ

λ(tj−1)
)2

)
fκ(tj−1)dv

(4.12)

+
∫ tj

tj−1

dτ

∫
R3

Q
(
f(τ), f(τ)

)
(1 + κ〈v〉)−γ+/2−s(1 + κ〈D〉)−1

×
(
(Mδ

λ(tj)
)2fκ(tj) + (Mδ

λ(tj−1)
)2fκ(tj−1)

)
dv,

where fκ = (1 + κ〈D〉)−1(1 + κ〈v〉)−γ+/2−sf . Since we have∫
fκ(tj)

(
(Mδ

λ(tj)
)2 − (Mδ

λ(tj−1)
)2

)
fκ(tj−1)dv
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=
∫

2Nfκ(tj)(log〈D〉)(Mδ
λ(τj)

)2fκ(tj−1)dv(tj − tj−1) τj ∈ ]tj−1, tj [

= 2N

∫ (√
log〈D〉Mδ

λ(tj)
fκ(tj)

)(√
log〈D〉Mδ

λ(tj−1)
fκ(tj−1)

)
dv(tj − tj−1)

+ N2
(

sup
τ ′,τ ′ ′ ∈[0,T1]

‖ log〈D〉Mδ
λ(τ ′)fκ(τ ′ ′)‖L2

)2

O(|tj − tj−1|2),

it follows from a formula similar to (4.11) that

lim
k→∞

k∑
j=1

∫
fκ(tj)

(
(Mδ

λ(tj)
)2 − (Mδ

λ(tj−1)
)2

)
fκ(tj−1)dv

= N

∫ t

0

∫
R3

(√
log〈D〉Mδ

λ(τ)fκ(τ)
)2

dv dτ.

Summing up (4.12) with respect to j = 1, . . . , k and letting k → ∞, we obtain

1
2

∫
R3

(
Mδ

λ(t)fκ(t)
)2

dv − 1
2

∫ t

0

∫
R3

f(τ)
(
∂τ (Mδ

λ(τ))
2
)
fκ(τ)dv dτ

=
1
2

∫
R3

(Mδ,κ
λ(0)f0)2 dv

+
∫ t

0

(
Q(f(τ),Mδ

λ(τ)f(τ)), (Mδ
λ(τ))

−1(Mδ,κ
λ(τ))

∗Mδ,κ
λ(τ)f(τ)

)
L2 dτ(4.13)

+
∫ t

0

(
Mδ

λ(τ)Q(f(τ), f(τ))

− Q(f(τ),Mδ
λ(τ)f(τ)), (Mδ

λ(τ))
−1(Mδ,κ

λ(τ))
∗Mδ,κ

λ(τ)f(τ)
)
L2 dτ,

thanks to Proposition 3.8 and Theorem 3.6. In fact, for example, we have∫ t

0

∣∣(Q(f(τ),Mδ
λ(τ)f(τ)), (Mδ

λ(τ))
−1

{
(Mδ,κ

λ(tj)
)∗Mδ,κ

λ(tj)
f(tj)

− (Mδ,κ
λ(τ))

∗Mδ,κ
λ(τ)f(τ)

})
L2

∣∣dτ

�
∫ t

0

‖f(τ)‖L1
γ+2s

dτ sup
τ ∈[0,T1]

‖Mδ
λ(τ)f(τ)‖Hs

γ/2+s

× sup
τ,tj ∈[0,T1]

∥∥(Mδ
λ(τ))

−1
{
(Mδ,κ

λ(tj)
)∗Mδ,κ

λ(tj)
f(tj)

− (Mδ,κ
λ(τ))

∗Mδ,κ
λ(τ)f(τ)

}∥∥
Hs

γ/2+s

,

and hence the Lebesgue convergence theorem yields (4.13) because we have∥∥(Mδ
λ(τ))

−1
{
(Mδ,κ

λ(tj)
)∗Mδ,κ

λ(tj)
f(tj) − (Mδ,κ

λ(τ))
∗Mδ,κ

λ(τ)f(τ)
}∥∥

Hs
γ/2+s

� |tj − τ | ‖Mδ
λ(τ)f(τ)‖Hs + ‖Mδ

λ(tj)
f(tj) − Mδ

λ(τ)f(τ)‖L2 .

Letting κ → 0 in (4.13) we obtain the desired formula.
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The last assertion of the lemma in the case 0 < s < 1/2, γ > 0, follows easily
from Theorem 3.6. �

5. Smoothing effect of L1-weak solutions

We come back to the proof of Theorem 1.2 starting from an L1-weak solution.
The first part of the theorem is restated as follows.

THEOREM 5.1

Assume that 0 < s < 1, γ > max{ −2s, −1}. If f belongs to L∞([t0, T ];L1
�(R

3))
for any � ∈ N and is a weak solution of (1.1), then for any t0 < t̃0 < T , we have

f ∈ L∞(
[t̃0, T ]; S(R3)

)
.

Proof
By Theorem 4.1, it is sufficient to prove, for any 0 < t1 ≤ T , (taking again t0 = 0),
that

(5.1) f ∈ L∞(
[t1, T ];L2

�(R
3)

)
.

Since L1(R3) ⊂ H−3/2−ε, we may assume that for any � and any 0 < ε � 1,

(5.2) sup
[0,T ]

‖f(t, ·)‖
H

−3/2−ε
�

< ∞.

As in the proof of Theorem 4.1, we shall prove the theorem by induction.
Assume that for 0 > a ≥ −3/2 − ε, we have

sup
[0,T ]

‖f(t, ·)‖Ha
�

< ∞.

Take also λ(t) = Nt + a for N > 0.
We first consider the case 0 < s ≤ 1/2. Choose N0 = a + (5 + γ)/2 ≥ 1 − ε +

(γ/2) > 0 such that (3.8) is fulfilled. Put ε0 = (1 − 2s′)/8 > 0, and consider ε = ε0,
where 0 < s′ < s is chosen to satisfy γ + 2s′ > 0. If we choose N,T1 > 0 such that
NT1 = ε0, then

s + λ(T1) − N0 − a = s + ε0 − N0 ≤ s − 1 + 2ε0 − (γ/2) < (s′ − 1/2) + 2ε0 < 0,

which shows that

(5.3) Mδ
λ(t)f(t) ∈ L∞(

[0, T1];Hs
� (R3)

)
.

This estimate and Lemma 4.3 lead to (4.4), and hence we obtain (4.5) using
Theorem 3.6, and (4.6) by means of (2.2) and Lemma 3.9. The same procedure
as in the proof of Theorem 4.1 shows (5.1) by induction.

When s > 1/2 we choose 1/2 < s′ < s such that γ + 2s′ > 0,2s′ ≥ (2s − 1).
Choose N0 = a + (5 + γ + 2s′ − 1)/2 such that (3.9) is satisfied. Put ε0 = (γ +
1)/10 > 0, and consider ε = ε0. Then, we have

(5.4) s + λ(T1) − N0 − a = s + ε0 − N0 ≤ s − s′ + 2ε0 − (1 + γ)/2 = s − s′ − 3ε0.

Since we may assume s − s′ ≤ ε0, (5.4) also shows (5.3), which completes the
proof of the theorem in the same way as in the case 0 < s ≤ 1/2. �
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In view of Remark 4.2 and the last assertion of Lemma 4.3, the proof of Theo-
rem 5.1 in the case 0 < s < 1/2 leads us easily to the following theorem where
the assumption (1.5) can be removed.

THEOREM 5.2

Suppose that the cross section B of the form (1.2) satisfies (1.3) and (1.4) with
0 < s < 1/2 and γ > 0. If

f ∈ L∞(
[0, T ];L1

max{2,γ/2+s}(R3) ∩ L logL
)

∩ L1
(
[0, T ];L1

2+γ(R3)
)

is a weak solution, then f ∈ L∞([t0, T ];H∞(R3)) for any t0 ∈ ]0, T [.

We consider now the second part of Theorem 1.2, which is stated as follows.

THEOREM 5.3

Assume that −1 ≥ γ > −2s. Let f ∈ L∞([t0, T ];L1
�(R

3)) for any � ∈ N be a weak
solution of (1.1) satisfying the entropy dissipation estimate

(5.5)
∫ T

t0

D
(
f(t), f(t)

)
dt < +∞.

Then for any t0 < t̃0 < T , we have

f ∈ L∞(
[t̃0, T ]; S(R3)

)
.

Thanks to Corollary 2.4, the assumption (5.5) yields a certain a priori regularity
estimate ∫ T

t0

‖ 〈v〉γ/2
√

f(t)‖2
Hs dt < ∞,(5.6)

directly without mollification of a weak solution. This extra regularity enables us
to use the commutator estimate (3.15) stated in Remark 3.7. Note that we can
now choose an arbitrarily large N0 in (3.1). Hence (Mδ

λ(t))
2f(t) belongs to W 2,∞,

which can be taken as a test function. However, λ(t) cannot be taken as large as
we want, because the regularity (5.6) gained from the dissipation estimate is too
weak. This is why other arguments are needed hereafter.

By means of Theorem 4.1, it suffices to show that f ∈ L∞([t1, T ];L2
�) for

0 < t1 ≤ T by induction, starting from (5.2) where we take again t0 = 0.
We divide the proof into three steps.

First step. Noticing the hypothesis −1 ≥ γ > −2s, we take s′ > 1/2 such that
γ + 2s′ > 0 and s′ < s. Put s0 = (1/4)(γ + 2s′). For arbitrary t > 0 and N > 0
satisfying Nt = s0, we set

λ1(τ) = Nτ − 3
2

− ε for τ ∈ [0, t],
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where ε > 0 is arbitrarily small. If we substitute λ = λ1(τ) into (3.13), then, in
view of Nτ ≤ s0, we have

Ã1.λ1(τ) � ‖ĝ‖L∞

∫ ∫
R6

|f̂(ξ∗)|
〈ξ∗ 〉3+γ−s0

|ĥ(ξ)|
〈ξ〉3/2+ε

dξ dξ∗

� ‖f̂ ‖L3/(2s′) ‖g‖L1 ‖h‖L2 � ‖f ‖L3/(3−2s′) ‖g‖L1 ‖h‖L2 ,

using Hölder, inequality and the fact that (3+γ − s0){3/(3 − 2s′)} > 3. By means
of Lemma 3.10, we have for some �0 > 0,

Ã1,λ1 �
(

‖ 〈v〉γf ‖L3/(3−2s) + ‖f ‖L1
�0

)
‖g‖L1 ‖h‖L2

�
(

‖ 〈v〉γ/2
√

f ‖2
Hs + ‖f ‖L1

�0

)
‖g‖L1 ‖h‖L2 .

Putting f = g = f(τ, v) and h = Mδ
λ1(τ)f(τ, v), we have a term coming from Ã1,λ1

in estimating∫ t

0

(
Mδ

λ1
Q(f(τ), f(τ)) − Q(f(τ),Mδ

λ1
f(τ)),Mδ

λ1
f(τ)

)
dτ

as follows:(
sup

τ ∈[0,t]

‖f(τ)‖L1 ‖Mδ
λ1(τ)f(τ)‖L2

)∫ t

0

‖〈v〉γ/2
√

f(τ)‖2
Hs dτ

+
(

sup
τ ∈[0,t]

‖f(τ)‖L1 ‖f(τ)‖L1
�0

)∫ t

0

‖Mδ
λ1(τ)f(τ)‖L2 dτ

≤ ε′ sup
τ ∈[0,t]

‖Mδ
λ1(τ)f(τ)‖2

L2 +
‖f0‖2

L1

4ε′

(∫ T

0

‖〈v〉γ/2
√

f(τ)‖2
Hs dτ

)2

+
‖f0‖2

L1

4
sup

τ ∈[0,t]

‖f(τ)‖2
L1

�0
+ T

∫ t

0

‖Mδ
λ1(τ)f(τ)‖2

L2 dτ

≤ ε′ sup
τ ∈[0,t]

‖Mδ
λ1(τ)f(τ)‖2

L2 + Cf,T,ε′

(
1 +

∫ t

0

‖Mδ
λ1(τ)f(τ)‖2

L2 dτ
)
,

if 0 < t ≤ T , because of (5.6) and (1.5). Using (3.15) we obtain, instead of (4.5),

1
2

‖Mδ
λ1(t)

f(t)‖2
L2 − ε′ sup

τ ∈[0,t]

‖Mδ
λ1(τ)f(τ)‖2

L2

≤ 1
2

‖f(0)‖2
Ha +

∫ t

0

(
Q(f(τ),Mδ

λ1(τ)f(τ)),Mδ
λ1(τ)f(τ)

)
dτ

+ Cf,T,ε′

(
1 +

∫ t

0

‖Mδ
λ1(τ)f(τ)‖Hs′

γ++(2s−1)+
‖Mδ

λ1(τ)f(τ)‖Hs′ dτ
)

+ CN

∫ t

0

‖(log〈D〉)1/2Mδ
λ1(τ)f(τ)‖2

L2 dτ,

where a = −3/2 − ε. If we consider τ ∈ [0, t] instead of t, then the first term on
the left-hand side can be replaced by supτ ∈[0,t] ‖Mδ

λ1(τ)f(τ)‖2
L2 , which absorbs
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the second term on the left-hand side. Therefore, in the same way as in (4.6),
we get

‖Mδ
λ(t)

f(t)‖2
L2 +

∫ t

0

‖Mδ
λ1(τ)f(τ)‖2

Hs
γ+/2

dτ

� ‖f(0)‖2
Ha + 1 +

∫ t

0

‖f(τ)‖2
Ha

�
dτ.

Letting δ → 0 we obtain, in view of Nt = s0,

‖ 〈D〉s0−3/2−εf(t)‖L2 < ∞(5.7)

and ∫ t

0

‖ 〈D〉Nτ −3/2−εf(τ)‖2
Hs′ dτ < ∞.(5.8)

Second step. Let κ > 0 be arbitrarily small. Considering τ ∈ [κ, t] instead of t in
(5.7), we may assume

sup
τ ∈[κ,t]

‖ 〈D〉s0−3/2−εf(τ)‖L2 < ∞.

For arbitrary t > κ and N > 0 satisfying N(t − κ) = s0 we set

λ2(τ) = s0 + N(τ − κ) − 3
2

− ε for τ ∈ [κ, t].

If we substitute λ = λ2(τ) into (3.13), then we have

Ã1.λ2(τ) �
∫

R3

| 〈ξ〉s′
ĥ(ξ)|

〈ξ〉3/2+ε

×
(∫

R3

〈ξ∗ 〉s0−3/2−ε|f̂(ξ∗)| 〈ξ∗ − ξ〉N(τ −κ)−3/2−ε+s′ |ĝ(ξ − ξ∗)|
〈ξ∗ 〉3+γ+2s′ −3−2ε

×
( 〈ξ〉

〈ξ∗ 〉
)1−s′

dξ∗

)
dξ

� ‖f ‖Hs0−3/2−ε ‖ 〈D〉s′+N(τ −κ)−3/2−εg‖L2 ‖h‖Hs′ ,

if γ + 2s′ > 2ε. Putting f = g = f(τ, v) and h = Mδ
λ2(τ)f(τ, v) we have a term

coming from Ã1,λ2 in estimating∣∣∣∫ t

κ

(
Mδ

λ2
Q(f(τ), f(τ)) − Q(f(τ),Mδ

λ2
f(τ)),Mδ

λ2
f(τ)

)
dτ

∣∣∣
as follows: (

sup
τ ∈[κ,t]

‖f(τ)‖Hs0−3/2−ε

){∫ t

κ

‖Mδ
λ2(τ)f(τ)‖2

Hs′ dτ
}

+
∫ t

κ

‖ 〈D〉s′+N(τ −κ)−3/2−εf(τ)‖2
L2 dτ

}
.
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To avoid any confusion we write N = N2 = s0/(t − κ) in this second step and
N = N1 = s0/t in (5.8). Then we have

N2(τ − κ) ≤ N1τ if τ ∈ [κ, t],

from which we can use (5.8) to estimate the term coming from Ã1,λ2 . In this step
we obtain, finally, in view of N(t − κ) = s0,

‖ 〈D〉2s0−3/2−εf(t)‖L2 < ∞

and ∫ t

κ

‖ 〈D〉s0−3/2−εf(τ)‖2
Hs′ dτ < ∞.(5.9)

Third step. For k ≥ 2, suppose that

sup
τ ∈[(k−1)κ,t]

‖ 〈D〉(k−1)s0−3/2−εf(τ)‖L2 < ∞.

For arbitrary t > kκ and N > 0 satisfying N(t − kκ) = s0 we set

λk(τ) = (k − 1)s0 + N(τ − κ) − 3
2

− ε for τ ∈ [κ, t].

Consider Mδ
λk(τ). Then, using (5.9) instead of (5.8), we can proceed with the

induction method in almost the same way as in the second step. Since κ > 0 is
arbitrary, we obtain the desired conclusion.
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