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Abstract In this paper, we first derive the CR analogue of the almost Schur lemma on
a pseudo-Hermitian (2n + 1)-manifold (M,J, θ) for n ≥ 2. Second, we study a sufficient
condition for the existence of a pseudo-Einstein contact form when the CR structure of
M has vanishing first Chern class which is related to the J. M. Lee conjecture.

1. Introduction

Let (Mn, g) be a closed Riemannian manifold. The Schur lemma says that every
Einstein manifold of dimension n ≥ 3 has constant scalar curvature. Here g is
defined to be Einstein if its Ricci tensor is proportional to the metric, that is,
Rc = (S/n)g. Recently, C. De Lellis and P. Topping proved an interesting result
that generalizes the Schur lemma.

PROPOSITION 1.1

(Almost Schur lemma [LT, Theorem 0.1]) For n ≥ 3, if (Mn, g) is a closed Rie-
mannian manifold with nonnegative Ricci tensor, then∫

M

(S − S)2 ≤ 4n(n − 1)
(n − 2)2

∫
M

∣∣∣Rc − S

n
g
∣∣∣2,

where S is the average value of the scalar curvature S of g.

Obviously the classical Schur lemma follows directly from this theorem. Later,
Y. Ge and G. Wang [GW] showed that Proposition 1.1 holds under the condition
of nonnegativity of the scalar curvature for dimension n = 4 and equality holds
if and only if (M4, g) is an Einstein manifold.

Let (M,J, θ) be a closed (i.e., compact without boundary) pseudo-Hermitian
(2n + 1)-manifold (see [Le] and Section 2 for basic notions in pseudo-Hermitian
geometry). In this paper, we first consider a CR analogue of the almost Schur
lemma on a closed pseudo-Hermitian (2n + 1)-manifold M for n ≥ 2. Second, we
study a sufficient condition for the existence of a global pseudo-Einstein contact
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form when the CR structure of M has vanishing first Chern class which is related
to the J. M. Lee conjecture (see [Le]). The Lee conjecture says that any closed
pseudo-Hermitian CR manifold M whose CR structure has vanishing first Chern
class admits a global pseudo-Einstein contact form.

We recall that a contact form θ on M is said to be pseudo-Einstein if its
Webster–Ricci tensor Rαβ is proportional to the Levi form hαβ , that is,

Rαβ =
R

n
hαβ .

Here R = hαβRαβ is the Webster scalar curvature of θ: the pseudo-Einstein con-
dition yet less rigid than the Einstein condition in Riemannian geometry. Indeed,
the Bianchi identity (3.7) no longer implies that R is a constant due to the pres-
ence of pseudo-Hermitian torsion terms.

The natural problem is to find a global pseudo-Einstein contact form on
a closed pseudo-Hermitian manifold. Note that any contact form on a closed
pseudo-Hermitian 3-manifold is actually pseudo-Einstein (since the Webster–
Ricci tensor has only one component R11); hence we assume that M has CR
dimension n ≥ 2.

First we state the following CR analogue of the almost Schur lemma on a
closed pseudo-Hermitian (2n + 1)-manifold M for n ≥ 2.

THEOREM 1.2

For n ≥ 2, if (M,J, θ) is a closed pseudo-Hermitian (2n + 1)-manifold with(
Ric − n + 1

2
Tor

)
(Z,Z) ≥ 0 for all Z ∈ T1,0(M),

then ∫
M

(R − R)2 ≤ 2n(n + 1)
(n − 1)(n + 2)

∫
M

∑
α,β

∣∣∣Rαβ − R

n
hαβ

∣∣∣2
(1.1)

+ 2in

∫
M

(Aαβϕαβ − Aαβϕαβ),

where R is the average value of R over M and ϕ is the unique real solution of
Δbϕ = R − R with

∫
M

ϕ = 0. Moreover, if the equality holds, then∫
M

(R − R)2 =
2n(n + 1)

(n − 1)(n + 2)

∫
M

∑
α,β

∣∣∣Rαβ − R

n
hαβ

∣∣∣2

and the contact form e(1/(n+1))ϕθ will be pseudo-Einstein.

This theorem gives a characterization of pseudo-Einstein contact forms. It is
important to note that the Bianchi identity (3.7) implies that(

Rαβ − R

n
hαβ

),αβ

+
(
Rαβ − R

n
hαβ

),βα

=
n − 1

n
ΔbR + 2(n − 1) Im(Aαβ

,αβ).
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Thus when a contact form θ is pseudo-Einstein, then R being a constant on M

(or ΔbR = 0 on M ) is equivalent to the condition Im(Aαβ
,αβ) = 0. Therefore,

after integration by parts of (1.1), we obtain the following.

COROLLARY 1.3

In addition to the same conditions as in Theorem 1.2, we assume that
Im(Aαβ

,αβ) = 0. Then∫
M

(R − R)2 ≤ 2n(n + 1)
(n − 1)(n + 2)

∫
M

∑
α,β

∣∣∣Rαβ − R

n
hαβ

∣∣∣2.
This corollary implies that in addition if the contact form θ is pseudo-Einstein,
then R will be a constant on M . Since∑

α,β

∣∣∣Rαβ − R

n
hαβ

∣∣∣2 =
∑
α,β

∣∣∣Rαβ − R

n
hαβ

∣∣∣2 +
1
n

(R − R)2,

we immediately get the following.

COROLLARY 1.4

Under the same conditions as in Corollary 1.3, we have∫
M

∑
α,β

∣∣∣Rαβ − R

n
hαβ

∣∣∣2 ≤ n(n + 3)
(n − 1)(n + 2)

∫
M

∑
α,β

∣∣∣Rαβ − R

n
hαβ

∣∣∣2.
Now we study a sufficient condition for the existence of a pseudo-Einstein contact
form. It was shown, by J. M. Lee in [Le], that if a pseudo-Hermitian manifold M

admits a global pseudo-Einstein contact form, the first Chern class c1(T1,0M) of
the contact distribution vanishes. Conversely, we have the following, a sufficient
condition for the existence of a pseudo-Einstein contact form.

THEOREM 1.5

Suppose that (M,J, θ) is a closed pseudo-Hermitian (2n+1)-manifold whose CR
structure has vanishing first Chern class and there exists a contact form θ̂ on M

which is conformal to θ such that

(1.2) Aαβ
,α = 0 and [∂

∗
b , ∇T ] = 0.

Then M admits a global pseudo-Einstein contact form.

From Corollary 1.3, we believe that there are more general conditions than in
Theorem 1.5 on M for the existence of a global pseudo-Einstein contact form.

In particular, it follows from (4.2) that conditions (1.2) are satisfied on a
closed pseudo-Hermitian (2n+1)-manifold with vanishing pseudo-Hermitian tor-
sion. Thus our Theorem 1.5 generalizes the following result of J. M. Lee.
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COROLLARY 1.6

([Le, Theorem E, Part (ii)]) Suppose that (M,J, θ) is a closed pseudo-Hermitian
(2n + 1)-manifold whose CR structure has vanishing first Chern class and there
exists a contact form θ̂ on M which is conformal to θ with free pseudo-Hermitian
torsion. Then M admits a global pseudo-Einstein contact form.

2. Preliminary

Let us give a brief introduction to pseudo-Hermitian geometry (see [Le] for
more details). Let (M,ξ) be a (2n + 1)-dimensional, orientable, contact mani-
fold with contact structure ξ, dimR ξ = 2n. A CR structure compatible with ξ

is an endomorphism J : ξ → ξ such that J2 = −1. A CR structure J can extend
to C ⊗ ξ and decomposes C ⊗ ξ into the direct sum of T1,0 and T0,1 which are
eigenspaces of J with respect to i and −i, respectively. A pseudo-Hermitian
structure compatible with ξ is a CR structure J compatible with ξ together with
a choice of contact form θ. Such a choice determines a unique real vector field
T , which is called the characteristic vector field of θ, such that θ(T ) = 1 and
dθ(T, ·) = 0. Let {T,Zα,Zᾱ} be a frame of TM ⊗ C, where Zα is any local frame
of T1,0,Zᾱ = Zα ∈ T0,1, and T is the characteristic vector field. Then {θ, θα, θᾱ},
which is the coframe dual to {T,Zα,Zᾱ}, satisfies

(2.1) dθ = ihαβ̄θα ∧ θβ̄ ,

for some positive-definite Hermitian matrix of functions (hαβ̄). Actually we can
always choose Zα such that hαβ̄ = δαβ ; hence, throughout this paper, we assume
hαβ̄ = δαβ .

The pseudo-Hermitian connection of (J, θ) is the connection ∇ on TM ⊗ C

given in terms of a local frame Zα ∈ T1,0 by

∇Zα = ωα
β ⊗ Zβ , ∇Zᾱ = ωᾱ

β̄ ⊗ Zβ̄ , ∇T = 0,

where ωα
β are the 1-forms uniquely determined by the following equations:

dθβ = θα ∧ ωβ
α + θ ∧ τβ ,

τα ∧ θα = 0, ωα
β + ωβ

α = 0.

We can write τα = Aαβθβ with Aαβ = Aβα. Here Aαβ is called the pseudo-
Hermitian torsion. The curvature of the Webster–Stanton connection, expressed
in terms of the coframe {θ = θ0, θα, θᾱ}, is

Πβ
α = Πβ̄

ᾱ = dωβ
α − ωβ

γ ∧ ωγ
α,

Π0
α = Πα

0 = Π0
β̄ = Πβ̄

0 = Π0
0 = 0.

Webster showed that Πβ
α can be written as

Πβ
α = Rβ

α
ρσ̄θρ ∧ θσ̄ + Wβ

α
ρθ

ρ ∧ θ − Wα
βρ̄θ

ρ̄ ∧ θ + iθβ ∧ τα − iτβ ∧ θα,

where the coefficients satisfy

Rβᾱρσ̄ = Rαβ̄σρ̄ = Rᾱβσ̄ρ = Rρᾱβσ̄, Wβᾱβ = Wβᾱβ .
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We denote components of covariant derivatives with indices preceded by
a comma; thus we write Aαβ

,β . The indices {0, α, ᾱ} indicate derivatives with
respect to {T,Zα,Zᾱ}. For derivatives of a scalar function, we often omit the
comma; for instance, ϕα = Zαϕ, ϕαβ̄ = Zβ̄Zαϕ − ωα

γ(Zβ̄)Zγϕ, ϕ0 = Tϕ for a
(smooth) function ϕ.

For a real function ϕ, the subgradient ∇b and sub-Laplacian Δb are defined
by

∇bϕ = ϕαZα + ϕαZᾱ, Δbϕ = (ϕα
α + ϕα

α).

It follows from (2.1) that the following commutation identities hold (see [Le,
Lemma 2.3]):

(2.2) ϕα
α =

1
2
(Δbϕ + inTϕ) and ϕα

α =
1
2
(Δbϕ − inTϕ).

The Webster–Ricci tensor and the torsion tensor on T1,0 are defined by

Ric(X,Y ) = Rαβ̄XαY β̄ ,

Tor(X,Y ) = i
∑
α,β

(Aᾱβ̄X ᾱY β̄ − AαβXαY β),

where X = XαZα, Y = Y βZβ , Rαβ̄ = Rγ
γ

αβ̄ . The Webster scalar curvature is
R = Rα

α = hαβ̄Rαβ̄ .

3. The proof of Theorem 1.2

In this section, we follow the same arguments as in [LT] to prove Theorem 1.2.
Let us recall the following integral formula.

PROPOSITION 3.1

Let (M,J, θ) be a closed pseudo-Hermitian (2n + 1)-manifold. Then for any con-
stant c ∈ R, we have(1

2
+

c

n

)∫
M

(Δbϕ)2

=
[
1 +

2(1 − c)
n

]∫
M

∑
α,β

ϕαβϕαβ +
[
1 − 2(1 − c)

n

]∫
M

∑
α,β

ϕαβϕαβ

(3.1)
+

[
1 − 2(1 − c)

n

]∫
M

Ric
(
(∇bϕ)C, (∇bϕ)C

)
+

c

2n

∫
(P0ϕ)ϕ

−
(n

2
+ c

)∫
M

Tor
(
(∇bϕ)C, (∇bϕ)C

)
,

where (∇bϕ)C = ϕαZα is the corresponding complex (1,0)-vector field of ∇bϕ

and P0 is the CR Paneitz operator defined by P0ϕ = 8(ϕα
α

β + inAβαϕα),β .
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Proposition 3.1 follows from [CC, Theorem 3.1] and the following identity (see
[CC, Corollary 2.4]):

(3.2)
∫

M

ϕ2
0 =

1
n2

∫
M

(Δbϕ)2 +
2
n

∫
M

Tor
(
(∇bϕ)C, (∇bϕ)C

)
− 1

2n2

∫
M

(P0ϕ)ϕ.

It is important to note that (see the proof of [CC, Theorem 3.2])

n − 1
8n

∫
M

(P0ϕ)ϕ =
∫

M

∑
α,β

ϕαβϕαβ − 1
4n

(Δbϕ)2 − n

4
ϕ2

0

=
∫

M

∑
α,β

ϕαβϕαβ − 1
n

ϕγ
γϕδ

δ(3.3)

=
∫

M

∑
α,β

∣∣∣ϕαβ − 1
n

ϕγ
γhαβ

∣∣∣2,
where we use the identities (2.2) in the second equation. This implies that the
CR Paneitz operator P0 is nonnegative for n ≥ 2.

In order to prove Theorem 1.2, first we claim that, for n ≥ 2,

n + 2
n − 1

∫
M

∑
α,β

∣∣∣ϕαβ − 1
n

ϕγ
γhαβ

∣∣∣2

=
n + 1
2n

∫
M

(Δbϕ)2 −
∫

M

∑
α,β

ϕαβϕαβ(3.4)

−
∫

M

(
Ric − n + 1

2
Tor

)(
(∇bϕ)C, (∇bϕ)C

)
.

(i) For n ≥ 3, let c = 0 in equation (3.1); we have

n + 2
n

∫
M

∑
α,β

ϕαβϕαβ =
1
2

∫
M

(Δbϕ)2 − n − 2
n

∫
M

∑
α,β

ϕαβϕαβ

(3.5)
−

∫
M

(n − 2
n

Ric − n

2
Tor

)(
(∇bϕ)C, (∇bϕ)C

)
.

Also let c = 1 − n/2 in equation (3.1); we get

1
2n

∫
M

(Δbϕ)2

(3.6)
=

∫
M

∑
α,β

ϕαβϕαβ − 1
2

∫
M

Tor
(
(∇bϕ)C, (∇bϕ)C

)
− n − 2

8n

∫
M

(P0ϕ)ϕ.

Thus, by (3.3) and substituting (3.5) into (3.6), we obtain

n − 2
n − 1

∫
M

∑
α,β

∣∣∣ϕαβ − 1
n

ϕγ
γhαβ

∣∣∣2 =
n − 2
8n

∫
M

(P0ϕ)ϕ

=
∫

M

∑
α,β

ϕαβϕαβ − 1
2n

∫
M

(Δbϕ)2 − 1
2

∫
M

Tor
(
(∇bϕ)C, (∇bϕ)C

)



CR almost Schur lemma and Lee conjecture 95

=
n − 2
n + 2

[
n + 1
2n

∫
M

(Δbϕ)2 −
∫

M

∑
α,β

ϕαβϕαβ

−
∫

M

(
Ric − n + 1

2
Tor

)(
(∇bϕ)C, (∇bϕ)C

)]
.

(ii) For n = 2, for c ∈ (0,2) in equation (3.1), and by (3.3), we have

1 + c

2

∫
M

(Δbϕ)2

= (2 − c)
∫

M

∑
α,β

ϕαβϕαβ + c

∫
M

∑
α,β

ϕαβϕαβ

+
∫

M

[c Ric −(1 + c) Tor]
(
(∇bϕ)C, (∇bϕ)C

)
+ 4c

∫ ∑
α,β

∣∣∣ϕαβ − 1
2
ϕγ

γhαβ

∣∣∣2;
thus ∫

M

∑
α,β

∣∣∣ϕαβ − 1
2
ϕγ

γhαβ

∣∣∣2

=
∫

M

∑
α,β

ϕαβϕαβ − 1
8

∫
M

(Δbϕ)2 − 1
2

∫
M

ϕ2
0

=
3c

4(2 − c)

∫
M

(Δbϕ)2 − c

2 − c

∫
M

(
Ric − 3

2
Tor

)(
(∇bϕ)C, (∇bϕ)C

)
− c

2 − c

∫
M

∑
α,β

ϕαβϕαβ +
(
1 − 4c

2 − c

)∫
M

∑
α,β

∣∣∣ϕαβ − 1
2
ϕβ

βhαβ

∣∣∣2,
where in the second equation we have used the identity (3.2) for n = 2. It yields

4
∫

M

∑
α,β

∣∣∣ϕαβ − 1
2
ϕγ

γhαβ

∣∣∣2

=
3
4

∫
M

(Δbϕ)2 −
∫

M

∑
α,β

ϕαβϕαβ −
∫

M

(
Ric − 3

2
Tor

)(
(∇bϕ)C, (∇bϕ)C

)
.

This completes the proof of the claim (3.4).
Next we denote the traceless Webster–Ricci tensor by R0

αβ
� Rαβ −(R/n)hαβ ,

and from the contracted Bianchi identity (see [Le, (2.11)]) Rαβ
,β = Rα − i(n −

1)Aαβ
,β , we get

(3.7) R0
αβ

,β =
(
Rαβ − R

n
hαβ

),β

=
n − 1

n
Rα − i(n − 1)Aαβ

,β .

Now we can prove our Theorem 1.2.
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Proof of Theorem 1.2
Let ϕ be the unique solution of Δbϕ = R − R with

∫
M

ϕ = 0. By (3.7), we then
compute∫

M

(R − R)2

=
∫

M

(R − R)Δbϕ = −
∫

M

〈∇bR, ∇bϕ〉 = −
∫

M

(Rαϕα + Rαϕα)

=
(

− n

n − 1

∫
M

R0
αβ

,βϕα + in

∫
M

Aαβ
,βϕα

)
+ complex conjugate

(3.8)
=

(
n

n − 1

∫
M

R0
αβ

(
ϕαβ − 1

n
ϕγ

γhαβ
)

− in

∫
M

Aαβϕαβ

)
+ complex conjugate

=
2n

n − 1

∫
M

R0
αβ

(
ϕαβ − 1

n
ϕγ

γhαβ
)

+ in

∫
M

(Aαβϕαβ − Aαβϕαβ)

≤ 2n

n − 1
‖R0

αβ
‖L2

∥∥∥ϕαβ − 1
n

ϕγ
γhαβ

∥∥∥
L2

+ in

∫
M

(Aαβϕαβ − Aαβϕαβ).

Now from (3.4) and the condition
(
Ric −((n + 1)/2) Tor

)
((∇bϕ)C, (∇bϕ)C) ≥ 0,

we
obtain ∫

M

∑
α,β

∣∣∣ϕαβ − 1
n

ϕγ
γhαβ

∣∣∣2 ≤ (n − 1)(n + 1)
2n(n + 2)

∫
M

(Δbϕ)2

=
(n − 1)(n + 1)

2n(n + 2)

∫
M

(R − R)2,

and thus ∥∥∥ϕαβ − 1
n

ϕγ
γhαβ

∥∥∥
L2

≤
( (n − 1)(n + 1)

2n(n + 2)

∫
M

(R − R)2
)1/2

,

which combined with (3.8) and applying Young’s inequality 2ab ≤ εa2 + ε−1b2

with ε =
√

(2n(n + 2))/((n − 1)(n + 1)), then gives the equation (1.1).
Moreover, if the equality holds, then ϕ will satisfy

ϕαβ = 0 for all α,β,
(
Ric − n + 1

2
Tor

)(
(∇bϕ)C, (∇bϕ)C

)
= 0

and

R0
αβ

= r
(
ϕαβ − 1

n
ϕγ

γhαβ

)
for some real constant r.

Simple computation shows that r is the constant (n + 2)/(n + 1). Therefore,∫
M

(Aαβϕαβ − Aαβϕαβ) = 0 and R0
αβ

=
n + 2
n + 1

(
ϕαβ − 1

n
ϕγ

γhαβ

)
,

which implies that the contact form e1/(n+1)ϕθ will be pseudo-Einstein by [DT,
Proposition 5.9]. This completes the proof of Theorem 1.2. �
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4. The proof of Theorem 1.5

Let (M,J, θ) be a closed pseudo-Hermitian (2n+1)-manifold. We consider a con-
formal change θ̂ = e2uθ of the contact form, following the method of [Le]. Under
this deformation, the contact distribution ξ = kerθ and the complex structure J

are fixed.
In [Le], J. M. Lee proved that, under the conformal change of the contact

form θ̂ = e2uθ, the Webster–Ricci tensor Rαβ changes as

R̂αβ = Rαβ −
(
Δbu + 2(n + 1)| ∇bu|2

)
hαβ − (n + 2)(uαβ + uβα).

On the other hand, if the first Chern class c1(T1,0M) of M vanishes, there
exists a real 1-form σ such that

Rαβθα ∧ θβ = dσ on ξ.

It can be easily shown that the (0,1)-part η = σ(0,1) is ∂b-closed, so that there
exist a complex function f = u + iv ∈ C∞

C
(M) and a �b-harmonic form γ such

that

η =
n + 2
2π

∂bf − γ.

Then Theorem 1.5 follows from the following theorem.

THEOREM 4.1 ([Le, LEMMA 6.2])

Let (M,J, θ) be a closed pseudo-Hermitian (2n + 1)-manifold. Assume that there
exists a 1-form σ such that

Rαβθα ∧ θβ = dσ on ξ,

and the �b-harmonic part γ of σ(0,1) satisfies the condition

γα,β + γβ,α = 0,

where σ(0,1) = ((n + 2)/2π)∂b(u + iv) − γ. Then θ̂ = e2uθ is a pseudo-Einstein
contact form.

Moreover, it was also shown in [Le] that

2π(γα,β + γβ,α)(γα,β + γβ,α) = 2Reγβ,α[2(n + 2)uαβ − Rαβ ].

Therefore, using the divergence formula, we have

2π

∫
M

(γα,β + γβ,α)(γα,β + γβ,α)

= 2Re
∫

M

{
2(n + 2)[(uαβγβ),α − (uα

αγβ),β − i(n − 1)Aαβuαγβ ]
(4.1)

− [(Rαβγβ),α − (ργβ),β + i(n − 1)Aαβ
,αγβ ]

}
= −2Re

∫
M

i(n − 1)[2(n + 2)Aαβuαγβ + Aαβ
,αγβ ].

Here, we are now in the position to prove our Theorem 1.5.
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Proof of Theorem 1.5
By the assumption Aαβ

,α = 0 and (4.1), we only have to show∫
M

Aαβuαγβ = 0.

Using the commutation formula in [Le, Lemma 2.3], for any ∂b-closed (0,1)-form
η, we have

(4.2) [∂
∗
b , ∇T ]η = η0α

α − ηα
α
0 = (Aβαηα),β .

Thus, ∫
M

Aαβuαγβ =
∫

M

(Aαβγβu),α − (Aαβγβ),αu = 0.

This completes the proof of Theorem 1.5. �
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