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Abstract In this paper, we first recall and apply the fundamental techniques of con-
structingbadNoetherian local domains, due toC.Rotthaus,T.Ogoma,R.C.Heitmann,
and M. Brodmann and C. Rotthaus, to show several basic examples:

(1) a three-dimensional Nagata normal local domain, which is a complete intersec-
tion, whose regular locus is not open;

(2) a three-dimensional Henselian Nagata normal local domain, which is not cate-
nary.

Next we present a unified version of Brodmann and Rotthaus’s and Ogoma’s meth-
ods in order to obtain a particular local domain A with a specified prime element x such
that the local domain A/xA is the bad Noetherian local domain given above:

(3) a three-dimensional unmixed local domain A that has xA = p ∈ Spec(A) such
that A/p is not unmixed.

Finallywe followOgoma’s construction of factorial local domains whose completions
are designated complete local domains. Then, we gather some examples of bad factorial
local domains.
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0. Introduction

This paper is the first part of our study entitled: A few examples of local rings, I,
II, III. In this part I, we first recall the fundamental techniques of constructing
bad Noetherian local domains, due to C. Rotthaus [33], T. Ogoma [26], R. C.
Heitmann [12], and M. Brodmann and C. Rotthaus [5]. Then we apply these
techniques to show several basic examples. Some of the examples we give here
were constructed by Akizuki [1], Nagata [21], and Ferrand and Raynaud [8], and
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others were obtained by the above-mentioned authors to settle long-unsolved
questions or conjectures.∗

Next we present a unified version of Brodmann and Rotthaus’s [6] and
Ogoma’s [29] method in order to obtain a particular local domain A with a
specified prime element x such that the local domain A/xA is the bad Noe-
therian local domain given above. We show some interesting examples, including
Valabrega’s [34] bad regular local rings.

Finally we follow Ogoma’s construction [28] of factorial local domains whose
completions are designated complete local domains. Then, we gather some exam-
ples of bad factorial local domains.

Thus part I may be regarded as a concise review of the well-known results.
However, we should emphasize that, to get factorial local domains whose com-
pletion could be almost all complete local rings, we need to use freely as com-
mon knowledge, without explicitly referencing them, these fundamental ideas
and techniques throughout part II. This is the reason that we include part I in
our series of articles.

Now let us summarize the contents of this paper. Fixing notation and termi-
nologies, we begin Section 1 with a basic lemma due to Heitmann, which plays a
key role throughout our study. Using Heitmann’s lemma [12, Proposition 1], we
prove Theorem 1.4.

THEOREM 1.4

Let K be a purely transcendental extension field of countably infinite degree over
a countable field K0, let n, r,m ∈ N with m < n, and let z1, . . . , zn be indeter-
minates over K. Let R := K[z1, . . . , zn](z1,...,zn), and let R̂ denote the comple-
tion of R; that is, R̂ = K[[z1, . . . , zn]]. For each j with 1 ≤ j ≤ r, let Fj :=
Fj(Z1, . . . ,Zm) be a polynomial in m variables with coefficients in K0 such that
Fj ∈ (Z1, . . . ,Zm)K0[Z1, . . . ,Zm]. Then there exist

(1) elements ζ1, . . . , ζn ∈ R̂ that are analytically independent over K such
that K[[ζ1, . . . , ζn]] = K[[z1, . . . , zn]], and

(2) a local domain A with R
ι

⊂ A ⊂ Q(R), where Q(R) denotes the field of
fractions of R, such that the ring A and the ζi satisfy the conditions (1.4.1),
(1.4.2) and (1.4.3) given below:

(1.4.1) ι̃ : K[[ζ1, . . . , ζn]]/
(
F1(ζ), . . . , Fr(ζ)

)
= R̂/(f1, . . . , fr)

∼=
↪→ Â.

That is, for (1.4.2), if we set the notation: for each j, fj := Fj(ζ) = Fj(ζ1, . . . ,

ζm) ∈ K0[[ζ1, . . . , ζm]] ⊂ K[[ζ1, . . . , ζn]] = R̂; then the canonical ring homomor-
phism ι̂ from R̂ to Â induced by ι : R ↪→ A is a surjection with kernel (f1, . . . , fr).
For convenience, we denote by ι̃ the associated isomorphism shown in (1.4.1):

(1.4.2) p̂ :=
(
ι̃(ζ1), . . . , ι̃(ζm)

)
Â is a prime ideal of Â and p̂ ∩ A = (0),

∗The recent article [15] contains additional details and motivation for the construction.

Other examples of rings constructed using power series are given in [11].
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(1.4.3) A/p is essentially of finite type over K for every p ∈ Spec(A) \ {(0)}.

Further, we include Corollary 1.5 as a slight generalization of Theorem 1.4.
Section 2 consists of Examples 2.1–2.15 derived from Theorem 1.4 and/or

Corollary 1.5:

Example 2.1: a one-dimensional analytically ramified and/or reducible
local domain of arbitrary characteristic;

Example 2.2: a one-dimensional local domain with given embedding
dimension and multiplicity, which is δ-simple for a derivation δ ∈ Der(A,A);

Example 2.3: a two-dimensional local domain whose completion has em-
bedded associated prime ideal(s);

Example 2.4: a two-dimensional Cohen–Macaulay local domain (A,m)
that has infinitely many non-Noetherian intermediate quasi-local domains
between A and its derived normal ring Ā;

Example 2.5: a two-dimensional analytically (ir)reducible Nagata normal
local domain that is not analytically normal;

Example 2.6: a two-dimensional quasi-excellent catenary local domain,
which is not universally catenary;

Example 2.7: a two-dimensional local domain, which is a complete inter-
section, whose regular (nor normal) locus is not open;

Example 2.8: a two-dimensional Gorenstein local domain whose complete
intersection locus is not open;

Example 2.9: a two-dimensional Cohen–Macaulay local domain whose
Gorenstein locus is not open;

Example 2.10: a three-dimensional local domain whose Cohen–Macaulay
locus is not open;

Example 2.11: a three-dimensional Nagata normal local domain, which is
a complete intersection, whose regular locus is not open;

Example 2.12: a three-dimensional Nagata normal Gorenstein local do-
main whose complete intersection locus is not open;

Example 2.13: a three-dimensional Nagata normal Cohen–Macaulay local
domain whose Gorenstein locus is not open;

Example 2.14: a four-dimensional Nagata normal local domain that has
nonopen Cohen–Macaulay locus;

Example 2.15: a three-dimensional Henselian Nagata normal local do-
main, which is not catenary.

Next in Section 3, thanks to Brodmann and Rotthaus [6], Ogoma [29], and
Brezuleanu and Rotthaus [4], we modify Theorem 1.4 to the following form that
makes it possible to specify a prime element.

THEOREM 3.4

Let K be a purely transcendental extension field of countably infinite degree over a
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countable field K0, let n, r,m ∈ N with m < n, and let x, z1, . . . , zn be n+1 inde-
terminates over K. Let R := K[x, z1, . . . , zn](x,z1,...,zn), and let R̂ denote the com-
pletion of R; that is, R̂ = K[[x, z1, . . . , zn]]. For each j with 1 ≤ j ≤ r, let Gj :=
Gj(X,Z1, . . . ,Zm) be a polynomial in the m+1 variables X,Z1, . . . ,Zm with coef-
ficients in K0 and zero constant term. For convenience, we let Z := (Z1, . . . ,Zm).
Define Fj := Fj(Z) = Gj(0,Z); we consider Fj as an element of K0[Z].

Further, by taking another variable Q, we let ϕ̃ and ϕ be the ring surjections
fixing K0[X,Z,Q] and K0[Z,Q], respectively, shown below:

ϕ̃ : K0[X,Z,Q][T1, . . . , Tr] → K0[X,Z,Q][G1/Q, . . . ,Gr/Q] with Tj �→ Gj/Q,

ϕ : K0[Z,Q][T1, . . . , Tr] → K0[Z,Q][F1/Q, . . . , Fr/Q] with Tj �→ Fj/Q.

We regard K0[Z,Q] as K0[X,Z,Q]/XK0[X,Z,Q], so that tensoring a K0[X,

Z,Q]-module with K0[Z,Q] over K0[X,Z,Q] is the same as tensoring over K0[X,

Z,Q] with K0[X,Z,Q]/XK0[X,Z,Q], that is, going modulo X or setting X = 0.
Suppose that we have

(3.4.0) Kerϕ = K0[Z,Q] ⊗K0[X,Z,Q] Ker ϕ̃.

That is,

K0[Z,Q] ⊗K0[X,Z,Q] K0[X,Z,Q][G1/Q, . . . ,Gr/Q] ∼= K0[Z,Q][F1/Q, . . . , Fr/Q].

Then there exist

(1) a local domain (A,m) (where R ⊂ A ⊂ Q(K[x, z1, . . . , zn])) with prime
element x ∈ m that is transcendental over K,

(2) elements ζ1, ζ2, . . . , ζn ∈ R̂ that are analytically independent over K[x]
such that K[[x, ζ1, . . . , ζn]] = K[[x, z1, . . . , zn]], and

(3) a natural isomorphism ι̃ that satisfies the following, where ζ̄i denotes the
image mod x, ζ abbreviates ζ1, . . . , ζm, and ζ̄ := (ζ̄1, . . . , ζ̄m):

(3.4.1) ι̃ : K[[x, ζ1, . . . , ζn]]/
(
G1(x, ζ), . . . ,Gr(x, ζ)

)
= R̂/(g1, . . . , gr)

∼=
↪→ Â,

(3.4.2) ˜̃ι : K[[ζ̄1, . . . , ζ̄n]]/
(
F1(ζ̄), . . . , Fr(ζ̄)

)
= R̂/xR/(f1, . . . , fr)

∼=
↪→ Â/xÂ,

(3.4.3) q̂ :=
(
ι̃(x), ι̃(ζ1), . . . , ι̃(ζm)

)
Â is a prime ideal of Â and q̂ ∩ A = xA,

A/p is essentially of finite type over K for every p
(3.4.4)

∈ Spec(A) \
{
xA, (0)

}
.

We also get Corollary 3.5 as a modification of Theorem 3.4. Needless to say, in
applying Theorem 3.4 and/or Corollary 3.5 to get desired examples, we remark
that the crucial point is to check the assumption (3.4.0). This is often straight-
forward but sometimes a bit hard as we see in Examples 4.2–4.7 in Section 4:

Example 4.1: a discrete valuation ring of positive characteristic, which is
not a Nagata ring;
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Example 4.2: a two-dimensional normal local domain whose generic formal
fiber is not connected;

Example 4.3: a two-dimensional regular local ring of arbitrary character-
istic, which is not a Nagata ring;

Example 4.4: a two-dimensional Nagata regular local ring of characteristic
p > 0, which is not excellent;

Example 4.5: a three-dimensional Nagata regular local ring of arbitrary
characteristic, which is not excellent;

Example 4.6: a three-dimensional analytically irreducible Nagata normal
local domain A that has p ∈ Spec(A) such that Ap is analytically reducible;

Example 4.7: a three-dimensional unmixed local domain A that has p ∈
Spec(A) such that A/p is not unmixed.

Further, following Ogoma’s original clever idea, we construct factorial local
domains with curious generic formal fiber.∗

THEOREM 5.5

Let K be a purely transcendental extension field of countably infinite degree over a
countable field K0, let n, r,m ∈ N with m < n, and let z1, . . . , zn be indeterminates
over K. Let R := K[z1, . . . , zn](z1,...,zn), and let R̂ denote the completion of R;
that is, R̂ = K[[z1, . . . , zn]]. For each j with 1 ≤ j ≤ r, let Fj := Fj(Z1, . . . ,Zm)
be a polynomial in m variables over K0 with no constant term. Suppose that
F1(Z), . . . , Fr(Z) satisfy the absolute irreducibility condition:

L[Z1, . . . ,Zm]/
(
F1(Z), . . . , Fr(Z)

)
is a domain, which is not a field,

for every extension field L of K0.

Then there exist

(1) elements ζ1, ζ2, . . . , ζn ∈ R̂ that are analytically independent over K such
that K[[ζ1, . . . , ζn]] = K[[z1, . . . , zn]],

(2) a factorial local domain (A,m) with R
ι

⊂ A ⊂ Q(R), where Q(R) denotes
the field of fractions of R, and

(3) a natural isomorphism ι̃ that satisfies the following:

(5.5.1) ι̃ : K[[ζ1, . . . , ζn]]/
(
F1(ζ), . . . , Fr(ζ)

)
= R̂/(f1, . . . , fr)

∼=
↪→ Â,

(5.5.2) p̂ :=
(
ι̃(ζ1), . . . , ι̃(ζm)

)
Â is a prime ideal of Â and p̂ ∩ A = (0),

(5.5.3) A/p is essentially of finite type over K for every p ∈ Spec(A) \ {(0)}.

As above, we also get Corollary 5.6 as a variation of Theorem 5.5. Finally we
close this paper by presenting a couple of examples as good demonstrations of
Theorem 5.5 and/or Corollary 5.6:

∗More details concerning a similar construction are given in [15, Theorem 10].
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Example 6.1: a two-dimensional Cohen–Macaulay factorial excellent local
domain with a Gorenstein module, which has no dualizing (= canonical) module;

Example 6.2: a three-dimensional excellent factorial Cohen–Macaulay
local domain that has no Gorenstein module.

Throughout this paper, all rings are commutative with 1. A local ring (A,m)
means a Noetherian ring A with a unique maximal ideal m. We fully use the
notation and terminology of EGA [10], Matsumura [19], and Nagata [21]. The
set of natural numbers and that of nonnegative integers are denoted, respectively,
by N and N0.

1. Heitmann’s lemma and fundamental construction of bad local domains

In this section, thanks to R. C. Heitmann, we first prove a fundamental lemma
that guarantees a good enumeration on a countable set P (for the definition,
see (1.0.1)). It is needless to say that this lemma plays a key role throughout
our papers. Namely, with the aid of Heitmann’s lemma, we get a concise recipe
for making bad local domains that was originally obtained by Rotthaus [33] and
developed by Ogoma [26], Brodmann and Rotthaus [5], and Heitmann [12].

1.0. Notation and numbering on P
Let K0 be a countable field; for example, let Q be the field of rational numbers,
let Fq be the finite field with q elements, or let F̄p be the algebraic closure of the
prime field of characteristic p > 0, and so on, and let K be a purely transcen-
dental extension field of countable degree over K0, that is, K = K0({aik }) with
transcendental basis {aik | i = 1, . . . , n;k = 1,2, . . . }, and we express it as

K =
⋃
k

Kk, where Kk = Kk−1(a1k, . . . , ank) for k ∈ N.

Take n indeterminates z1, . . . , zn over K, and let

S0 = K0[z1, . . . , zn] with maximal ideal N0 = (z1, . . . , zn)S0,

Sk = Sk−1[a1k, . . . , ank] with Nk = (z1, . . . , zn)Sk for k ∈ N,

S =
⋃
k∈N

Sk = K0[{aik }n
i=1, k ∈ N][z1, . . . , zn] with N = (z1, . . . , zn)S.

We localize these polynomial rings by the prime ideals above and obtain

R0 = (S0)N0 = K0[z1, . . . , zn](z1,...,zn) with n0 = (z1, . . . , zn)R0,

Rk = (Sk)Nk
= Kk[z1, . . . , zn](z1,...,zn) with nk = (z1, . . . , zn)Rk,

R = SN = K[z1, . . . , zn](z1,...,zn) with n = (z1, . . . , zn)R.

Then Rk = Rk−1(a1k, . . . , ank), and (R,n) is a countable regular local ring that
satisfies the following:

(1.0.0) R = K[z1, . . . , zn](z1,...,zn) =
⋃
k

Rk.



A few examples of local rings, I 57

With the notation and assumptions above, we denote by P a set of nonzero
elements of N,

(1.0.1) P ⊂ N \ {0},

that contains enough elements. Namely, for each nonzero p ∈ Spec(R), there
exists at least one p ∈ P such that p ∈ p. Then P is a countable set, and we may
assume that

z1 + · · · + zn ∈ P

and that P contains an infinite number of elements of S0.
We fix a surjective mapping ρ : N → P , which we call a numbering on P , and

set ρ(i) = pi. By the remark above, we may assume that p1 = z1 + · · · + zn and
that ρ satisfies the following:

(1.0.2) pk ∈ Sk−2 for every k ≥ 2.

Next we take a sequence of strictly increasing natural numbers ε1, . . . , εk, . . . , for
example, εk = k, and we define

p1 = z1 + · · · + zn,(1.0.3)

zi0 = zi,(1.0.4)

qk = p1 · · · pk,(1.0.5)

zik = zi + ai1q
ε1
1 + · · · + aikqεk

k for k ≥ 1.(1.0.6)

Then by the definition above, Pk = (z1k, . . . , zmk)R becomes a prime ideal of
height m for k ≥ 0.

Thanks to Rotthaus [33], Ogoma [26], Rotthaus and Brodmann [5], and
Heitmann [12], we prove a fundamental lemma.

LEMMA 1.1 (HEITMANN’S NUMBERING)

With the notation above, suppose that m < n. Let ρ be a numbering on P that
satisfies (1.0.2). Then (z1k, . . . , z�k)Sk is a prime ideal generated by an Sk-regular
sequence z1k, . . . , z�k for every 	 = 1, . . . ,m and

(1.1.1) ph /∈ Pk whenever h ≤ k + 1.

Proof
We prove the lemma by induction on k. The assertions are clear for k = 0, because
(z1, . . . , z�)S0 is a prime ideal generated by an S0-regular sequence z1, . . . , z� and
because p1 = z1 + · · · + zn /∈ (z1, . . . , zm)S0 = P0 ∩ S0.

Let us consider the case k > 0 and assume that the assertions are verified
for k − 1. Namely, (z1(k−1), . . . , z�(k−1))Sk−1 is a prime ideal generated by an
Sk−1-regular sequence z1(k−1), . . . , z�(k−1) for every 	 (1 ≤ 	 ≤ m) and

qk /∈ Pk−1 ∩ Sk−1 = (z1(k−1), . . . , zm(k−1))Sk−1.
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Hence z1(k−1), . . . , zm(k−1), qk forms an Sk−1-regular sequence. Here we claim
that

(1.1.2) qεk

k , z1(k−1), . . . , zm(k−1) is an Sk−1-regular sequence, too.

We notice the following elementary fact. Let S be a ring and M an S-module.
Then, an M -regular sequence w, q is permutable; that is, q, w also forms an M -
regular sequence if and only if q is a nonzero-divisor on M .

In fact, on the Sk−1-regular sequence z1(k−1), . . . , z�(k−1), qk, we can permute
z�(k−1) and qk, because qk is not zero in the domain Sk−1/(z1(k−1), . . . , z(�−1)(k−1))
for every 	 (1 ≤ 	 ≤ m), and this shows (1.1.2).

Now the assumption qk ∈ Sk−1 (cf. (1.0.2)) shows that

zik =
(
zi +

k−1∑
j=1

aijq
εj

j

)
+ aikqεk

k = zi(k−1) + aikqεk

k

is a linear polynomial in aik with coefficients contained in Sk−1. Thus (z1k, . . . ,

z�k)Sk is a prime ideal for every 	 (1 ≤ 	 ≤ m) generated by an Sk-regular
sequence z1k, . . . , z�k and

(z1k, . . . , zmk)Sk ∩ Sk−1 = (0).

Indeed, the following is well known. Let S be a ring, and let T be an indeter-
minate. Suppose that q, w1, . . . ,w� is an S-regular sequence. Then, (qT − w1)A[T ]
is the kernel of an S-algebra homomorphism φ : S[T ] → S[w1/q] = S′, mapping
T to w1/q, and q, w2, . . . ,w� becomes an S′-regular sequence.

Hence (z1k, . . . , z�k)Sk is the kernel of an Sk−1-algebra homomorphism,

φ� : Sk−1[ank, . . . , a1k] → Sk−1[ank, . . . , a(�+1)k]
[z1(k−1)

qεk

k

, . . . ,
z�(k−1)

qεk

k

]
,

mapping aik to −zi(k−1)/qεk

k for 1 ≤ i ≤ 	 (≤ m), and this proves the assertions.
Therefore, (z1k, . . . , z�k)Sk is a prime ideal generated by an Sk-regular sequence
z1k, . . . , z�k and (1.1.1) holds for k. �

REMARK

We remark here that if, in place of (1.0.2), we assume that

(1.1.3) pk ∈ Sk−1 for every k ≥ 1 and pk /∈ (z1(k−1), . . . , z�(k−1))Sk−1,

then the proof above shows that (z1k, . . . , z�k)Sk is a prime ideal generated by
an Sk-regular sequence z1k, . . . , z�k and that (1.1.1) holds for k (cf. (5.1.2), [24,
Lemma 1.9]).

1.2. Relations
Let n, r,m ∈ N with m < n. For each j with 1 ≤ j ≤ r, let Fj := Fj(Z1, . . . ,Zm)
be a polynomial in m variables with coefficients in K0 such that

Fj ∈ (Z1, . . . ,Zm)K0[Z1, . . . ,Zm]
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and a sequence of strictly increasing natural numbers ν1, . . . , νk, . . . , for example,
νk = k such that νk ≤ εk for every k, and set

(1.2.1) αjk :=
1

qνk

k

Fj(z1k, . . . , zmk) ∈ Q(R)

for j = 1, . . . , r, where Q(R) = K(z1, . . . , zn) is the field of fractions of R

(cf. (1.0.0)). Then

αj(k+1) =
1

q
νk+1
k+1

Fj(z1(k+1), . . . , zm(k+1))

=
1

q
νk+1
k+1

Fj(z1k + a1(k+1)q
εk+1
k+1 , . . . , zmk + am(k+1)q

εk+1
k+1 ).

Thus we have the following relation between αjk and αj(k+1),

(1.2.2) αjk =
q

νk+1
k+1

qνk

k

αj(k+1) +
q

νk+1
k+1

qνk

k

sjk with sjk ∈ Sk+1.

Let

(1.2.3) B :=
⋃
k∈N

R[α1k, . . . , αrk] ⊂ Q(R).

Then we have the following.

LEMMA 1.3

With the notation above, let M = (z1, . . . , zn)B. Then M is a maximal ideal of B.

Proof
Let ι : R → B be the canonical inclusion. Because αjk ∈ M for every j and k

by (1.2.2), we have a canonical surjection ῑ : R/n → B/M . To get the assertion,
it suffices to show

(1.3.0) M �= B.

Indeed, assume the contrary, that is, M = B. Then we find elements β1, . . . ,

βn ∈ B that satisfy

β1·z1 + · · · + βn·zn = 1.

We may assume that β1, . . . , βn ∈ R[α1k, . . . , αrk] for sufficiently large k. Thus
there exist r1, . . . , rn ∈ R and ν ∈ N such that qν

k(β1 − r1), . . . , qν
k(βn − rn) ∈ Pk.

Hence qν
k(r1·z1 + · · · + rn·zn − 1) ∈ Pk. Therefore qk ∈ Pk, because r1·z1 + · · · +

rn·zn − 1 is a unit in R. This is a contradiction. �

We define

(1.3.1) A := BM ⊂ Q(R).
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Then A is a quasi-local domain with its maximal ideal m = MA. In addition, we
define

ζi := zi + ai1q
ε1
1 + · · · + aikqεk

k + · · · = zi +
∞∑

k=1

aikqεk

k ,(1.3.2)

fj := Fj(ζ) = Fj(ζ1, . . . , ζm) ∈ K0[[ζ1, . . . , ζm]] ⊂ K[[ζ1, . . . , ζn]] = R̂(1.3.3)

for i = 1, . . . , n and for j = 1, . . . , r.

THEOREM 1.4

Let K be a purely transcendental extension field of countably infinite degree over
a countable field K0. Take polynomials Fj := Fj(Z1, . . . ,Zm) with 1 ≤ j ≤ r, in m

variables over K0 without constant term. Then, for every n > m, the quasi-local
domain (A,m) defined in (1.3.1) is Noetherian and satisfies the following:

(1.4.1) ι̃ : K[[ζ1, . . . , ζn]]/
(
F1(ζ), . . . , Fr(ζ)

)
= R̂/(f1, . . . , fr)

∼=
↪→ Â,

(1.4.2) p̂ :=
(
ι̃(ζ1), . . . , ι̃(ζm)

)
Â is a prime ideal of Â and p̂ ∩ A = (0),

(1.4.3) A/p is essentially of finite type over K for every p ∈ Spec(A) \ {(0)}.

Here ι̃ is a map induced by the inclusion R := K[z1, . . . , zn](z1,...,zn) ↪→ A, the
ζi are defined in (1.3.2), ζ abbreviates ζ1, . . . , ζm, and each fj is as defined
in (1.3.3).

Proof
With the notation above, we first show that A is Noetherian. By a theorem of
Cohen (cf. [21, (3.4)]), it is enough to see that every nonzero prime ideal p of A is
finitely generated. Take a nonzero prime ideal p of A. Then p ∩ R �= (0), because
R and A have the same field of fractions. Thus there exists 	 ∈ N such that
p� ∈ p ∩ P . Then αjk ∈ R + p�A for every j = 1, . . . , r and for every k = 1,2, . . .

by (1.2.2). Hence we have a canonical surjection ι� : R → A/p�A, and A/p�A is
essentially of finite type over K. Consequently p is finitely generated and satisfies
(1.4.3). Further, ι� induces the canonical surjection ι̂ : R̂ → Â.

We determine Ker ι̂, verifying (1.4.2) at the same time. We have

(1.4.4) fj − qνk

k αjk = Fj(ζ1, . . . , ζm) − Fj(z1k, . . . , zmk) = q
εk+1
k+1 ηjk

with ηjk ∈ R̂ for j = 1, . . . , r, because ζi − zik ∈ q
εk+1
k+1 R̂ for i = 1, . . . , n (cf. (1.2.1),

(1.3.3)). Thus ι̂(fj) ∈ qνk

k Â for every k ∈ N. Then fj ∈ Ker ι̂.
Set P̂ := (ζ1, . . . , ζm)R̂, a prime ideal of height m. We claim that

(1.4.5) P̂ ∩ R = (0).

Assume the contrary, that is, P̂ ∩ R �= (0). Then we find h ∈ N such that
ph ∈ P̂ ∩ R, by the condition on P (cf. (1.0.1)). Hence ph, z1(h−1), . . . , zm(h−1) ∈
P̂ . This is a contradiction, because (ph, z1(h−1), . . . , zm(h−1))R̂ has height m + 1
(cf. (1.1.1)). Thus our claim is completed.
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Consequently R̂/fR̂ is R-torsion-free, where f abbreviates f1, . . . , fr, be-
cause, for every Q̂ ∈ AssR̂(R̂/fR̂), we have Q̂ ⊂ P̂ . Further, the canonical homo-
morphism π : R → R̂/fR̂ induces an R-algebra homomorphism ψ : A → Q(R) ⊗R

R̂/fR̂, mapping αjk to αjk ⊗ 1, and αjk ⊗ 1 = 1 ⊗ (−q
εk+1−νk

k p
εk+1
k+1 ηjk) ∈ Q(R) ⊗R

R̂/fR̂ by (1.4.4). Thus ψ factors through R̂/fR̂, which is R-torsion-free. We then
have the following commutative diagram:

Â
ψ̂−−−−→ R̂/fR̂

ι̂

�⏐⏐ �⏐⏐π̂

R̂ R̂

where ι̂, π̂, and ψ̂ are canonical homomorphisms. Therefore Ker ι̂ ⊂ (f1, . . . , fr).
This gives (1.4.1), and we get p̂ ∼= P̂ /fR̂. Thus p̂ is a prime ideal of Â, and (1.4.5)
implies that p̂ ∩ A = (0). �

We end this section with the following result, which is a corollary to the proof of
Theorem 1.4. The additional hypotheses enable us to bypass some parts of the
proof and thus obtain a slight generalization of the theorem, so that n = m.

COROLLARY 1.5

We use the notation above, except that n = m. Let F1(Z), . . . , Fr(Z) be polyno-
mials in the variables Z := (Z1, . . . ,Zn) over K0 with zero constant term. Let
fjk = Fj(z1k, . . . , znk) and Ik = (f1k, . . . , frk)R. Suppose that

ph /∈
√

Ik whenever h ≤ k for every sufficiently large k(1.5.0)

and

R̂/
(
F1(ζ), . . . , Fr(ζ)

)
R̂ is R-torsion-free,

where ζ abbreviates ζ1, . . . , ζn. Then (A,m), the quasi-local domain defined in
(1.3.1), is Noetherian and satisfies the following:

(1.5.1) ι̃ : K[[ζ1, . . . , ζn]]/
(
F1(ζ), . . . , Fr(ζ)

)
= R̂/(f1, . . . , fr)

∼=
↪→ Â;

that is, the homomorphism ι̃ induced by the containment R
ι

↪→ B ↪→ A from the
map ι of the proof of Lemma 1.3 is an isomorphism;

(1.5.2) A/p is essentially of finite type over K for every p ∈ Spec(A) \ {(0)}.

Proof
To see this, observe that the notation can be set with m = n, and the proof
still holds as in Lemma 1.3, to show M �= B (1.3.0), where ph /∈

√
Ik comes in.

Then item (1.4.5) requires that n > m. However, the condition that R̂/fR̂ =
R̂/(F1(ζ), . . . , Fr(ζ))R̂ is R-torsion-free permits the next step. �
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2. Examples

As applications of Theorem 1.4 and/or Corollary 1.5, we obtain the following
examples of local domains.

EXAMPLE 2.1 ([1], [21, EXAMPLE 3, P. 205])

A one-dimensional analytically ramified and/or reducible local domain of arbi-
trary characteristic.

CONSTRUCTION

With notation as in Corollary 1.5, let K0 be a countable field of arbitrary char-
acteristic, and let n = 2. For b1, . . . , bd ∈ K0 and c1, . . . , cd ∈ N, let

F (Z1,Z2) = (Z1 − b1Z2)c1 · · · (Z1 − bdZ2)cd .

Then by Corollary 1.5, we get a one-dimensional local domain (A,m) such that

Â ∼= K[[ζ1, ζ2]]/
(
(ζ1 − b1ζ2)c1 · · · (ζ1 − bdζ2)cd

)
.

To see that this setup satisfies the hypothesis (1.5.0) of Corollary 1.5, notice that
with n = m = 2, we do have ph /∈

√
Ik = (z1k − b1z2k) · · · (z1k − bdz2k)R whenever

h ≤ k as in the proof of Lemma 1.1 and (ζ1 − bζ2)R̂ ∩ R = (0) as used in (1.4.5)
to show that R̂/fR̂ is R-torsion-free.

EXAMPLE 2.2 ([9, EXAMPLE D])

A one-dimensional local domain with given embedding dimension and multiplic-
ity, which is δ-simple for a derivation δ ∈ Der(A,A).

CONSTRUCTION

Let K0 = Q. For every natural numbers m and t, let

F11(Z1, . . . ,Zm) = Zt+1
1 and Fij(Z1, . . . ,Zm) = ZiZj

with i ≤ j for i = 1, . . . ,m and for j = 2, . . . ,m. Then by Theorem 1.4, we obtain
a one-dimensional local domain (A,m) that satisfies the following:

Â ∼= K[[ζ1, . . . , ζm+1]]/(ζt+1
1 , ζ1ζ2, . . . , ζ

2
m).

We see that the embedding dimension of A is dimK m/m2 = m + 1 and that A

has multiplicity em(A) = m + t. Here we define a derivation δ ∈ Der(A,A) that
makes A δ-simple. Firstly, let

δ(z1 + · · · + zm+1) = δ(q1) = 1 and δ(zi) = −ε1ai1q
ε1−1
1

for i = 1, . . . ,m (cf. (1.0.6)).

Next we determine the values of δ(aik) as follows:

δ(aik) = − 1
qεk

k

(
εk+1ai(k+1)q

εk+1−1
k+1 δ(qk+1)

)
∈ Sk+1

for i = 1, . . . ,m and
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δ(a(m+1)k) = 0.

Then we see that δ(αjk) ∈ Sk+1[αj(k+1)], because

δ(αjk) =
1

q2νk

k

(
δ(Fj(z1k, . . . , zmk))qνk

k − Fj(z1k, . . . , zmk)δ(qνk

k )
)
,

δ(zik) = qεk

k δ(aik) = −εk+1ai(k+1)q
εk+1−1
k+1 δ(qk+1).

We get a desired derivation δ ∈ Der(A,A).

EXAMPLE 2.3 ([8, PROPOSITION 3.3, P. 304], [5])

A two-dimensional local domain whose completion has embedded associated prime
ideal(s).

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic, and let n = 3. Let

F1(Z1,Z2,Z3) = Z3
1 , F2(Z1,Z2,Z3) = Z2

1Z3, F3(Z1,Z2,Z3) = Z1Z2Z
2
3 .

Then we get a two-dimensional local domain (A,m) such that

Â ∼= K[[ζ1, ζ2, ζ3]]/(ζ3
1 , ζ2

1ζ3, ζ1ζ2ζ
2
3 )

= K[[ζ1, ζ2, ζ3]]/(ζ1) ∩ (ζ1, ζ2)2 ∩ (ζ1, ζ3)3.

Hence (A,m) is a universally catenary local domain, which is not unmixed, with
multiplicity 1 (cf. [21, (40.6)]). Further, for every height-one prime P ∈ Spec(A),
AP is a discrete valuation ring (cf. (1.5.0)). The derived normal ring Ā = A(m),
which is the total transform of A, and every intermediate ring B between A and
Ā are Noetherian (cf. [8, Proposition 1.1], [18]).

In fact, our construction shows that the derived normal ring Ā is

(2.3.1) Ā =
⋃
k

R[β1k] where β1k =
1

qνk

k

z1k (cf. Section 1.2).

Consequently, we have a canonical sur jection (cf. (1.2.1)):

Â ∼= K[[ζ1, ζ2, ζ3]]/(ζ3
1 , ζ2

1ζ3, ζ1ζ2ζ
2
3 ) −→ K[[ζ1, ζ2, ζ3]]/(ζ1) ∼= (Ā)∧.

This shows that Ā is regular (cf. [8, Proposition 3.3]).

REMARK

Let K0 be a countable field, and let n = m + 1. Let Fij(Z1, . . . ,Zm) := ZiZj for
1 ≤ i, j ≤ m. Then we get a one-dimensional local domain (A,m) such that

Â ∼= K[[ζ1, . . . , ζm+1]]/(ζ1, . . . , ζm)2.

When m = 1, (A,m) is a complete intersection, which is not Japanese. However,
when m ≥ 2, Â ⊗ Q(A) is not Gorenstein (cf. (1.4.2), [8, Proposition 3.1]). As
above, we have a canonical surjection:

Â −→ (Ā)∧ ∼= K[[ζ1, . . . , ζm+1]]/(ζ1, . . . , ζm) (cf. (2.3.1)).
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EXAMPLE 2.4 ([21, EXAMPLE 4, P. 207], [27], [22, (5.8)])

A two-dimensional Cohen–Macaulay local domain (A,m) that has infinitely many
non-Noetherian intermediate quasi-local domains between A and its derived nor-
mal ring Ā.

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic, and let n = 3. Let

F (Z1) = Zc
1 with c ≥ 2.

Then we get a two-dimensional local domain (A,m) with its completion:

Â ∼= K[[ζ1, ζ2, ζ3]]/(ζc
1).

For every nonzero element a ∈ m, let C = Ā ∩ A[1/a], the integral closure of A in
A[1/a]. We claim that C is not Noetherian.

Indeed, assume that C is Noetherian. Then, because aνĀ ∩ C = aνC, we have
canonical injections C/aνC ↪→ Ā/aνĀ for every ν and C∗ ↪→ Ā∗, where C∗ and
Ā∗ represent the aC-adic completion of C and aĀ-adic completion of Ā, respec-
tively. Hence C∗ of C is reduced. Further, for every prime ideal q ∈ Spec(C/aC),
C/q is a Nagata ring (cf. (1.4.3), [21, (33.10), (36.5)]). Thus Ĉ is reduced by a
theorem of Marot [17] (cf. [21, (36.4)]), and Cp(= Ap) is analytically unramified
for every p ∈ Spec(C[1/a]) (= Spec(A[1/a])) (cf. [21, (36.8)]). Then, for every
b ∈ m such that a, b is a system of parameters of A, the bA-adic completion A∗

of A is reduced. Consequently Â should be reduced, because A/p is a Nagata
ring for every prime ideal p ∈ Spec(A/bA) by (1.4.3), a contradiction.

REMARK

We have that Ā above is Noetherian (see [21, (33.12)]), and, as in Example 2.3,
we have a canonical surjection:

Â ∼= K[[ζ1, ζ2, ζ3]]/(ζc
1) −→ K[[ζ1, ζ2, ζ3]]/(ζ1) ∼= (Ā)∧.

Hence Ā is regular. However, the fact that C is non-Noetherian for every a ∈
m \ {0} shows that the normal locus Nor(A) = {p ∈ Spec(A) | Ap is normal} of A

contains no nonempty open subset (cf. Example 2.7).

EXAMPLE 2.5 ([32])

A two-dimensional analytically (ir)reducible Nagata normal local domain that is
not analytically normal.

CONSTRUCTION

Let K0 = Q, and let n = 3. Take

F (Z1,Z2) = Z2
1 − Z3

2 or F (Z1,Z2) = Z1Z2.

Then we obtain a two-dimensional local domain (A,m) such that

Â ∼= K[[ζ1, ζ2, ζ3]]/(ζ2
1 − ζ3

2 ) or K[[ζ1, ζ2, ζ3]]/(ζ1ζ2).
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Because Sing(Â) = V ((ζ1, ζ2)), the regular locus Reg(A) of A is Spec(A) \ {m}
(cf. (1.4.2)). Thus A is a normal Nagata local domain, which is not analytically
normal (cf. (1.4.3)).

REMARK

When K0 is a countable field of characteristic p > 2 and n = 3, let

F (Z1,Z2) = Z2
1 − Zp

2 .

Then we get a two-dimensional local domain (A,m) with its completion:

Â ∼= K[[ζ1, ζ2, ζ3]]/(ζ2
1 − ζp

2 ).

Because Sing(Â) = V ((ζ1)), A satisfies Serre’s condition (R1). Thus A is normal
and A is a Nagata local domain whenever εk ≡ 0 (mod p) (cf. (4.4.1)).

EXAMPLE 2.6 ([21, EXAMPLE 2, P. 203])

A two-dimensional quasi-excellent catenary local domain, which is not universally
catenary.

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic, and let n = 3. Take

F1(Z1,Z2,Z3) = Z1Z2 and F2(Z1,Z2,Z3) = Z1Z3.

Then by Corollary 1.5, we get a two-dimensional local domain (A,m) as follows:

Â ∼= K[[ζ1, ζ2, ζ3]]/(ζ1ζ2, ζ1ζ3) = K[[ζ1, ζ2, ζ3]]/(ζ1) ∩ (ζ2, ζ3).

Thus A is a catenary quasi-excellent local domain but not universally catenary
(cf. [30], [20, Theorem 31.7]).

REMARK

For every n = m + 1 ≥ 3, take

F1(Z1, . . . ,Zn) = Z1Z2, . . . , Fm(Z1, . . . ,Zn) = Z1Zn.

Then as above, we get an m-dimensional local domain (A,m) such that

Â ∼= K[[ζ1, . . . , ζn]]/(ζ1) ∩ (ζ2, . . . , ζn).

Hence A is also a catenary quasi-excellent local domain but not universally cate-
nary (cf. [31], [25]). We remark, however, that these examples are not normal.

EXAMPLE 2.7 ([5, PROPOSITION 21, P. 393])

A two-dimensional local domain, which is a complete intersection, whose regular
(nor normal) locus is not open.

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic, and let n = 3. Take

F (Z1) = Zc
1 with c ≥ 2.
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Then as in Example 2.4, we get a two-dimensional local domain (A,m) with its
completion:

Â ∼= K[[ζ1, ζ2, ζ3]]/(ζc
1).

Thus Nor(A) = {(0)}. Hence the normal locus (nor the regular locus) of A con-
tains no nonempty open subset.

EXAMPLE 2.8 ([5, PROPOSITION 21, P. 393] CF. [7, P. 480])

A two-dimensional Gorenstein local domain whose complete intersection locus is
not open.

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic, and let n = 5. Let

F1(Z1,Z2,Z3) = Z2
2 , F2(Z1,Z2,Z3) = Z1Z3,

F3(Z1,Z2,Z3) = Z1Z2 + Z2
3 , F4(Z1,Z2,Z3) = Z2Z3,

F5(Z1,Z2,Z3) = Z2
1 .

Then we obtain a two-dimensional Gorenstein local domain (A,m) such that

Â ∼= K[[ζ1, ζ2, ζ3, ζ4, ζ5]]/(ζ2
2 , ζ1ζ3, ζ1ζ2 + ζ2

3 , ζ2ζ3, ζ
2
1 ).

Hence CI(A) := {p ∈ Spec(A) | Ap is a complete intersection} = {(0)}. Namely,
the complete intersection locus of A contains no nonempty open subset.

EXAMPLE 2.9 ([5, PROPOSITION 21, P. 393])

A two-dimensional Cohen–Macaulay local domain whose Gorenstein locus is not
open.

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic, and let n = 4. Take

F1(Z1,Z2) = Z2
1 , F2(Z1,Z2) = Z1Z2 and F3(Z1,Z2) = Z2

2 .

Then we get a two-dimensional Cohen–Macaulay local domain (A,m) with

Â ∼= K[[ζ1, ζ2, ζ3, ζ4]]/(ζ1, ζ2)2.

Hence Gor(A) := {p ∈ Spec(A) | Ap is Gorenstein} = {(0)} (cf. remark of Exam-
ple 2.3). Namely, the Gorenstein locus of A contains no nonempty open subset.

EXAMPLE 2.10 ([5, PROPOSITION 21, P. 393], CF. [8, PROPOSITION 3.5])

A three-dimensional local domain whose Cohen–Macaulay locus is not open.

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic with n = 4. Take

F1(Z1,Z2) = Z2
1 and F2(Z1,Z2) = Z1Z2.
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Then, we obtain a three-dimensional local domain (A,m) such that

Â ∼= K[[ζ1, ζ2, ζ3, ζ4]]/(ζ1) ∩ (ζ1, ζ2)2.

We show that the Cohen–Macaulay locus of A contains no nonempty open subset
D(a) = {q ∈ Spec(A) | q �� a} for every nonzero a ∈ m.

Indeed, we find q̂ ∈ D̂(a) := {q̂ ∈ Spec(Â) | q̂ �� a} such that Âq̂ is not Cohen–
Macaulay and that q̂ ∩ A = q ∈ D(a) \ {(0)}, because Âp̂ is not Cohen–Macaulay
and because dim Â/p̂ = 2 (cf. (1.4.2)). Because A/q is excellent by (1.4.3), Aq is
not Cohen–Macaulay.

EXAMPLE 2.11 ([5, PROPOSITION 21, P. 393])

A three-dimensional Nagata normal local domain, which is a complete intersec-
tion, whose regular locus is not open.

CONSTRUCTION

Let K0 be a countable field of characteristic zero, and let n = 4. Take

F (Z1,Z2) = Z2
1 − Z3

2 .

Then we get a three-dimensional normal local domain (A,m) with its completion:

Â ∼= K[[ζ1, ζ2, ζ3, ζ4]]/(ζ2
1 − ζ3

2 ).

Thus A is a Nagata ring by (1.4.3), and the same reasoning as in Example 2.10
shows that Reg(A) contains no nonempty open subset.

EXAMPLE 2.12 ([5, PROPOSITION 21, P. 393]; CF. [13, EXAMPLE A, P. 192])

A three-dimensional Nagata normal Gorenstein local domain whose complete
intersection locus is not open.

CONSTRUCTION

Let K0 be a countable field of characteristic zero with n = 6. Let

F1(Z1,Z2,Z3,Z4) = Z1Z3 − Z2
2 , F2(Z1,Z2,Z3,Z4) = Z1Z4 − Z2Z3,

F3(Z1,Z2,Z3,Z4) = Z2Z4 − Z2
3 , F4(Z1,Z2,Z3,Z4) = Z3

1 − Z3Z4,

F5(Z1,Z2,Z3,Z4) = Z2
1Z2 − Z2

4 .

Then, we obtain a three-dimensional normal Gorenstein local domain (A,m) with

Â ∼= K[[ζ1, ζ2, ζ3, ζ4, ζ5, ζ6]]

/(ζ1ζ3 − ζ2
2 , ζ1ζ4 − ζ2ζ3,

ζ2ζ4 − ζ2
3 , ζ3

1 − ζ3ζ4, ζ
2
1ζ2 − ζ2

4 ).

Hence A is a Nagata ring, and as above, CI(A) contains no nonempty open
subset.
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EXAMPLE 2.13 ([5, PROPOSITION 21, P. 393]; CF. [13, EXAMPLE, P. 180])

A three-dimensional Nagata normal Cohen–Macaulay local domain whose Goren-
stein locus is not open.

CONSTRUCTION

Let K0 be a countable field of characteristic zero with n = 5. Take

F1(Z1,Z2,Z3) = Z3
1 − Z2Z3, F2(Z1,Z2,Z3) = Z2

1Z2 − Z2
3 ,

F3(Z1,Z2,Z3) = Z1Z3 − Z2
2 .

Then we get a three-dimensional normal Cohen–Macaulay local domain (A,m)
such that

Â ∼= K[[ζ1, ζ2, ζ3, ζ4, ζ5]]/(ζ3
1 − ζ2ζ3, ζ

2
1ζ2 − ζ2

3 , ζ1ζ3 − ζ2
2 ).

Thus A is a Nagata ring, and Gor(A) contains no nonempty open subset.

EXAMPLE 2.14 ([5, PROPOSITION 21, P. 393], CF. [14, P. 61])

A four-dimensional Nagata normal local domain that has nonopen Cohen–
Macaulay locus.

CONSTRUCTION

Let K0 be a countable field of characteristic zero with n = 6. Let

F1(Z1,Z2,Z3,Z4) = Z3
2 − Z2

3 , F2(Z1,Z2,Z3,Z4) = Z2Z
2
4 − Z2

1 ,

F3(Z1,Z2,Z3,Z4) = Z2Z1 − Z4Z3, F4(Z1,Z2,Z3,Z4) = Z2
2Z4 − Z3Z1.

Then we obtain a four-dimensional normal local domain (A,m) that satisfies

Â ∼= K[[ζ1, . . . , ζ6]]/(ζ3
2 − ζ2

3 , ζ2ζ
2
4 − ζ2

1 , ζ2ζ1 − ζ4ζ3, ζ
2
2ζ4 − ζ3ζ1).

As above, A is a Nagata ring and CM(A) contains no nonempty open subset.

EXAMPLE 2.15 ([26], [12])

A three-dimensional Henselian Nagata normal local domain that is not catenary.

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic, and let n = 4. Take

F1(Z1,Z2,Z3) = Z1Z2 and F2(Z1,Z2,Z3) = Z1Z3.

Then we get a three-dimensional local domain (A,m) such that

Â ∼= K[[ζ1, ζ2, ζ3, ζ4]]/(ζ1) ∩ (ζ2, ζ3);

because Sing(Â) = V ((ζ1, ζ2, ζ3)) and because depthA = 2, A is a noncatenary
Nagata normal domain (cf. (1.4.2), (1.4.3)). When K0 is a countable field of
characteristic p > 0, by the same reasoning as in Example 4.4, A is a Nagata
ring whenever εk ≡ 0 (mod p). Hence, by taking the Henselization of A, we get
a desired local domain.
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3. Construction of bad local domains with a specified prime element

In this section, we first make a minor change of the notation of Section 1 and
have a specified Heitmann’s lemma that gives a good enumeration on a countable
set P ∗ (for the definition see (3.0.1)). Then, modifying the construction given in
Section 1, we get bad local domains with a peculiar prime element, originally due
to Brodmann and Rotthaus [6], Ogoma [29], and Brezuleanu and Rotthaus [4].

3.0. Notation and numbering on P ∗

Let K0, K, and Kk be as in Section 1.0. Take n + 1 indeterminates x, z1, . . . , zn

over K, and set

S0 = K0[x, z1, . . . , zn] with maximal ideal N0 = (x, z1, . . . , zn)S0,

Sk = Sk−1[a1k, . . . , ank] with Nk = (x, z1, . . . , zn)Sk for k ∈ N,

S =
⋃
k∈N

Sk = K0[{aik }n
i=1, k ∈ N][x, z1, . . . , zn] with N = (x, z1, . . . , zn)S.

We localize these polynomial rings by the prime ideals above and obtain

R0 = (S0)N0 = K0[x, z1, . . . , zn](x,z1,...,zn) with n0 = (x, z1, . . . , zn)R0,

Rk = (Sk)Nk
= Kk[x, z1, . . . , zn](x,z1,...,zn) with nk = (x, z1, . . . , zn)Rk,

R = SN = K[x, z1, . . . , zn](x,z1,...,zn) with n = (x, z1, . . . , zn)R.

Then, Rk = Rk−1(a1k, . . . , ank), and (R,n) is a countable regular local ring that
satisfies the following:

(3.0.0) R = K[x, z1, . . . , zn](x,z1,...,zn) =
⋃
k

Rk.

With the notation and assumptions above, we denote by P ∗ a set of elements of
N \ xS,

(3.0.1) P ∗ ⊂ N \ xS,

that contains enough elements. Namely, for each p ∈ Spec(R) \ {(0), xR}, there
exists at least one p ∈ P ∗ such that p ∈ p. Then P ∗ is a countable set, and we
may assume that

z1 + · · · + zn ∈ P ∗

and that P ∗ contains an infinite number of elements of S0.
In the following, we denote by s̄ the image of s ∈ S in S̄ = S/xS (or in R̄ =

R/xR). Then P̄ := {p̄ ∈ S̄ | p ∈ P ∗ } satisfies the same condition as P in (1.0.1).
Namely, P̄ is a set of nonzero elements of N̄ = N/xS,

(3.0.2) P̄ ⊂ N̄ \ {0̄},

that contains enough elements. That is, for each nonzero p̄ ∈ Spec(R̄), there exists
at least one p̄ such that p̄ ∈ p̄.

We fix a surjective mapping ρ∗ : N → P ∗, which we call a numbering on P ∗,
and set ρ∗(i) = pi. By the remark above, we may assume that p1 = z1 + · · · + zn
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and that ρ∗ satisfies the following:

(3.0.3) pk ∈ Sk−2 for every k ≥ 2.

Remark that if ρ∗ is the numbering above, the induced mapping ρ̄ : N → P̄ ,
which applies i to p̄i, is a numbering on P̄ such that p̄1 = z̄1 + · · · + z̄n and that

(3.0.4) p̄k ∈ S̄k−2 = Sk−2/xSk−2 for every k ≥ 2.

As in Section 1, for a sequence of strictly increasing natural numbers ε1, . . . ,

εk, . . . , we define

zi0 = zi,(3.0.5)

qk = p1 · · · pk,(3.0.6)

zik = zi + ai1q
ε1
1 + · · · + aikqεk

k for k ≥ 1.(3.0.7)

Similarly, we define

z̄i0 = z̄i,(3.0.8)

q̄k = p̄1 · · · p̄k,(3.0.9)

z̄ik = z̄i + āi1q̄
ε1
1 + · · · + āikq̄εk

k for k ≥ 1.(3.0.10)

Then Qk = (x, z1k, . . . , zmk)R becomes a prime ideal of height m+1 for k ≥ 0.
The same reasoning as in Heitmann’s lemma shows the following.

LEMMA 3.1 (SPECIFIED HEITMANN’S NUMBERING; CF. [12, PROPOSITION 1])

With the notation and assumptions above, suppose m < n. Let ρ∗ be a numbering
on P ∗ that satisfies (3.0.3). Then (x, z1k, . . . , z�k)Sk is a prime ideal, generated
by an Sk-regular sequence x, z1k, . . . , z�k for every 	 = 1, . . . ,m, and

(3.1.1) ph /∈ Qk whenever h ≤ k + 1.

3.2. Relations
Let n, r,m ∈ N with m < n. For each j with 1 ≤ j ≤ r, let Gj := Gj(X,Z1, . . . ,Zm)
be a polynomial in m + 1 variables with coefficients in K0 such that

Gj ∈ (X,Z1, . . . ,Zm)K0[X,Z1, . . . ,Zm].

Identifying K0[X,Z1, . . . ,Zm]/XK0[X,Z1, . . . ,Zm] with K0[Z1, . . . ,Zm], let

Fj(Z1, . . . ,Zm) := Gj(0,Z1, . . . ,Zm) ∈ K0[Z1, . . . ,Zm].

Take a sequence of strictly increasing natural numbers ν1, . . . , νk, . . . such that
νk ≤ εk for every k, and set

αjk :=
1

qνk

k

Gj(x, z1k, . . . , zmk) ∈ Q(R) for j = 1, . . . , r(3.2.1)

ᾱjk :=
1

q̄νk

k

Gj(0, z̄1k, . . . , z̄mk) =
1

q̄νk

k

Fj(z̄1k, . . . , z̄mk) ∈ Q(R̄).(3.2.2)
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Here Q(R) = K(x, z1, . . . , zn) and Q(R̄) = K(z̄1, . . . , z̄n) are the fields of fractions
of R and of R̄ = R/xR, respectively (cf. (3.0.0)). Then

αj(k+1) =
1

q
νk+1
k+1

Gj(x, z1(k+1), . . . , zm(k+1))

=
1

q
νk+1
k+1

Gj(x, z1k + a1(k+1)q
εk+1
k+1 , . . . , zmk + am(k+1)q

εk+1
k+1 ).

Thus we have the following relation between αjk and αj(k+1):

(3.2.3) αjk =
q

νk+1
k+1

qνk

k

αj(k+1) +
q

νk+1
k+1

qνk

k

sjk with sjk ∈ Sk+1.

Let

(3.2.4) B :=
⋃
k∈N

R[α1k, . . . , αrk] ⊂ Q(R).

Then the same proof as in Lemma 1.3 shows the following lemma.

LEMMA 3.3

With the notation above, let M = (x, z1, . . . , zn)B. Then M is a maximal ideal
of B.

We define

(3.3.1) A := BM ⊂ Q(R) = Q(K[x, z1, . . . , zn]).

Then A is a quasi-local domain with its maximal ideal m = MA. In addition, we
put

ζi := zi + ai1q
ε1
1 + · · · + aikqεk

k + · · · = zi +
∞∑

k=1

aikqεk

k ,(3.3.2)

gj := Gj(x, ζ)(3.3.3)

= Gj(x, ζ1, . . . , ζm) ∈ K0[[x, ζ1, . . . , ζm]] ⊂ K[[x, ζ1, . . . , ζn]] = R̂,

ζ̄i := z̄i + āi1q̄
ε1
1 + · · · + āikq̄εk

k + · · · = z̄i +
∞∑

k=1

āikq̄εk

k ,(3.3.4)

fj := Fj(ζ̄) = Fj(ζ̄1, . . . , ζ̄m) ∈ K0[[ζ̄1, . . . , ζ̄m]] ⊂ K[[ζ̄1, . . . , ζ̄n]] = R̄∧(3.3.5)

for i = 1, . . . , n and for j = 1, . . . , r.

THEOREM 3.4

Let K be a purely transcendental extension field of countably infinite degree over
a countable field K0. Take polynomials Gj := Gj(X,Z1, . . . ,Zm) with 1 ≤ j ≤ r,
in m + 1 variables over K0 without constant term.

By identifying K0[X,Z]/XK0[X,Z] with K0[Z], let

Fj(Z1, . . . ,Zm) := Gj(0,Z1, . . . ,Zm) ∈ K0[Z1, . . . ,Zm] for j = 1, . . . , r.
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Taking r + 1 indeterminates Q, T1, . . . , Tr, let φ̃ and φ be ring homomorphisms:

ϕ̃ : K0[X,Z,Q][T1, . . . , Tr] → K0[X,Z,Q][G1/Q, . . . ,Gr/Q] with Tj �→ Gj/Q

ϕ : K0[Z,Q][T1, . . . , Tr] → K0[Z,Q][F1/Q, . . . , Fr/Q] with Tj �→ Fj/Q.

Suppose that, by regarding K0[Z,Q] as K0[X,Z,Q]/XK0[X,Z,Q], we have

(3.4.0) Kerϕ = K0[Z,Q] ⊗K0[X,Z,Q] Ker ϕ̃.

Then, for every n > m, the quasi-local domain (A,m) defined in (3.3.1) is Noe-
therian with a prime element x ∈ m that satisfies the following:

(3.4.1) ι̃ : K[[x, ζ1, . . . , ζn]]/
(
G1(x, ζ), . . . ,Gr(x, ζ)

)
= R̂/(g1, . . . , gr)

∼=
↪→ Â,

(3.4.2) ˜̃ι : K[[ζ̄1, . . . , ζ̄n]]/
(
F1(ζ̄), . . . , Fr(ζ̄)

)
= R̂/xR/(f1, . . . , fr)

∼=
↪→ Â/xÂ,

q̂ :=
(
ι̃(x), ι̃(ζ1), . . . , ι̃(ζm)

)
Â is a prime ideal of Â and(3.4.3)

q̂ ∩ A = xA,

A/p is essentially of finite type over K(3.4.4)

for every p ∈ Spec(A) \ {xA, (0)}.

Proof
We follow the proof of Theorem 1.4. We first show that A is Noetherian. Namely,
we check that every nonzero prime ideal p of A is finitely generated. Note that
p ∩ R �= (0), and we consider two cases.
First case. There exists 	 ∈ N such that p� ∈ p ∩ P ∗. Then αjk ∈ R + p�A for
every j = 1, . . . , r and for every k = 1,2, . . . by (3.2.3). Hence, we have a canon-
ical surjection ι� : R → A/p�A, and A/p�A is essentially of finite type over K.
Consequently p is finitely generated and satisfies (3.4.4).
Second case. Suppose that xR = p ∩ R. Then, our assumption (3.4.0) implies that

(3.4.5) B/xB ∼=
⋃
k∈N

R̄[ᾱ1k, . . . , ᾱrk] ⊂ Q(R̄).

Thus p = xA, and therefore A is Noetherian. Moreover, (3.4.5) shows that A/xA

has the same structure as local domains in Theorem 1.4.
Next we consider canonical surjections

ι̂ : R̂ → Â and ˆ̂ι : R̂/xR̂ → Â/xÂ.

It is clear that the same reasoning as in the proof of Theorem 1.4 guarantees

gj ∈ Ker ι̂, Ker ˆ̂ι = (f1, . . . , fr), and Q̂ ∩ R = xR,

where Q̂ = (x, ζ1, . . . , ζm)R̂ (cf. (1.4.5)). Then

(g1, . . . , gr) ⊂ Ker ι̂ ⊂ (x, g1, . . . , gr).



A few examples of local rings, I 73

Therefore Ker ι̂ = (g1, . . . , gr), because x is a nonzero divisor in Â. Finally q̂ =
Q̂/(g) is a prime ideal of Â and q̂ ∩ A = xA, because A/xA and R/xR have a
common field of fractions. Thus (3.4.3) holds. �

We end this section with the following result, which is a corollary to the proof of
Theorem 3.4. The additional hypotheses enable us to bypass some parts of the
proof and thus obtain a slight generalization of the theorem, so that n = m.

COROLLARY 3.5

We use the notation above, except that n = m. Let G1(X,Z), . . . ,Gr(X,Z) be
polynomials in the variables X and Z := (Z1, . . . ,Zn) over K0 with zero constant
term.

By identifying K0[X,Z]/XK0[X,Z] with K0[Z], let

Fj(Z) = Gj(0,Z) ∈ K0[Z1, . . . ,Zn].

Let gjk = Gj(x, z1k, . . . , znk), Jk = (g1k, . . . , grk)R, and fjk = Fj(z̄1k, . . . , z̄nk).
Suppose that

ph /∈
√

Jk whenever h ≤ k for every sufficiently large k,

R̂/(x,G1(x, ζ), . . . ,Gr(x, ζ))R̂ is R/xR-torsion-free,(3.5.0)

R

[
g1k

qνk

k

, . . . ,
grk

qνk

k

]
/xR

[g1k

qνk

k

, . . . ,
grk

qνk

k

]
∼= R̄

[f1k

q̄νk

k

, . . . ,
frk

q̄νk

k

]
for every k,

where ζ abbreviates ζ1, . . . , ζn.
Then (A,m), the quasi-local domain defined in (3.3.1), is Noetherian with a

prime element x that satisfies the following:

(3.5.1) ι̃ : K[[x, ζ1, . . . , ζn]]/
(
G1(x, ζ), . . . ,Gr(x, ζ)

) ∼=
↪→ Â,

(3.5.2) ˜̃ι : K[[ζ̄1, . . . , ζ̄n]]/
(
F1(ζ̄), . . . , Fr(ζ̄)

) ∼=
↪→ (A/xA)∧ = Â/xÂ,

(3.5.3) A/p is essentially of finite type over K for p ∈ Spec(A) \
{
xA, (0)

}
.

4. Examples with a specified prime element

We start with Example 4.1, which can be obtained by Corollary 1.5. Then, using
Theorem 3.4 and/or Corollary 3.5, we present examples of local domains with
a specified prime element, whose residue rings have the structure of those con-
structed in Section 1.

EXAMPLE 4.1 ([21, EXAMPLE 3, P. 205])

A discrete valuation ring of positive characteristic, which is not a Nagata ring.

CONSTRUCTION

With notation as in Corollary 1.5, let K0 be a countable field of characteristic
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p > 0, and let n = 2. If we take

F (Z1) = z2 − Zp
1 ∈ K0[z2][Z1],

this F (Z1) satisfies the conditions (1.5.0) (cf. the proof of Lemma 1.3). We get a
discrete valuation ring (A,m) whose completion is

Â ∼= K[[ζ1, ζ2]]/(z2 − ζp
1 ) = K[[ζ1, z2]]/(z2 − ζp

1 ).

EXAMPLE 4.2 ([21, EXAMPLE 7, P. 209])

A two-dimensional normal local domain whose generic formal fiber is not con-
nected.

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic, and let n = 2. Let

G(X,Z1) = XZ1 + Z2
1 ∈ K0[X,Z1].

By Theorem 3.4, we obtain a two-dimensional local domain (A,m) such that

Â ∼= K[[x, ζ1, ζ2]]/(xζ1 + ζ2
1 ) = K[[x, ζ1, ζ2]]/(ζ1) ∩ (x + ζ1).

Then A is normal, because Sing(Â) = V ((x, ζ1)) and because x is a prime element.

Remark. It might be interesting to study if the following example exists: a normal
Nagata local domain with nonconnected generic formal fiber.

EXAMPLE 4.3 ([21, EXAMPLE 7, P. 209])

A two-dimensional regular local ring of arbitrary characteristic, which is not a
Nagata ring.

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic, and let n = 2. Let

G(X,Z1) = X + Zc
1 where c ≥ 2.

Then, we get a two-dimensional regular local ring (A,m) with a prime element
x such that

Â ∼= K[[x, ζ1, ζ2]]/(x + ζc
1) and Â/xÂ ∼= K[[ζ1, ζ2]]/(ζc

1).

Remark ([34]). Let p be a prime number. If we take ZpZ(aik) and p for K and X

in our construction above, we get similar examples of regular local rings of mixed
characteristic.

EXAMPLE 4.4 ([27, SECTION 1])

A two-dimensional Nagata regular local ring of characteristic p > 0, which is not
excellent.
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CONSTRUCTION

Let K0 be a countable field of characteristic p (p > 2) with n = 2. Let

G(X,Z1,Z2) = Z2
1 + X + Zp

2 ∈ K0[X,Z1,Z2].

Then by Corollary 3.5, we get a two-dimensional regular local ring (A,m) with
a prime element x such that

Â ∼= K[[x, ζ1, ζ2]]/(ζ2
1 + x + ζp

2 ).

We show that A is a Nagata ring whenever εk ≡ 0 (mod p). Firstly, we show a
special case of a theorem of André.

LEMMA (CF. [3])

Let R be an excellent local domain with a prime element x. Let Â = R̂/P̂ be a
local domain, which is a homomorphic image of R̂. Suppose that x is a nonzero
prime element of Â and that Q(Â/xÂ) is a separable extension field of Q(R/xR).
Then Q(Â) is separable over Q(R).

Proof
Let D = RxR and E = ÂxÂ. Then we have a canonical exact sequence

H2(D,E,E/xE) −→ H1(D,E,E) x−−−−→ H1(D,E,E) −→ H1(D,E,E/xE).

By our assumption, E/xE is separable over D/xD. Hence

Hi(D,E,E/xE) ∼= Hi(D/xD,E/xE,E/xE) = 0 (i = 1,2)

(cf. [2, Propositions 4.54, 7.22, 7.23]). Thus

H1

(
Q(R),Q(Â),Q(Â)

)
= H1(D,E,E) =

∞⋂
ν=1

xνH1(D,E,E).

Therefore, to get the assertion, it suffices to show that H1(D,E,E) is x-adically
separated. In fact, we claim that H1(D,E,E) is a finite E-module.

Indeed, let Q̂ = P̂ + xR̂ be the prime ideal of R̂. Then, because Q̂ ∩ R = xR

by assumption, we have the canonical local homomorphisms

D = RxR
ϕ−−−−→ R̂Q̂

ψ−−−−→ ÂxÂ = E

where ϕ is regular, because R is assumed to be excellent, and ψ is surjective.
The following canonical exact sequence,

0 = H1(D, R̂Q̂,E) −−−−→ H1(D,E,E) −−−−→ H1(R̂Q̂,E,E),

implies that H1(D,E,E) is a finite E-module (cf. [2, Théorème 5.1]). �

By applying the lemma above to AxA = RxR and to ÂxÂ, we are only able to
check that Q(Â/xÂ) is separable over Q(A/xA) (cf. (3.5.3)). Namely,

(4.4.1) Q
(
K[[ζ̄1, ζ̄2]]/(ζ̄2

1 + ζ̄p
2 )

)
is separable over K(z̄1, z̄2).

In fact, this is equivalent to the following:
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(4.4.2) K[[ζ̄1, ζ̄2]]/(ζ̄2
1 + ζ̄p

2 ) ⊗K[z̄1,z̄2] K
1/p[z̄1/p

1 , z̄
1/p
2 ] is reduced.

Because K[[ζ̄1, ζ̄2]] = K[[z̄1, z̄2]] and because

K[[z̄1, z̄2]] ⊗K[z̄1,z̄2] K
1/p[z̄1/p

1 , z̄
1/p
2 ]

∼= K[[z̄1/p
1 , z̄

1/p
2 ]][K1/p]

=
⋃
k

K[[z̄1/p
1 , z̄

1/p
2 ]][a1/p

11 , a
1/p
21 , . . . , a

1/p
1k , a

1/p
2k ]

=
⋃
k

K(a1/p
11 , a

1/p
21 , . . . , a

1/p
1k , a

1/p
2k )[[z̄1/p

1 , z̄
1/p
2 ]]

is a regular local ring that is a direct limit (cf. [21, (E3.1), p. 206]), to get (4.4.2),
it suffices to show that, for every k

(4.4.3) K(a1/p
11 , a

1/p
21 , . . . , a

1/p
1k , a

1/p
2k )[[z̄1/p

1 , z̄
1/p
2 ]]/(ζ̄2

1 + ζ̄p
2 ) is reduced.

Indeed, let R∗
k = K(a1/p

11 , a
1/p
21 , . . . , a

1/p
1k , a

1/p
2k )[[z̄1/p

1 , z̄
1/p
2 ]], and take

∂

∂a1�
∈ Der(R∗

k,R∗
k) for some 	 > k.

Because εh ≡ 0 (mod p) for every h by assumption, the assertion (4.4.3) follows
from

qε�

� ζ̄1 /∈
√

(ζ̄2
1 + ζ̄p

2 )R∗
k (cf. (3.3.4)).

EXAMPLE 4.5 ([32])

A three-dimensional Nagata regular local ring of arbitrary characteristic, which
is not excellent.

CONSTRUCTION

Let K0 be a countable field of characteristic zero or p > 2, and let n = 3. Let

G(X,Z1,Z2) = Z2
1 + X + Zp

2 ∈ K0[X,Z1,Z2,Z3].

Here, in the case charK0 = 0, we may take as p every natural number greater
than one. Then by Theorem 3.4, we get a three-dimensional regular local ring
(A,m) that has a prime element x such that (cf. Example 2.5)

Â ∼= K[[x, ζ1, ζ2, ζ3]]/(ζ2
1 + x + ζp

2 ) and Â/xÂ ∼= K[[ζ1, ζ2, ζ3]]/(ζ2
1 + ζp

2 ).

The same argument as in Example 4.4 shows that, when charK0 = p > 2, A is a
Nagata ring if εk ≡ 0 (mod p) for every k.

EXAMPLE 4.6 ([27])

A three-dimensional analytically irreducible Nagata normal local domain A that
has p ∈ Spec(A) such that Ap is analytically reducible.

CONSTRUCTION

Let K0 be a countable field of characteristic zero or p > 2, and let n = 3. Taking
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as p every odd number greater than two in the case charK0 = 0, let

G(X,Z1,Z2) = X2Z2
2 + Zp

2 − Z2
1 .

Then by Theorem 3.4, we get a three-dimensional local domain (A,m) with a
prime element x such that

Â ∼= K[[x, ζ1, ζ2, ζ3]]/(x2ζ2
2 + ζp

2 − ζ2
1 ).

Further, Â is a domain, because Â/xÂ ∼= K[[ζ̄1, ζ̄2, ζ̄3]]/(ζ̄p
2 − ζ̄2

1 ).
Take p = (z1, z2, z3)A ∈ Spec(A), and take K0(x) in place of K0. Then

Ap
∧ ∼= K(x)[[ζ1, ζ2, ζ3]]/(x2ζ2

2 + ζp
2 − ζ2

1 ).

Thus Ap
∧ is reducible, because√

1 +
1
x2

ζp−2
2 ∈ K(x)[[ζ2]].

The same argument as in Example 4.4 shows that, when charK0 = p > 2, A is a
Nagata ring whenever εk ≡ 0 (mod p) for every k.

EXAMPLE 4.7 ([6], CF. [23])

A three-dimensional unmixed local domain A that has p ∈ Spec(A) such that
A/p is not unmixed.

CONSTRUCTION

Let K0 be a countable field of arbitrary characteristic, and let n = 4. Take

G1(X,Z1,Z2,Z3) = Z3
2 − Z2

3 , G2(X,Z1,Z2,Z3) = Z2X
2 − Z2

1 ,

G3(X,Z1,Z2,Z3) = Z2Z1 − XZ3, G4(X,Z1,Z2,Z3) = Z2
2X − Z3Z1.

Then, using Macaulay [16], we get (cf. [14, p. 61])

Ker ϕ̃ = (QT1 − G1,QT2 − G2,QT3 − G3,QT4 − G4,

XT1 − Z3T3 − Z2T4,Z1T1 − Z2
2T3 − Z3T4,Z2T2 + Z1T3 − XT4,

Z3T2 + Z2XT3 − Z1T4, T1T2 + Z2T
2
3 − T 2

4 ),

Kerϕ = (QT1 − F1,QT2 − F2,QT3 − F3,QT4 − F4,

− Z3T3 − Z2T4,Z1T1 − Z2
2T3 − Z3T4,Z2T2 + Z1T3,

Z3T2 − Z1T4, T1T2 + Z2T
2
3 − T 2

4 ).

Thus Kerϕ = K0[Z,Q] ⊗K0[X,Z,Q] Ker ϕ̃ (cf. (3.4.0)). Therefore, Theorem 3.4
gives us a local domain (A,m) with a prime element x that satisfies the following:

Â ∼= K[[x, ζ1, ζ2, ζ3, ζ4]]/(ζ3
2 − ζ2

3 , ζ2x
2 − ζ2

1 , ζ2ζ1 − xζ3, ζ
2
2x − ζ3ζ1),

Â/xÂ ∼= K[[ζ1, ζ2, ζ3, ζ4]]/(ζ3
2 − ζ2

3 , ζ2
1 , ζ2ζ1, ζ3ζ1)

∼= K[[ζ1, ζ2, ζ3, ζ4]]/(ζ3
2 − ζ2

3 , ζ1) ∩ (ζ1, ζ2, ζ3)2.
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Namely, A is analytically irreducible but A/xA is not unmixed.

REMARK ([29])

With the notation above, take

G1(X,Z1,Z2,Z3) = Z1Z3, G2(X,Z1,Z2,Z3) = Z1(X + Z2),

G3(X,Z1,Z2,Z3) = Z2Z3, G4(X,Z1,Z2,Z3) = Z2(X + Z2).

Then, Macaulay gives us (cf. [29, Proposition 1.3])

Ker ϕ̃ =
(
QT1 − G1,QT2 − G2,QT3 − G3,QT4 − G4,

(X + Z2)T1 − Z3T2, (X + Z2)T1 − Z1T3,

(X + Z2)T2 − Z1T4, (X + Z2)T3 − Z3T4, T1T4 − T2T3

)
,

Kerϕ =
(
QT1 − F1,QT2 − F2,QT3 − F3,QT4 − F4,

Z2T1 − Z3T2,Z2T1 − Z1T3,

Z2T2 − Z1T4,Z2T3 − Z3T4, T1T4 − T2T3

)
.

Consequently, Kerϕ = K0[Z,Q] ⊗K0[X,Z,Q] Ker ϕ̃. Therefore, we get a local do-
main (A,m) with a prime element x such that

Â ∼= K[[x, ζ1, ζ2, ζ3, ζ4]]/(ζ1, ζ2) ∩ (ζ3, x + ζ2),

Â/xÂ ∼= K[[ζ1, ζ2, ζ3, ζ4]]/(ζ1ζ3, ζ1ζ2, ζ2ζ3, ζ
2
2 )

∼= K[[ζ1, ζ2, ζ3, ζ4]]/(ζ1, ζ2) ∩ (ζ3, ζ2) ∩ (ζ1, ζ2, ζ3)2.

We get another analytically unramified unmixed local domain A such that A/xA

is not unmixed.

5. Construction of bad factorial local domains

In this section, thanks to T. Ogoma, we first define the decomposition of prime
elements of a regular local ring with respect to the equations, or relations, formed
by a subregular system of parameters. Then, we observe how this decomposition
changes when the original regular local ring is extended by a finite number of
indeterminates and when the subregular system of parameters is appropriately
modified according to the extension.

Making use of the observation above, we give a so-called factorial numbering
on the subset of prime elements of the regular local ring R in (1.0.0). Finally we
show that the standard construction in Section 1 combined with this factorial
numbering gives a desired factorial local domain.

5.0. Notation and enumeration on P
With notation as in Section 1.0, we first fix an enumeration on a set of prime
elements that represents the set of all height-one prime ideals of R.
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Take a set of prime elements P of N that contains, for each height-one prime
ideal p ∈ Spec(R), a unique p ∈ Sk with the least possible k such that pR = p:

(5.0.1) P ⊂ N \ {0}.

Then, as before, P is a countable set, and we may assume that

z1 + · · · + zn ∈ P

and that P contains an infinite number of elements of S0.
Let ρ : N → P be a bi jective mapping, and write ρ(i) = ρi instead of pi. By

the remark above, we may assume that ρ1 = z1 + · · · + zn and that ρ satisfies the
following:

(5.0.2) ρk ∈ Sk−2 for every k ≥ 2.

In the next subsection, we show that if relation polynomials F (Z) satisfy
the condition (5.1.0), one can give a so-called factorial numbering on a subset Π
of P , which guarantees the realization of desired factorial local domains.

In fact, thanks to Ogoma’s decomposition lemma below, we show that one
can pick up elements of P ,

p1, p2, . . . , pk, . . . ,

and, at the same time, determine a strictly increasing sequence of natural num-
bers

ε1, ε2, . . . , εk, . . . ,

so that they fulfill our inductive conditions (5.1.2)–(5.1.5).
However, we end this subsection by fixing some more notation. Namely, first

let

p1 := ρ1 = z1 + · · · + zn(5.0.3)

zi0 := zi for i = 1, . . . , n.(5.0.4)

Assuming that p1, . . . , p� and ε1, . . . , ε�−1, which satisfy (5.1.2)–(5.1.5), have been
chosen, we define:

qk := p1 · · · pk for 1 ≤ k ≤ 	,(5.0.5)

zih := zi + ai1q
ε1
1 + · · · + aihqεh

h for 1 ≤ h < 	.(5.0.6)

5.1. Relations and prime elements
Take polynomials in m variables over K0 with no constant term,

F1(Z), . . . , Fr(Z) ∈ (Z1,Z2, . . . ,Zm)K0[Z1, . . . ,Zm],

that satisfy the following absolute irreducibility condition:

L[Z1, . . . ,Zm]/
(
F1(Z), . . . , Fr(Z)

)
is a domain, which is not a field,

(5.1.0)
for every extension field L of K0.



80 Jun-ichi Nishimura

With the notation and assumptions above, for 0 ≤ h < 	, let

(5.1.1) Ph = (f1h, . . . , frh)Rh with fjh = Fj(z1h, . . . , zmh).

Then Ph is a prime ideal of Rh = Kh[z1, . . . , zn](z1,...,zn), because the F (Z)’s
above are assumed to satisfy the condition (5.1.0).

With the notation above, we state the inductive conditions:

p1, . . . , pk are nonzero divisors on Rk−1/Pk−1 for 1 ≤ k ≤ 	;(5.1.2)

p1Rk−1 + Pk−1, . . . , pkRk−1 + Pk−1 are mutually distinct prime ideals
(5.1.3)

for 1 ≤ k ≤ 	;

ρh ≡ peh1
1 · · · pehh

h ·uh(k−1) (mod Pk−1) with a unit uh(k−1) ∈ Rk−1
(5.1.4)

and ehg ∈ N0 for 1 ≤ g ≤ h ≤ k ≤ 	;

εh ≥ max{εh−1 + 1, e11, e21, . . . , e(h+1)h, e(h+1)(h+1)} for 1 ≤ h < 	.(5.1.5)

Note that p1 fulfills the conditions above when 	 = 1. The following Ogoma’s
decomposition lemma [28, Proposition 2.3] makes us possible to climb our induc-
tion steps up.

LEMMA 5.2 (OGOMA’S DECOMPOSITION LEMMA)

With notation and inductive assumptions above, take an element q ∈ Rk−1. Let
yik := zi(k−1) + aikq where the aik’s are indeterminates over Rk−1 (cf. (1.0.6)).
Let gjk := Fj(y) ∈ Rk−1[a] and Qk = (g1k, . . . , grk)Rk. Then

(5.2.0) gjk = fj(k−1) + qHj(a) with Hj(a) ∈ (a)Rk−1[a].

Hence pε
hRk + Pk−1Rk = pε

hRk + Qk if q ∈ pε
hRk−1 for some h. In particular,

phRk + Qk is a prime ideal when q ∈ pε
hRk−1 and when ε > 0. Suppose that

(5.2.1) p1, . . . , pk are nonzero-divisors on Rk/Qk.

Take an element r ∈ Rk−1 \ Pk−1. By (5.1.2) and (5.1.3), we have

(5.2.2) r ≡ pe1
1 · · · pek

k ·s (mod Pk−1) with s ∈ Rk−1.

Under the circumstances, suppose that q ∈
⋂k

h=1 peh

h Rk−1. Then

r ≡ pe1
1 · · · pek

k · t (mod Qk) with t ∈ Rk,(5.2.3)

if s above is a unit in Rk−1, t is also a unit in Rk.(5.2.4)

Moreover, suppose that r is a prime element of Rk−1 and that q = pε1
1 · · · pεk

k ·u
with u a unit in Rk−1 and εh ≥ max{eh,1} for every h. Then

t is either a prime element in Rk/Qk or a unit
(5.2.5)

if t /∈
k⋃

h=1

(phRk + Qk).
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Proof
Indeed, we get the assertion (5.2.3) by (5.2.0) and the following:

pe1
1 · · · pek

k Rk + Pk−1Rk = pe1
1 · · · pek

k Rk + Qk.

Next express

r = pe1
1 · · · pek

k ·s + p with p ∈ Pk−1.

Then, because q = pe1
1 · · · pek

k ·u and p =
∑r

j=1 rjfj(k−1) with u, rj ∈ Rk−1, we
have

r = pe1
1 · · · pek

k

(
s − u

r∑
j=1

rjHj(a)
)

+
r∑

j=1

rjgjk

and

t ≡ s − u

r∑
j=1

rjHj(a) (mod Qk) (cf. (5.2.1)).

Consequently t is a unit in Rk, because s is a unit in Rk−1 and because

u

r∑
j=1

rjHj(a) ∈ (a)Rk−1[a] (cf. (5.2.0)).

Finally we have the canonical isomorphisms(
Rk−1(a)/(t, g)

)
[1/q] =

(
(Rk−1[y]/(r, g))[1/q]

)
T

=
(
((Rk−1/rRk−1)[y]/

(
F (y)))[1/q]

)
T

∼=
(
(Rk−1/rRk−1)[1/q] ⊗K0 K0[y]/(F (y))

)
T
.

Then (Rk−1(a)/(t, g))[1/q] is either a domain or (0) by assumption (5.1.0). Thus
we get the assertion, because t and q form an (Rk/Qk)-sequence. �

5.3. Inductive step: Decomposition of ρ�+1 and choice of p�+1 and ε�

By the inductive hypotheses in Section 5.1, we may assume

(5.3.0) ρ�+1 ≡ p
e(�+1)1
1 · · · pe(�+1)�

� ·v� (mod P�−1)

where v� ∈ R�−1 and v� /∈
⋃�

h=1(phR�−1 + P�−1), because ρ�+1 ∈ R�−1 by (5.0.2).
Then, take

(5.3.1) ε� > max{ε�−1, e11, e21, . . . , e��, e(�+1)1, . . . , e(�+1)�}.

And we define

zi� = zi + ai1q
ε1
1 + · · · + ai�q

ε�

� with q� = p1 · · · p�(5.3.2)

P� = (f1�, . . . , fr�)R� with fj� = Fj(z1�, . . . , zm�).(5.3.3)

Here we remark that

(5.3.4) every P ∈ Ass(R�/P�) is contained in (z1�, . . . , zm�).
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Then, by Lemma 1.1 plus (1.1.3) and by Lemma 5.2, we see that

p1, . . . , p� are nonzero divisors on R�/P�;(5.3.5)

p1R� + P�, . . . , p�R� + P� are mutually distinct prime ideals;(5.3.6)

ρk ≡ pek1
1 · · · pekk

k ·uk� (mod P�) with unit uk� ∈ R� for 1 ≤ h ≤ k ≤ 	;(5.3.7)

ρ�+1 ≡ p
e(�+1)1
1 · · · pe(�+1)�

� ·v�+1 (mod P�);(5.3.8)

where v�+1 ∈ R� and v�+1 /∈
⋃�

k=1(pkR� + P�) (cf. proof of (5.2.4)).
Further, (5.2.5) implies that v�+1 is either a nonzero prime element of R�/P�

or a unit.
Firstly we have the case when v�+1 is a prime element of R�/P�. By the

choice of P , we can find an element p ∈ P ∩ S� such that v�+1 = p·u(�+1)� where
u(�+1)� is a unit in R�. In fact, p1, . . . , p� and this p with ε� above satisfy the
conditions (5.1.2)–(5.1.5). Consequently, we can take this p as p�+1.

Secondly we have the case when v�+1 is a unit. We can find an element
p ∈ P ∩ S�−1 such that p and p1, . . . , p� satisfy the conditions (5.1.2)–(5.1.4),
because P is assumed to contain an infinite number of elements of S0 (cf. proof
of (5.2.5)). In letting v�+1 be a unit u(�+1)� in R�, we can take this p as p�+1.

These complete our inductive process.

5.4. Construction
Notation being as above, let Π = {pk | k = 1,2, . . . } be the subset of P chosen in
Sections 5.1 and 5.3. For j = 1, . . . , r, we define

(5.4.1) αjk =
1

qνk

k

Fj(z1k, . . . , zmk) =
fjk

qνk

k

∈ Q(R)

where fjk = Fj(z1k, . . . , zmk), Q(R) = K(z1, . . . , zn) is the field of fractions of R,
and νk (≤ εk), k = 1,2, . . . , is a sequence of strictly increasing natural numbers
such that

νk > max{εk−1, e11, e21, . . . , ekk, e(k+1)1, . . . , e(k+1)k },

for example, νk := εk (cf. (5.3.1)). Then

(5.4.2) αjk =
q

νk+1
k+1

qνk

k

αj(k+1) +
q

νk+1
k+1

qνk

k

sjk with sjk ∈ Sk+1.

Let

(5.4.3) B =
⋃
k∈N

R[α1k, . . . , αrk] ⊂ Q(R).

Lemma 1.3 and the remark after Lemma 1.1 show that M = (z1, . . . , zn)B is a
maximal ideal of B such that B/M ∼= R/n ∼= K. Thus let

(5.4.4) A := BM ⊂ Q(R) = Q(K[z1, . . . , zn]).
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Then A is a quasi-local domain with its maximal ideal m = MA. For i = 1, . . . , n

and for j = 1, . . . , r, we define

ζi = zi + ai1q
ε1
1 + · · · + aikqεk

k + · · · = zi +
∞∑

k=1

aikqεk

k ,(5.4.5)

fj = Fj(ζ1, . . . , ζm) ∈ K0[[ζ1, . . . , ζm]] ⊂ K[[ζ1, . . . , ζn]] = R̂.(5.4.6)

THEOREM 5.5

Let K be a purely transcendental extension field of countably infinite degree over a
countable field K0, let n, r,m ∈ N with m < n, and let z1, . . . , zn be indeterminates
over K. Let R := K[z1, . . . , zn](z1,...,zn), and let R̂ denote the completion of R;
that is, R̂ = K[[z1, . . . , zn]]. For each j with 1 ≤ j ≤ r, let Fj := Fj(Z1, . . . ,Zm)
be a polynomial in m variables over K0 with no constant term. Suppose that
F1(Z), . . . , Fr(Z) satisfy the absolute irreducibility condition (5.1.0):

L[Z1, . . . ,Zm]/
(
F1(Z), . . . , Fr(Z)

)
is a domain, which is not a field,

for every extension field L of K0.

Then there exist

(1) elements ζ1, ζ2, . . . , ζn ∈ R̂ that are analytically independent over K such
that K[[ζ1, . . . , ζn]] = K[[z1, . . . , zn]],

(2) a factorial local domain (A,m) with R
ι

⊂ A ⊂ Q(R), where Q(R) denotes
the field of fractions of R, and

(3) a natural isomorphism ι̃

that satisfy the following:

(5.5.1) ι̃ : K[[ζ1, . . . , ζn]]/
(
F1(ζ), . . . , Fr(ζ)

)
= R̂/(f1, . . . , fr)

∼=
↪→ Â,

(5.5.2) p̂ :=
(
ι̃(ζ1), . . . , ι̃(ζm)

)
Â is a prime ideal of Â and p̂ ∩ A = (0),

(5.5.3) A/p is essentially of finite type over K for every p ∈ Spec(A) \ {(0)}.

Proof
We prove that A is Noetherian and factorial; that is,

if p is a prime ideal of height one, A/p is essentially of finite type
(5.5.4)

over K and p is principal (cf. [21, (13.1)]).

Indeed, take a nonzero prime ideal p of A. Then p ∩ R �= (0), because R and
A have the same field of fractions. Thus there exists 	 ∈ N such that ρ� ∈ p ∩ R.
Then

ρ� = pe�1
1 · · · pe��

� ·u�k + sk with a unit u�k ∈ R and sk =
r∑

j=1

rjfjk ∈ Pk
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for each k > 	 (cf. (5.1.4)). Hence

ρ� = pe�1
1 · · · pe��

� ·u�k +
r∑

j=1

rjfjk

= pe�1
1 · · · pe��

� ·u�k + qνk

k

r∑
j=1

rjαjk = pe�1
1 · · · pe��

� ·u�

where u� is a unit of A. Thus there exists ph ∈ Π (h ≤ 	) such that ph ∈ p. Then
αjk ∈ R + phA for every j = 1, . . . , r and for every k = 1,2, . . . by (5.4.2). Hence
we get a canonical surjection ιh : R → A/phA, and A/phA is essentially of finite
type over K. Consequently p is finitely generated, and therefore A is Noetherian.

Moreover, our proof of Corollary 1.5 shows that we have a canonical isomor-
phism

ῑh : R/(phR + Ph−1R) ∼= A/phA.

This implies that A/phA is an integral domain (cf. (5.1.3)). Hence, further if p is
a prime ideal of height one, p = phA and this completes the proof of (5.5.3) and
(5.5.4).

Finally (5.5.1) and (5.5.2) follow from the same proof as that of Theorem 1.4
(cf. (5.3.4), (5.1.2), and the remark after Lemma 1.1). �

As in the preceding sections, the additional hypotheses enable us to bypass some
parts of the proof and thus obtain a slight generalization of Theorem 5.5.

COROLLARY 5.6

We use the notation above, except that n = m. Let F1(Z), . . . , Fr(Z) be polynomi-
als in the variables Z := (Z1, . . . ,Zn) over K0 with zero constant term. Suppose
that

L[Z1, . . . ,Zn]/
(
F1(Z), . . . , Fr(Z)

)
is a domain whose dimension is

(5.6.0)
not less than 2 for every extension field L of K0.

Let P0 = (F1(z1, . . . , zn), . . . , Fr(z1, . . . , zn))R0. Taking as p1 a linear combination
of z1, . . . , zn over K0, assume that

p1R0 + P0 is a prime ideal of R0 with p1 /∈ P0(5.6.1)

R̂/
(
F1(ζ), . . . , Fr(ζ)

)
R̂ is R-torsion-free (cf. (1.5.0)).

Then there exists a factorial local domain (A,m) that satisfies the following:

(5.6.2) ι̃ : K[[ζ1, . . . , ζn]]/
(
F1(ζ), . . . , Fr(ζ)

) ∼=
↪→ Â,

(5.6.3) A/p is essentially of finite type over K for every p ∈ Spec(A) \ {(0)}.
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6. Examples

As applications of Theorem 5.5 and/or Corollary 5.6, we obtain following exam-
ples of factorial local domains.

EXAMPLE 6.1 ([35], [28, SECTION 4])

A two-dimensional Cohen–Macaulay factorial excellent local domain with a
Gorenstein module, which has no dualizing (i.e., canonical) module.

CONSTRUCTION

With notation as in Corollary 5.6, let K0 be a countable field of characteristic
zero, and let n = 4. Take

F1(Z1,Z2,Z3,Z4) = Z1Z3 − Z2
2 , F2(Z1,Z2,Z3,Z4) = Z2Z4 − Z3

3 ,

F3(Z1,Z2,Z3,Z4) = Z1Z4 − Z2Z
2
3 .

With p1 = z1 − z4, we see that F1(Z), F2(Z), F3(Z) satisfy the conditions (5.6.0)
and (5.6.1). Then by Corollary 5.6, we get a two-dimensional factorial local
domain (A,m) such that

Â ∼= K[[ζ1, ζ2, ζ3, ζ4]]/(ζ1ζ3 − ζ2
2 , ζ2ζ4 − ζ3

3 , ζ1ζ4 − ζ2ζ
2
3 ).

Thus Â is a two-dimensional non-Gorenstein normal local domain with Cl(Â) ∼=
Z/5Z. Therefore, A is a desired example (cf. [35, (1.7)]).

EXAMPLE 6.2 ([35])

A three-dimensional excellent factorial Cohen–Macaulay local domain that has
no Gorenstein module.

CONSTRUCTION

Let K0 be a countable field of characteristic zero, and let n = 5. Take

F1(Z1, . . . ,Z5) = Z1Z5 − Z2Z4, F2(Z1, . . . ,Z5) = Z1Z2 − Z3Z4,

F3(Z1, . . . ,Z5) = Z2
2 − Z3Z5.

Letting p1 = z1 − z5, we see that F1(Z), F2(Z), F3(Z) satisfy the conditions
(5.6.0) and (5.6.1). Hence by Corollary 5.6, we get a three-dimensional factorial
local domain (A,m) such that

Â ∼= K[[ζ1, ζ2, ζ3, ζ4, ζ5]]/(ζ1ζ5 − ζ2ζ4, ζ1ζ2 − ζ3ζ4, ζ
2
2 − ζ3ζ5).

Thus Â is a three-dimensional non-Gorenstein normal local domain such that
Cl(Â) ∼= Z and Sing(Â) = V ((ζ1, . . . , ζ5)). Therefore, A is a desired example (cf.
[35, (1.4)]).
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[2] M. André, Homologie des algèbres commutatives, Grundlehren Math. Wiss.

206, Springer, Berlin, 1974.
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