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Abstract We construct toroidal partial compactifications of p-adic period domains.
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1. Introduction

1.1
For classifying spaces of Hodge structures, toroidal partial compactifications have
been constructed in [20] and [14, Part III]. (Summaries are given in [18], [15]–
[17].)

The aim of this paper is to show that a similar theory exists over p-adic local
fields, replacing Hodge structures by p-adic Hodge structures.

We describe what we construct in this paper, comparing the theory over C

and the theory over a p-adic local field. To make the descriptions simple, we
will be sometimes rather rough in this introduction, but we will try to present
the ideas clearly. We compare Hodge structures and p-adic Hodge structures in
Sections 1.2–1.4; we compare the Hodge conjecture and Fontaine’s p-adic Hodge
conjecture in Section 1.5; we compare classifying spaces of Hodge structures
(so-called period domains) and classifying spaces of p-adic Hodge structures (p-
adic period domains) in Sections 1.6–1.7; and we compare the toroidal partial
compactifications of the period domains and those of p-adic period domains in
Sections 1.8–1.11.
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1.2. Hodge structures
Roughly speaking, a Hodge structure is a pair (H,F ) of a finitely generated
Z-module H and a decreasing filtration F on HC = C ⊗Z H , satisfying certain
conditions. For a proper smooth scheme X over C and for m ∈ Z, we have a
Hodge structure (H,F ), where H = Hm(X(C),Z) and F is the Hodge filtration
on HC.

1.3. p-Adic Hodge structures
Let K be a finite extension of Qp. We consider p-adic Hodge structures over K.

Let k be the residue field of K. Let K0 be the largest unramified extension of
Qp contained in K, which is identified with the field of fractions of the ring W (k)
of Witt vectors. The pth power map k → k,x �→ xp induces an automorphism
ϕ : W (k) → W (k) of the ring W (k) and induces an automorphism ϕ : K0 → K0

of the field K0.
Roughly speaking, a p-adic Hodge structure over K is a triple (H,N,F )

consisting of a finite-dimensional K0-vector space H endowed with a bijective
Frobenius-linear operator ϕ : H → H (Frobenius-linear means that ϕ(x + y) =
ϕ(x)+ϕ(y) and ϕ(ax) = ϕ(a)ϕ(x) for x, y ∈ H and a ∈ K0), a K0-linear map N :
H → H such that Nϕ = pϕN (from this condition, we have that N is nilpotent),
and a decreasing filtration F on HK := K ⊗K0 H satisfying certain admissibility
conditions formulated by Fontaine [8] (see Section 3.2 of this paper for a review).

For a proper smooth scheme X over K with semistable reduction and for
m ∈ Z, we have a p-adic Hodge structure (H,N,F ), similar to Hodge theory. If
X is of good reduction and Y denotes the reduction of X over k, then H is the
crystalline cohomology Hm

crys(Y ), ϕ : H → H is induced from the pth power mor-
phism Y → Y , N = 0, and F is the Hodge filtration on the de Rham cohomology
Hm

dR(X/K) = K ⊗K0 Hm
crys(Y ), where the last = is by the Berthelot-Ogus isomor-

phism [3]. In the general, semistable reduction case, the crystalline cohomology
should be replaced by log crystalline cohomology (see [12]), and N need not be
zero.

1.4. Examples: Elliptic curves
As an example, we compare Hodge structures and p-adic Hodge structures of
elliptic curves.

We first consider elliptic curves over C. An elliptic curve over C is isomorphic
to the elliptic curve C/(Zτ + Z) over C for some element τ of the upper half-
plane (i.e., the imaginary part Im(τ) of τ is > 0). Assume that E = C/(Zτ + Z).
Consider the case X = E and m = 1 in Section 1.2. Then H = H1(E(C),Z) =
Z2 = Ze1 + Ze2, where (e1, e2) is the dual base of the base of (τ,1) of the Z-dual
H1(E(C),Z) = Zτ + Z of H1(E(C),Z). The Hodge filtration F on HC is given
by

0 = F 2 ⊂ C(τe1 + e2) = F 1 ⊂ HC = F 0.
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Next, let K be a finite extension of Qp, and let E be the Tate elliptic curve
K×/qZ over K, where q is an element of K with p-adic absolute value |q|p < 1
and where qZ denotes the discrete subgroup of K× generated by q. Note that E

is of semistable reduction but of bad reduction. This presentation of the Tate
elliptic curve as a quotient of K× is a p-adic analogue of the presentation of
the elliptic curve C/(Zτ + Z) over C as a quotient of C× via the isomorphism
C/(Zτ + Z) ∼= C×/qZ, z �→ e2πiz with q = e2πiτ . Consider the case X = E and
m = 1 in Section 1.3. Then

H = K2
0 = K0e1 + K0e2,

ϕ(e1) = e1, ϕ(e2) = pe2, N(e1) = 0, N(e2) = ordp(q)e1,

0 = F 2 ⊂ K
(
log(q)e1 + e2

)
= F 1 ⊂ HK = F 0.

Here

ordp : K× → Q, log : K× → K

are the homomorphisms characterized by the following properties (see Sec-
tion 3.1.4): ordp kills the unit group (OK)× of the valuation ring OK of K,
ordp(p) = 1, the restriction of log to Ker((OK)× → k×) coincides with the usual
p-adic logarithm x �→

∑∞
n=1(−1)n−1(x − 1)n/n, and log(p) = 0.

1.5. Hodge conjecture and p-adic Hodge conjecture
In this paper (see Section 3.4), we introduce the p-adic Hodge conjecture of
Fontaine, which is a p-adic analogue of the Hodge conjecture, to present the
philosophy of this paper clearly by using it. Here in this introduction, we intro-
duce this conjecture shortly to observe the nature of the analogy between the
theory over C and the theory over K and also to write about this conjecture in
Section 1.14.

Let X be a proper smooth scheme over C, and let r ∈ Z. Then the Hodge
conjecture predicts that the cycle map

CHr(X)Q → H2r
(
X(C),Q

)
∩ F r

is surjective, where F r is the Hodge filtration.
Let K be a finite extension of Qp, and let X be a proper smooth scheme

over K with good reduction. Let Y be the reduction. Then the p-adic Hodge
conjecture of Fontaine predicts that the cycle map

CHr(X)Q →
(
Image of CHr(Y )Q → H2r

crys(Y )
)

∩ F r

is surjective, where F r is the Hodge filtration on H2r
dR(X/K) = K ⊗K0 H2r

crys(Y ).
This is an old conjecture of Fontaine, but is not yet written in the literature

to the knowledge of the author. In Section 3.4, we introduce the above p-adic
Hodge conjecture again (Conjecture 3.4.2) with its variant (Conjecture 3.4.9).
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1.6. Griffiths period domains D

Roughly speaking, the period domain of Griffiths (the classifying space of Hodge
structures) is defined in the following way. Fix a finitely generated free Z-
module H . We also fix Hodge numbers. We also have to fix a bilinear form
on HQ to treat polarizations, but this is not explained in detail in this introduc-
tion, for simplicity. The Griffiths period domain D is the set of all decreasing
filtrations F on HC such that (H,F ) is a Hodge structure with the fixed Hodge
numbers polarized by the given bilinear form (see Section 2.2 for details).

In a special case, H = Z2 = Ze1 + Ze2 and we have D = h, where h is the
upper half-plane and τ ∈ h corresponds to F = F (τ) ∈ D defined by 0 = F 2 ⊂
C(τe1 + e2) = F 1 ⊂ HC = F 0 (see Section 2.2, Example b). This F = F (τ) is
identified with the Hodge filtration of the elliptic curve C/(Zτ + Z).

1.7. p-Adic period domains D

The p-adic period domain (the classifying space of p-adic Hodge structures) is
defined in the following way. Fix a finite-dimensional K0-vector space H endowed
with a bijective Frobenius-linear map ϕ : H → H . Fix also Hodge numbers. Then,
roughly speaking, the p-adic period domain D is the space of pairs (N,F ),
where N is a K0-linear map H → H such that Nϕ = pϕN and where F is a
decreasing filtration on HK such that (H,N,F ) is a p-adic Hodge structure with
fixed Hodge numbers (see Section 5.2 for details).

In a special case related to Tate elliptic curves, H = K2
0 = K0e1 +K0e2 with

ϕ(e1) = e1 and ϕ(e2) = pe2, and the p-adic Hodge structure of the Tate elliptic
curve K×/qZ in Section 1.4 determines a point (N,F ) of D, where N (resp., F )
is described as in Section 1.4 by using ordp(q) (resp., log(q); see Section 5.5,
Example b).

We study degeneration in this paper. The elliptic curve C×/qZ over C and
the Tate elliptic curve K×/qZ over K degenerate when q tends to zero. Over C,
q = e2πiτ → 0 means that Im(τ) tends to ∞. Over K, q → 0 means that ordp(q)
tends to ∞. Thus in this analogy, Im(τ) in the theory over C is similar to ordp(q)
in the theory over K. It seems that the real part Re(τ) in the theory over C is
similar to log(q) in the theory over K.

The p-adic period domains were studied by Rapoport and Zink [23]–[25].
They considered the case N = 0. We need to consider N because nontrivial N

always appears in degeneration.

1.8. Toroidal partial compactifications Γ \ D ⊂ Γ \ DΣ over C

In [20] and [14, Part III], a toroidal partial compactification Γ \ DΣ of the quotient
space Γ \ D of the period domain D is constructed. (Precisely speaking, the period
domain D in [14, Part III] is the mixed Hodge theoretic version (see [28]) of the
Griffiths period domain.) Here Γ is a discrete group acting on D, and Σ is a
collection of monodromy cones, which satisfy certain conditions. These works
are attempts to generalize the toroidal compactification in [1] to general Hodge
type.
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In a special case related to elliptic curves (see Section 2.2, Example b), the
diagram

(1) D → Γ \ D ⊂ Γ \ DΣ

becomes

h → Δ∗ ⊂ Δ.

Here

Δ =
{
q ∈ C

∣∣ |q| < 1
}
, Δ∗ = Δ − {0}, Γ =

(
1 Z

0 1

)
,

and we identify Δ∗ with Γ \ h via h → Δ∗; τ �→ e2πiτ . The Hodge structure of the
elliptic curve C×/qZ gives the point q = e2πiτ of Δ∗. When q tends to zero, the
elliptic curve C×/qZ and its Hodge structure degenerate, and the corresponding
point q ∈ Δ∗ converges to 0 ∈ Δ in the toroidal partial compactification.

1.9. Toroidal partial compactifications ΓD ⊂ ΓDΣ over K

The aim of this paper is to show that for the p-adic period domain D over the
p-adic local field K, we have a diagram

(2) D ← ΓD ⊂ ΓDΣ,

which is similar to diagram (1) in Section 1.8. Note that the first arrow in (2)
has the converse direction when compared with (1).

In a special case related to Tate elliptic curves (see Section 5.5, Example b),
this diagram becomes

D ← Δ∗ ⊂ Δ,

where

Δ =
{
q ∈ K

∣∣ |q|p < 1
}
, Δ∗ = Δ − {0}.

The first arrow sends q ∈ Δ∗ to (N,F ) ∈ D, where (N,F ) is the p-adic Hodge
structure associated to the Tate elliptic curve K×/qZ described in Section 1.4.
This first arrow ← is essentially q �→ (ordp(q), log(q)), while the analogous arrow
over C was τ �→ e2πiτ in the converse direction. When q → 0, the Tate elliptic
curve K×/qZ and its p-adic Hodge structure degenerate, and the corresponding
point q ∈ Δ∗ converges to 0 ∈ Δ in the toroidal partial compactification.

In the special case related to elliptic curves over C (resp., Tate elliptic curves
over a p-adic local field K), the spaces D, Γ \ D, and Γ \ DΣ (resp., D, ΓD, and
ΓDΣ) are described in detail in Example b in Sections 2.2.4 and 2.3.13 (resp.,
Example b in Sections 5.5.2 and 6.6.2).

1.10. More about ΓD

We give more explanations about ΓD in p-adic theory (see Section 5 for details;
Γ is a compact adelic group, but we do not explain it here).
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In p-adic Hodge theory, a very important theorem is that the category of
p-adic Hodge structures is equivalent to the category of semistable p-adic rep-
resentations of Gal(K̄/K), where K̄ denotes the algebraic closure of K (see [5];
see Section 3.2.6 of this paper for a review). In this equivalence, for a proper
smooth scheme X over K of semistable reduction, the mth p-adic Hodge struc-
ture of X (see Section 1.3) corresponds to the étale cohomology Hm

ét (X ⊗K K̄,Qp)
regarded as a p-adic representation of Gal(K̄/K). Note that Galois representa-
tions have nice integral structures (e.g., the integral structure Hm

ét (X ⊗K K̄,Zp)
of Hm

ét (X ⊗K K̄,Qp)) and often some level structures. (A level structure is a finer
version of an integral structure; see Section 4.3.)

Roughly speaking, the space ΓD is defined to be the set of triples (N,F,μ),
where (N,F ) ∈ D and μ is a level structure on a related Galois representation.
The canonical arrow D ← ΓD is given by (N,F,μ) �→ (N,F ) forgetting the level
structure μ.

In the special case related to Tate elliptic curves E = K×/qZ, q ∈ Δ∗ corre-
sponds to (N,F,μ) ∈ ΓD with (N,F ) associated to E as in Section 1.4 and with
μ associated to the integral structures H1

ét(E ⊗K K̄,Z�) of H1
ét(E ⊗K K̄,Q�),

where � ranges over all prime numbers.
Level structures were considered by Rapoport and Zink [25] in their study of

p-adic period domains related to p-divisible groups. In this case, involved p-adic
Hodge structures satisfy F r = HK and F r+2 = 0 for some r ∈ Z. In this paper,
we can treat any Hodge type.

We define a structure of an analytic manifold over K on ΓD. (We do not
define a rigid analytic structure but define only a naive analytic structure. The
attempt to define something like a rigid analytic structure will be given in the
later part of this series of papers.)

1.11. More about ΓDΣ

We give more explanations about ΓDΣ in p-adic theory (see Section 6 for more
details).

In the theory (see [20], [14, Part III]) for Hodge structures, the toroidal partial
compactifications Γ \ DΣ are obtained by adding nilpotent orbits to Γ \ D as
points at infinity. This is a natural idea because the infinity of the period domain
should consist of limit points of degenerating families of Hodge structures, and
nilpotent orbits are associated to such families (see [27]). In the p-adic theory in
this paper, we have the notion of a p-adic nilpotent orbit (see Sections 6.1, 6.2),
and to obtain toroidal partial compactifications ΓDΣ, we add p-adic nilpotents
to ΓD as points at infinity.

In the theory for Hodge structures, it is proved in [20] and [14, Part III] that
Γ \ DΣ is not necessarily a complex analytic space but is a log manifold which
is like a complex analytic manifold with slits. Similarly, in this paper, we prove
that ΓDΣ in p-adic theory is a p-adic log manifold (see Theorem 6.5.6), which is
like a p-adic analytic manifold with slits.
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1.12
The organization of this paper is as follows. In Section 2, we review toroidal
partial compactifications of period domains over C constructed in [20] and [14].
In Section 3, we review the theory of p-adic Hodge structures, we introduce the
p-adic Hodge conjecture of Fontaine, and we give (in Section 3.5) some results
on p-adic Hodge structures which we use in Section 6. In Sections 4 and 5, we
consider p-adic period domains D and ΓD. In Section 6, we construct toroidal
partial compactifications ΓDΣ of ΓD.

1.13
This paper is part I of series of papers. In [19], [20], and [14], in the theory over C,
various kinds of enlargements of D were constructed with maps between them
as in the following diagram.

DSL(2),val
⊂−→ DBS,val

−→ −→

DΣ,val ←− D�
Σ,val −→ DSL(2) DBS.

−→ −→

DΣ ←− D�
Σ

In the later part of this series, we study a p-adic analogue of a part of this
diagram.

1.14
In a later part of the series, we review the theory of p-adic intermediate Jaco-
bians of [26] from our point of view and study degenerations of p-adic intermedi-
ate Jacobians. This study of degeneration is a p-adic analogue of the study [15]
over C. Degenerations of intermediate Jacobians over C are now studied inten-
sively (see, e.g., [22]). We hope that the complex analytic study and the p-adic
study stimulate each other. Degeneration of the intermediate Jacobian over C

is related to the Hodge conjecture (see [22]). We hope that degeneration of the
p-adic intermediate Jacobian is related to the p-adic Hodge conjecture.

2. Review of the theory over C

In Section 2.2, we review classifying spaces D of mixed Hodge structures and the
quotient spaces Γ \ D. In Section 2.3, we review toroidal partial compactifications
Γ \ DΣ of Γ \ D. The p-adic version of Section 2.2 is given in Sections 4 and 5,
and the p-adic version of Section 2.3 is given in Section 6.

We explain the theory over C using Examples a–d (Sections 2.2.3–2.2.6). The
corresponding Examples a–d in p-adic theory are given in Sections 5.5 and 6.6.
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2.1. Notation in Section 2
2.1.1
In Section 2, fix a quadruple(

H,W, (〈 , 〉w)w∈Z, (hw,i)w,i∈Z

)
,

where

• H is a finitely generated free Z-module;
• W is an increasing filtration on the Q-vector space HQ := Q ⊗Z H such that

Ww = HQ for w 
 0 and Ww = 0 for w � 0;
• 〈 , 〉w for each w ∈ Z is a nondegenerate Q-bilinear form grW

w × grW
w → Q

which is symmetric if w is even and antisymmetric if w is odd;
• hw,i are nonnegative integers which are zero for almost all (w, i), such that∑

i hw,i = dim(grW
w ) for all w and hw,i = hw,w−i for all (w, i).

2.2. Period domains D and Γ \ D

We review the definition of the classifying space D of mixed Hodge structures
with polarized graded quotients, defined by Usui [28]. This is the mixed Hodge
theoretic version of the classifying space in the pure case defined by Griffiths [11].

2.2.1
As in Usui [28], let D be the set of all decreasing filtrations F on HC := C ⊗Z H

satisfying the following conditions (i)–(iii).

(i) (H,W,F ) is a mixed Hodge structure.
(ii) For any w ∈ Z, the Hodge structure ((H ∩ Ww)/(H ∩ Ww−1),grW

w (F ))
of weight w is polarized by 〈 , 〉w for any w.

Here grW
w (F ) denotes the filtration on grW

w,C := C ⊗Q grW
w induced by F .

(iii) We have hw,i = dimgri
F grW

w,C for any w, i ∈ Z.

On the other hand, let Ď be the set of all decreasing filtrations F on HC

satisfying the above condition (iii) and the following condition (ii′).

(ii′) For any w, i ∈ Z, the annihilator of grW
w (F i) in grW

w,C for the pairing
〈 , 〉w coincides with grW

w (Fw+1−i).

Then Ď has a natural structure of a complex analytic manifold, and D is an
open set of Ď. By this, D has a structure of a complex analytic manifold.

2.2.2
For R = Z,Q,R,C, let

GR =
{
g ∈ AutR(HR)

∣∣ g respects W and 〈 , 〉w for all w ∈ Z
}
.

Then GC acts naturally on Ď, and GR acts naturally on D.
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For a torsion-free subgroup Γ of GZ, the quotient space Γ \ D is a complex
analytic manifold, and the projection D → Γ \ D is locally an isomorphism of
complex analytic manifolds.

2.2.3. Example a (The multiplicative group C× appears here.)
Define the quadruple (H,W, (〈 , 〉w)w, (hw,i)) as follows:

• H is a free Z-module of rank 2 with basis e1, e2;
• W is the increasing filtration on HQ defined by

0 = W−3 ⊂ Qe1 = W−2 = W−1 ⊂ HQ = W0;

• 〈 , 〉w and hw,i are defined as

〈e1, e1〉 −2 = 1, 〈e2, e2〉0 = 1,

where we denote the element e2 mod W−1 of grW
0 simply by e2,

h0,0 = h−2,−1 = 1, other hw,i are zero.

Then we have an isomorphism

D ∼= C,

where z ∈ C corresponds to the following F = F (z) ∈ D:

0 = F 1 ⊂ C(ze1 + e2) = F 0 ⊂ HC = F −1.

For

Γ =
(

1 Z

0 1

)
⊂ GZ,

we have a commutative diagram

C ∼= D

−→ −→

C× ∼= Γ \ D

Here the left vertical arrow is z �→ exp(2πiz).

2.2.4. Example b (The upper half-plane h and the unit disc Δ∗ without the origin
appear here.)

Define the quadruple (H,W, (〈 , 〉w)w, (hw,i)) as follows:

• H is a free Z-module of rank 2 with basis e1, e2;
• W is the increasing filtration on HQ defined by

0 = W−2 ⊂ HQ = W−1;

• 〈 , 〉w and hw,i are defined by

〈e2, e1〉 −1 = 1,

h−1,0 = h−1,−1 = 1, other hw,i are zero.
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For τ ∈ C, define F = F (τ) ∈ Ď by

0 = F 1 ⊂ C(τe1 + e2) = F 0 ⊂ HC = F −1.

Then we have an isomorphism

D ∼= h := {x + iy | x, y ∈ R, y > 0},

where τ = x + iy ∈ h corresponds to F (τ) ∈ D.
For

Γ =
(

1 Z

0 1

)
,

we have a commutative diagram

h ∼= D

−→ −→

Δ∗ ∼= Γ \ D

Here

Δ∗ = Δ − {0} with Δ =
{
q ∈ C

∣∣ |q| < 1
}
.

The left vertical arrow is τ �→ exp(2πiτ).
The example of D in the introduction related to elliptic curves over C is

essentially this Example b. Precisely, it is the (−1)-Tate twist of this Example b.
In general, Tate twists D, Γ \ D, and also Γ \ DΣ in Section 2.3 are canonically
isomorphic to the original D, Γ \ D, and Γ \ DΣ, respectively.

2.2.5. Example c (The universal elliptic curve appears here.)
Define the quadruple (H,W, (〈 , 〉w)w, (hw,i)) as follows:

• H is a free Z-module of rank 3 with basis e1, e2, e3;
• W is the increasing filtration on HQ defined by

0 = W−2 ⊂ Qe1 + Qe2 = W−1 ⊂ HQ = W0;

• 〈 , 〉w and hw,i are defined by

〈e2, e1〉 −1 = 1, 〈e3, e3〉0 = 1,

where we denote the element e3 mod W−1 of grW
0 simply by e3,

h0,0 = h−1,0 = h−1,−1 = 1, other hw,i are zero.

For τ, z ∈ C, define F = F (τ, z) ∈ Ď by

0 = F 1 ⊂ C(τe1 + e2) + C(ze1 + e3) = F 0 ⊂ HC = F −1.

Then we have an isomorphism

D ∼= h × C,

where (τ, z) ∈ h × C corresponds to F (τ, z) ∈ D.
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Let

Γ1 =

⎛
⎝1 0 Z

0 1 Z

0 0 1

⎞
⎠ , Γ2 =

⎛
⎝1 Z Z

0 1 0
0 0 1

⎞
⎠ , Γ3 =

⎛
⎝1 Z Z

0 1 Z

0 0 1

⎞
⎠.

With the identification D = h × C, the fiber of Γ1 \ D → h on τ ∈ h is the elliptic
curve C/(Zτ + Z). We have a commutative diagram

h × C ∼= D

−→ −→
Δ∗ × C× ∼= Γ2 \ D

−→ −→

⋃
q∈Δ∗ C×/qZ ∼= Γ3 \ D

The upper left vertical arrow is (τ, z) �→ (exp(2πiτ), exp(2πiz)).
The fibrations Γ1 \ D → h and Γ3 \ D → Δ∗ are the so-called universal elliptic

curves.

2.2.6. Example d (The dilog function appears in this example; see Section 2.3.15.)
Define the quadruple (H,W, (〈 , 〉w)w, (hw,i)) as follows:

• H is a free Z-module of rank 3 with basis e1, e2, e3;
• W is the increasing filtration on HQ defined by

0 = W−5 ⊂ Qe1 = W−4 = W−3 ⊂ W−3 + Qe2 = W−2 = W−1 ⊂ HQ = W0;

• 〈 , 〉w and hw,i are defined by

〈e1, e1〉 −4 = 1, 〈e2, e2〉 −2 = 1, 〈e3, e3〉0 = 1,

where we denote the element e2 mod W−3 of grW
−2 and the element e3 mod W−1

of grW
0 simply by e2 and e3, respectively,

h0,0 = h−2,−1 = h−4,−2 = 1, other hw,i are zero.

Then we have an isomorphism

D ∼= C3,

where (z1, z2, z3) ∈ C3 corresponds to the following F = F (z1, z2, z3) ∈ D:

0 = F −1 ⊂ C(z1e1 + z2e2 + e3) = F 0 ⊂ F 0 + C(z3e1 + e2) = F −1 ⊂ HC = F −2.

Let

Γ =

⎛
⎝1 Z Z

0 1 Z

0 0 1

⎞
⎠.
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Then

Γ \ D ∼= Γ \

⎛
⎝1 C C

0 1 C

0 0 1

⎞
⎠ , F (z1, z2, z3) ↔

⎛
⎝1 z3 z1

0 1 z2

0 0 1

⎞
⎠.

The fibration Γ \ D → C× × C×, F (z1, z2, z3) �→ (exp(2πiz3), exp(2πiz2)) is a
C/Z-torsor.

2.3. Toroidal partial compactifications
We review the toroidal partial compactification Γ \ DΣ of Γ \ D constructed in
[20] and [14] ([20] treats the pure case, i.e., the case Ww = HQ and Ww−1 = 0 for
some w ∈ Z).

2.3.1
For R = Q,R,C, let gR be the set of all R-linear maps N : HR → HR such that
N(Ww,R) ⊂ Ww,R for all w ∈ Z and such that

〈grW
w (N)x, y〉w + 〈x,grW

w (N)y〉w = 0 for all w ∈ Z, x, y ∈ grW
w,R.

2.3.2
We review the notion of relative monodromy filtration (see [6, Section 1.6.13]).
For an abelian group A with an increasing filtration W and for a nilpotent
homomorphism N : A → A such that N(Ww) ⊂ Ww for all w ∈ Z, an increasing
filtration M on A is called a relative monodromy filtration of N with respect to
W if N(Mw) ⊂ Mw−2 for all w ∈ Z and

Nm : grM
w+mgrW

w

∼=→ grM
w−mgrW

w

for all w ∈ Z and all integers m ≥ 0. A relative monodromy filtration of N with
respect to W is unique if it exists. If it exists, it is denoted by M(N,W ).

2.3.3
We call a subset σ of gQ a nilpotent cone in gQ if the following conditions (i)–(iii)
are satisfied.

(i) The set σ is a finitely generated Q≥0-cone. That is,

σ = Q≥0N1 + · · · + Q≥0Nn

for some n ≥ 0 and N1, . . . ,Nn ∈ gQ.
(ii) Any element of σ is nilpotent as a linear map HQ → HQ.
(iii) We have NN ′ = N ′N for any N,N ′ ∈ σ.

For a nilpotent cone σ in gQ and for R = Q,R,C, let σR be the R-linear span
of σ in gR.

2.3.4. Nilpotent orbit
Let σ be a nilpotent cone in gQ, and let Z be a subset of Ď. We say that Z is a
σ-nilpotent orbit if the following conditions (i)–(iv) are satisfied.
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(i) Z is an orbit under the action of exp(σC) on Ď. That is, there is F ∈ Ď

such that Z = exp(σC)F .
(ii) We have NF r ⊂ F r−1 for any N ∈ σ, F ∈ Z, and r ∈ Z (Griffiths

transversality).
(iii) Write σ = Q≥0N1 + · · · + Q≥0Nn. Let F ∈ Z. Then if z1, . . . , zn ∈ C and

if Im(zj) 
 0, we have exp
(∑n

j=1 zjNj

)
F ∈ D.

(iv) For any N ∈ σ, the relative monodromy filtration M(N,W ) exists. (This
is a condition on σ.)

2.3.5
By a fan in gQ, we mean a nonempty set Σ of nilpotent cones in gQ satisfying
the following conditions (i)–(iii).

(i) All elements of Σ are sharp. That is, σ ∩ (−σ) = {0} for any σ ∈ Σ.
(ii) If σ ∈ Σ, then all faces of σ belong to Σ.
(iii) If σ, τ ∈ Σ, then σ ∩ τ is a face of σ.

By a weak fan in gQ, we mean a nonempty set Σ of nilpotent cones in gQ

satisfying the above conditions (i) and (ii) and the following condition (iii′).

(iii′) Let σ,σ′ ∈ Σ, and assume that σ and σ′ have a common interior point.
Assume further that there are a σ-nilpotent orbit Z and a σ′-nilpotent orbit Z ′

such that Z ∩ Z ′ �= ∅. Then σ = σ′.

As is seen easily, a fan in gQ is a weak fan in gQ.

2.3.6
For a weak fan Σ in gQ, we define

DΣ =
{
(σ,Z)

∣∣ σ ∈ Σ, Z is a σ-nilpotent orbit
}
.

2.3.7
We have an embedding

D
⊂→ DΣ;F �→ ({0}, {F }).

In fact, D is identified with the subset of DΣ consisting of all elements (σ,Z)
such that σ = {0}.

2.3.8
Let Σ be a weak fan in gQ, and let Γ be a subgroup of GZ.

We say that Σ and Γ are compatible if the following condition (i) is satisfied.

(i) If σ ∈ Σ and γ ∈ Γ, then γσγ−1 ∈ Σ.

If Σ and Γ are compatible, we have an action of Γ on DΣ for which γ ∈ Γ
sends (σ,Z) ∈ DΣ to (γσγ−1, γZ).

We say that Σ and Γ are strongly compatible if the above condition (i) and
the following condition (ii) are satisfied.
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(ii) As a Q≥0-cone, σ is generated by log(γ) when γ ranges over all unipotent
elements of Γ such that log(γ) ∈ σ.

2.3.9
Let Σ be a weak fan in gQ, let Γ be a subgroup of GZ, and assume that they are
strongly compatible. Then as in [20] and [14, Part III], Γ \ DΣ is endowed with
a topology for which Γ \ D is a dense open subset and with a sheaf of rings of
complex analytic functions whose restriction to Γ \ D coincides with the usual
sheaf of complex analytic functions on Γ \ D. This space Γ \ DΣ is also endowed
with a canonical log structure whose restriction to Γ \ D is trivial.

2.3.10
A basic fact about the topology of Γ \ DΣ is the following.

Let (σ,Z) ∈ DΣ, and write σ = Q≥0N1 + · · · + Q≥0Nn. Let F ∈ Z. Then the
class of (σ,Z) in Γ \ DΣ is the limit of the classes of exp

(∑n
i=1 ziNi

)
F in Γ \ D

for zi ∈ C, Im(zi) → ∞.

2.3.11
Let Σ and Γ be as above. In general, Γ \ DΣ is not necessarily a complex analytic
space since it may have slits caused by Griffiths transversality. Such a phenome-
non was first observed in [29].

If Γ is neat, then Γ \ DΣ is a log manifold in the following sense. (Neat means
that for any γ ∈ Γ, the subgroup of C× generated by all eigenvalues of the action
of γ on HC is torsion free. If Γ is neat, then Γ is torsion free. It is known that
there is a neat subgroup Γ of GZ of finite index.)

By a log manifold we mean a local ringed space over C endowed with an
fs log structure which has an open covering (Uλ)λ with the following property:
for each λ, there exist an affine toric variety Zλ endowed with the canonical
log structure, a finite subset Iλ of Γ(Zλ,Ω1

Zλ
(log)) (Ω1(log) denotes the sheaf of

differential forms with log poles), and an isomorphism of local ringed spaces over
C with log structures between Uλ and an open subset of

Sλ =
{
z ∈ Zλ

∣∣ the image of Iλ in Ω1
z(log) is zero

}
,

where Sλ is endowed with the strong topology in Zλ, with the inverse image OZλ

of the sheaf of complex analytic functions OZλ
on Zλ, and with the inverse image

MSλ
of the log structure MZλ

of Zλ.
Here Ω1

z(log) is the space of differential forms with log poles on the log
point z. (It is zero if the log structure of the point z is trivial.) Affine toric
variety and strong topology are as follows.

An affine toric variety is an analytic space over C of the form Hom(S,C),
where S is the intersection of a finitely generated Q≥0-cone τ and a finitely
generated Z-submodule of τQ, and Hom is the set of homomorphisms of monoids
where C is regarded as a multiplicative monoid. Hom(S,C) is regarded as an
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analytic space over C in the natural way. An affine toric variety is endowed with
a canonical log structure.

For a subset S of a complex analytic space Z, the strong topology of S in Z

is defined as follows. A subset U of S is open in the strong topology of S in Z if
and only if, for any analytic space Y over C and any morphism λ : Y → Z such
that λ(Y ) ⊂ S, λ−1(U) is open on Y .

For basic facts about log manifolds (resp., strong topology), see [20, Sec-
tion 3.5] (resp., [20, Section 3.1]).

2.3.12. Example a (The compactification P1(C) of C× appears here.)
Let Σ = {{0}, σ, −σ}, where σ (resp., −σ) denotes the cone of all Q-linear maps
HQ → HQ which send e1 to zero and e2 into Q≥0 · e1 (resp., Q≤0 · e1). Then Σ is
a fan in gQ, and Σ and Γ are strongly compatible. The isomorphism C× ∼= Γ \ D

in Section 2.2.3 extends uniquely to an isomorphism

P1(C) ∼= Γ \ DΣ

of complex analytic manifolds, in which 0 ∈ P1(C) (resp., ∞ ∈ P1(C)) corresponds
to the class of (σ,Z) ∈ DΣ (resp., (−σ,Z) ∈ DΣ), where Z = D = {F (z) | z ∈ C}.

2.3.13. Example b (The unit disc Δ (with the origin) appears here.)
Let Σ = {{0}, σ}, where σ denotes the cone of all Q-linear maps HQ → HQ which
send e1 to zero and e2 into Q≥0 · e1. Then Σ is a fan in gQ, and Σ and Γ
are strongly compatible. The isomorphism Δ∗ ∼= Γ \ D in Section 2.2.4 extends
uniquely to an isomorphism

Δ ∼= Γ \ DΣ

of complex analytic manifolds, in which 0 ∈ Δ corresponds to the class of (σ,Z) ∈
DΣ, where Z = {F (τ) | τ ∈ C} ⊂ Ď.

2.3.14. Example c (A model of the universal elliptic curve with degenerate fiber
on 0 ∈ Δ appears here.)

For n ∈ Z, let Nn ∈ gQ be the Q-linear map which sends e1 to zero, e2 to e1,
and e3 to ne1. Let Σ = { {0}, σn(n ∈ Z), σn,n+1(n ∈ Z)}, where σn = Q≥0Nn,
σn,n+1 = Q≥0Nn + Q≥0Nn+1. Then Σ is a fan in gQ, Σ and Γ2 are strongly
compatible, and Σ and Γ3 are also strongly compatible.

The space Γ3 \ DΣ is the proper model over Δ of the universal elliptic curve
Γ3 \ D over Δ∗. The fiber on q ∈ Δ∗ in Γ3 \ DΣ is the elliptic curve C×/qZ (see
Section 2.2.5). The fiber on 0 ∈ Δ in Γ3 \ DΣ is P1(C)/(0 ∼ ∞), the quotient of
P1(C) obtained by identifying zero and ∞.

Concerning Γ2 \ DΣ → Δ, the fiber on q ∈ Δ∗ is C× (see Section 2.2.5). We
describe the fiber S on 0 ∈ Δ in Γ2 \ DΣ. It is an infinite chain of P1(C). More
precisely, for each n ∈ Z, we have an open immersion

un : C× → S,a �→ class(σn,Z),

where Z =
{
F (τ, b + nτ)

∣∣ τ ∈ C
}

with a = exp(2πib).
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We have um(C×) ∩ un(C×) = ∅ if m �= n. This un extends uniquely to a closed
immersion ūn : P1(C) → S, and S =

⋃
n∈Z ūn(P1(C)). If m,n ∈ Z and

n /∈ {m − 1,m,m + 1}, then ūm(P1(C)) ∩ ūn(P1(C)) = ∅. We have ūn(P1(C)) ∩
ūn+1(P1(C)) = {ūn(0)} = {ūn+1(∞)}, and this point ūn(0) is the class of the
nilpotent orbit (σn,n+1,Z) with Z = {F (τ, z) | τ, z ∈ C}. The action of a standard
generator of Γ3/Γ2 sends ūn(a) (a ∈ P1(C)) to ūn+1(a). The fiber P1(C)/(0 ∼ ∞)
on 0 ∈ Δ of Γ3 \ DΣ → Δ is (Γ3/Γ2) \ S, that is, the quotient of S by this action.

2.3.15. Example d
Let Σ be the set of the cones Q≥0N , where N ranges over all Q-linear maps
HQ → HQ such that N(Ww) ⊂ Ww−1 for any w ∈ Z. Then Σ is a fan in gQ, and
Σ and Γ are strongly compatible. A remarkable fact is that Γ \ DΣ has a slit and
is not a complex analytic space. We describe an open neighborhood of points of
class(σ,Zz) of Γ \ DΣ, which has a slit. Here σ = Q≥0N with N(e1) = N(e2) = 0,
N(e3) = e2, and Zz = {F (z, τ,0) | τ ∈ C}. We have an open immersion of log
manifolds from a sufficiently small open neighborhood U of (0,0,0) in the log
manifold {

(z1, u, z3) ∈ C3
∣∣ if u = 0, then z3 = 0

}
to the log manifold Γ \ DΣ, which sends (z1, e

2πiw, z3) ∈ U to the class of F (z1,

w, z3) and sends (z,0,0) ∈ U to the class of (σ,Zz). Here the log structure of
U ⊂ C3 is defined by the divisor u = 0 of C3. Note that U has a slit and
is not a complex analytic space. This slit appears by Griffiths transversality;
(N,F (z1, z2, z3)) satisfies Griffiths transversality if and only if z3 = 0.

The theory of dilog sheaves (a special case of polylog sheaves; see [2]) shows
that there is a unique morphism P1(C) → Γ \ DΣ of log manifolds (here P1(C) is
endowed with the log structure defined by {0,1, ∞}) which sends u ∈ C× ⊂ P1(C)
with |u| < 1 to the class of F (z1, z2, z3) with

z1 = −(2πi)−2
∞∑

n=1

un

n2
, z2 = (2πi)−1 log(u), z3 = (2πi)−1 log(1 − u).

The image of 0 ∈ P1(C) under this morphism P1(C) → Γ \ DΣ is class(σ,Z0).

3. p-Adic Hodge structures and Fontaine’s p-adic Hodge conjecture

In this section, we review the theory of Fontaine on p-adic Hodge structures, and
introduce the p-adic Hodge conjecture (See Conjectures 3.4.2, 3.4.9) of Fontaine.
In Section 3.5, we give some results on p-adic Hodge structures which we use in
Section 6.

3.1. Notation in Section 3
3.1.1
Let K be a complete discrete valuation field of characteristic zero with perfect
residue field k of characteristic p > 0. Let OK be the valuation ring of K, and let
mK be the maximal ideal of OK .
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Let K̄ be an algebraic closure of K, and let Cp be the completion of K̄. Let
OCp and mCp be the valuation ring of Cp and its maximal ideal, respectively,
and let k̄ be the residue field of Cp, which is an algebraic closure of k.

3.1.2
Let W (k) be the ring of Witt vectors with entries in k, and let K0 be the field of
fractions of W (k). We regard K as a finite extension of K0 in the natural way.

Let ϕ : W (k) → W (k) be the canonical lifting of the pth power map k → k,
and denote the induced automorphism K0 → K0 by the same letter ϕ.

3.1.3
We fix a primitive nth root ζn of 1 in K̄ for each n ≥ 1 satisfying (ζmn)n = ζm

for any m,n ≥ 1.

3.1.4
We fix an element ξ ∈ mK − {0}. We fix an nth root ξ1/n of ξ in K̄ for each n ≥ 1
satisfying (ξ1/mn)n = ξ1/m for any m,n ≥ 1.

Let

ordξ : C×
p → Q

be the unique homomorphism which sends (OCp)× to zero and ξ to 1. Let

log : C×
p → Cp

be the unique homomorphism which coincides with the usual p-adic logarithm
x �→

∑∞
n=1(−1)n−1(x − 1)n/n on 1 + mCp , which is zero on the multiplicative

representative of k× in (OCp)× and which sends ξ to zero. We have log(K×) ⊂ K.
(It may be better to denote this map log by log(ξ), e.g., to indicate the dependence
on ξ, but we just choose simple notation.)

A standard choice of ξ is p. The introduction of this paper is written by
taking ξ = p.

3.2. p-Adic Hodge structures
We briefly review the formulation of p-adic Hodge structures by Fontaine (for
details, see, e.g., [7], [8]).

3.2.1
A filtered module over K is a finite-dimensional K0-vector space D endowed
with a Frobenius-linear bijection ϕ : D → D, with a K0-linear map N : D → D

such that Nϕ = pϕN , and with a decreasing filtration F on DK = K ⊗K0 D. We
denote the category of filtered modules over K by MFK .

The map N of a filtered module is automatically nilpotent.
The filtration (F iDK)i of a filtered module D is often denoted by (Di

K)i.
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3.2.2
There is an important full subcategory MFadm

K of MFK consisting of all admis-
sible filtered modules over K. This is defined as follows.

First, assume that k is algebraically closed.
For a K0-subspace S of D which is stable under ϕ and N , define integers

tN (S) and tH(S) as follows. Let r = dimK0 S, and consider the rth exterior power∧r
S of S, which is a one-dimensional K0-vector space. Let ϕ :

∧r
S →

∧r
S be

the Frobenius-linear bijection induced by ϕ : D → D. Then if we write ϕ(e) = ae

for a basis e of
∧r

S and for a ∈ K×
0 , a depends on the choice of e but ordp(a)

does not depend on the choice. Here ordp is the additive valuation of K0 which
sends p to 1. Define tN (S) = ordp(a) ∈ Z. On the other hand, for the filtration
on
∧r

K SK induced by the filtration F on SK , there is a unique integer m such
that Fm

(∧r
K SK

)
=
∧r

K SK and Fm+1
(∧r

K SK

)
= 0. Define tH(S) = m.

An object D of MFK is said to be admissible if tN (D) = tH(D) and tN (S) ≥
tH(S) for any K0-subspace S of D which is stable under ϕ and N .

The definition of admissibility without assuming that k is algebraically closed
is as follows. Let K ′

0 be the field of fractions of W (k̄), and let K ′ = K ⊗K0 K ′
0.

Then K ′ is a complete discrete valuation field with algebraically closed residue
field k̄. For an object D of MFK , we have an object D′ = K ′

0 ⊗K0 D of MFK′

with ϕ′ = ϕ ⊗ ϕ, with N ′ = 1 ⊗ N , and with the filtration F ′ = K ′ ⊗K F . The
admissibility of D is defined as the admissibility of D′.

In fact, this admissibility was called weak admissibility before (e.g., in [8]).
But by [5], it is now known that weak admissibility is equivalent to the condition
admissibility. To make the terminology simple, we use the word admissibility for
weak admissibility (as experts do these days).

3.2.3
The following fact (see [8, Section 4.4.4(iii)]) is used often in this paper. Assume
that we have an exact sequence 0 → D′ → D → D′ ′ → 0 in MFK . (Exactness here
means that the sequences 0 → D′ → D → D′ ′ → 0 and 0 → F rD′

K → F rDK →
F rD′ ′

K → 0 for all r ∈ Z are exact.) Assume that two D,D′,D′ ′ are admissible.
Then all D,D′,D′ ′ are admissible.

3.2.4
Fontaine defined important rings

Acrys ⊂ Bcrys ⊂ Bst ⊂ BdR

such that

Acrys ⊃ W (k), Bcrys ⊃ K0, BdR ⊃ K̄.

We review basic properties of these rings (see [7]).
BdR is a complete discrete valuation field. For r ∈ Z, let Br

dR be the part
of BdR consisting of all elements whose normalized additive valuations are at
least r. In particular, B0

dR is the valuation ring of BdR, and B1
dR is the maximal
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ideal. We have

K̄ ⊂ B0
dR, Acrys ⊂ B0

dR.

The residue field B0
dR/B1

dR of BdR, which is an extension of K̄, is identified
with Cp.

The action of Gal(K̄/K) on K̄ extends to a canonical action of Gal(K̄/K)
on the field BdR, which preserves the valuation of BdR and induces the usual
action on the residue field Cp. The subrings Acrys, Bcrys, and Bst of BdR are
stable under this Galois action.

The Frobenius map ϕ : K0 → K0 extends to a special ring homomorphism

ϕ : Bst → Bst

such that ϕ(Acrys) ⊂ Acrys and ϕ(Bcrys) ⊂ Bcrys.
The ring Bcrys is a localization of Acrys, and Bst is a polynomial ring in one

variable over Bcrys, as follows. There is a unique multiplicative map

[ ] :
{
(an)n≥0

∣∣ an ∈ OCp(n ≥ 0), ap
n+1 = an(n ≥ 0)

}
→ Acrys

such that the composition with Acrys → B0
dR/B1

dR = Cp is (an)n �→ a0. For exam-
ple, we have an element ε := [(ζpn)n] ∈ Acrys, and ε ≡ 1 mod B1

dR. Since B0
dR is a

complete discrete valuation ring containing Q,

t := log(ε) ∈ B1
dR

is defined. This element t is a prime element of the discrete valuation field BdR.
We have t ∈ Acrys, ϕ(t) = pt, and

Bcrys = Acrys

[1
t

]
(see [7, Section 2.3.4]).

We have [(ξ1/pn

)n]/ξ ≡ 1 mod B1
dR, and hence

lξ := log
(
[(ξ1/pn

)n]/ξ
)

∈ B1
dR

is defined. This is also a prime element of BdR. We have

Bst = Bcrys[lξ],

and lξ is transcendental over Bcrys; that is, Bst is isomorphic to a polynomial
ring in one variable over Bcrys. This element lξ is denoted by u in [7]. We have
ϕ(lξ) = plξ .

The canonical map K̄ ⊗K0 Bst → BdR is injective.
Let

N : Bst → Bst

be the unique derivation over Bcrys such that N(lξ) = −1. In fact, in [7], N :
Bst → Bst was defined as the unique derivation over Bcrys such that N(lξ) = 1
(see Section 3.2.7 for the advantage of our modification of the definition of N ).
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3.2.5
For a finite-dimensional Qp-vector space V endowed with a continuous action of
Gal(K̄/K), define

Dst(V ) = H0
(
Gal(K̄/K),Bst ⊗Qp V

)
.

Here the Galois group acts on Bst ⊗Qp V diagonally. Then dimK0 Dst(V ) ≤
dimQp V . The Galois representation V is called a semistable representation if
dimK0 Dst(V ) = dimQp V .

Let CK,p be the category of semistable representations of Gal(K̄/K).

3.2.6
By [5], we have an equivalence of categories

CK,p � MFadm
K .

The functor V �→ D from the left to the right is defined as follows. Let V be an
object of CK,p. Then D = Dst(V ), ϕ : D → D is induced from ϕ ⊗ 1 : Bst ⊗Qp V →
Bst ⊗Qp V , and N : D → D is induced from N ⊗ 1 : Bst ⊗Qp V → Bst ⊗Qp V . The
filtration F on K ⊗K0 D is defined by

F r = (K ⊗K0 D) ∩ (Br
dR ⊗Qp V ).

Here the intersection is taken by K ⊗K0 D ⊂ K ⊗K0 Bst ⊗Qp V ⊂ BdR ⊗Qp V .

The inclusion map D
⊂→ Bst ⊗Qp V induces an isomorphism Bst ⊗K0 D

∼=→
Bst ⊗Qp V . We often identify Bst ⊗K0 D with Bst ⊗Qp V via this isomorphism. V

is recovered from D as

V =
{
x ∈ Bst ⊗K0 D

∣∣ ϕ(x) = x,N(x) = 0, x ∈ F 0(BdR ⊗K DK)
}
.

Here ϕ : Bst ⊗K0 D → Bst ⊗K0 D is ϕ ⊗ ϕ, N : Bst ⊗K0 D → Bst ⊗K0 D is N ⊗
1 + 1 ⊗ N , and F r(BdR ⊗K DK) =

∑
i+j=r Bi

dR ⊗K F j .

3.2.7
As is stated in Section 3.2.4, we changed the sign of N : Bst → Bst in [7]. This
changes the N of Dst(V ) by sign for a semistable p-adic representation V of
Gal(K̄/K). This has the following advantage.

Let E be the Tate elliptic curve K×/qZ, where q ∈ mK − {0}. For a prime
number �, let

E(K̄)[�n] = Ker
(
�n : E(K̄) → E(K̄)

)
,

T�(E) = lim←−
n

E(K̄)[�n], V�(E) = Q� ⊗Z�
T�(E).

Then

H1
ét(E ⊗K K̄,Z�) ∼= T�(E)(−1), H1

ét(E ⊗K K̄,Q�) ∼= V�(E)(−1),

where (−1) is the Tate twist. Since E(K̄) = (K̄)×/qZ, we have an exact sequence

0 → Z/�nZ(1) → E(K̄)[�n] → Z/�nZ → 0
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for any n ≥ 0, where the map E(K̄)[�n] → Z/�nZ sends q1/�n

mod qZ to 1 ∈
Z/�nZ, and we obtain exact sequences

0 → Z�(1) → T�(E) → Z� → 0, 0 → Q�(1) → V�(E) → Q� → 0.

For � = p, Dst of the last exact sequence gives an exact sequence

0 → K0 → Dst

(
Vp(E)

)
→ K0 → 0.

With the definition of N : Bst → Bst in [7] (resp., in this paper), the N of
Dst(Vp(E)) is given as the multiplication by −ordξ(q) (resp., ordξ(q)) from the
right K0 to the left K0 of this exact sequence. For � �= p, the N of V�(E) defined
in Section 3.3 is given as the map from the right Q� to the left Q�(1) which is the
composition of the multiplication Q� → Q� by ordξ(q) and the map Q� to Q�(1)
defined by (ζ�n)n (see Section 5.5, Example b). Thus our choice of the sign of
N : Bst → Bst gives a nice choice of the sign of N on Dst(Vp(E)) and also a nice
compatibility with the �-adic theory for � �= p.

3.3. �-Adic structures (� �= p)
Let � be a prime number that is different from p. We review basic facts about
�-adic representations of Gal(K̄/K).

3.3.1
Let CK,� be the following category.

An object is a finite-dimensional Q�-vector space endowed with a continuous
action of Gal(K̄/K) such that the action of the inertia subgroup Ker(Gal(K̄/

K) → Gal(k̄/k)) of Gal(K̄/K) is unipotent.

3.3.2
Let Ck,� be the following category.

Let κ : Gal(k̄/k) → Z×
� be the �-adic cyclotomic character.

An object is a pair (V,N), where V is a finite-dimensional Q�-vector space
endowed with a continuous action of Gal(k̄/k) and with a nilpotent linear map
N : V → V such that N ◦ s = κ(s)s ◦ N for any s ∈ Gal(k̄/k).

3.3.3
We have an equivalence of categories

CK,� � Ck,�

defined as follows.
For s ∈ Gal(K̄/K), define a(s) ∈ Z� by σ(ξ1/�n

) = ξ1/�n

ζ
a(s)
�n .

For an object Ṽ of CK,� with the action ρ̃ of Gal(K̄/K), the corresponding
object (V,N) of Ck,� with the action ρ of Gal(k̄/k) on V is the following. We
have V = Ṽ as a Q�-vector space. Let Ktame be the largest tame extension of
K in K̄ . Then ρ̃ : Gal(K̄/K) → Aut(Ṽ ) factors through the canonical surjection
Gal(K̄/K) → Gal(Ktame/K). Let L =

⋃
(n,p)=1 K(ξ1/n). Then the canonical map

Gal(Ktame/L) → Gal(k̄/k) is an isomorphism. We define ρ by ρ(s) = ρ̃(s̃), where
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s̃ is the unique element of Gal(Ktame/L) whose image in Gal(k̄/k) coincides
with s. We define N = log(ρ̃(s))/a(s) for an element s of the inertia subgroup of
Gal(K̄/K) such that a(s) �= 0. Then N is independent of the choice of such s.

The converse functor Ck,� → CK,� is as follows. Let (V,N) be an object of
Ck,� with an action ρ of Gal(k̄/k) on V . Then the corresponding object of CK,�

is the Q�-vector space V with the action ρ̃ of Gal(K̄/K) defined by

ρ̃(s) = exp
(
a(s)N

)
ρ(s̄) for s ∈ Gal(K̄/K),

where s̄ is the image of s in Gal(k̄/k).

3.4. p-Adic Hodge conjecture of Fontaine
Here we introduce the p-adic version of the Hodge conjecture (see Conjec-
tures 3.4.2, 3.4.9) formulated by Fontaine. The author learned this conjecture
from Fontaine [10]. Any mistakes and insufficient points in the descriptions of
the conjecture in the following are due to the author.

3.4.1
First, we introduce the p-adic Hodge conjecture in the form which does not use
motives.

Recall that the Hodge conjecture is stated as follows.

HODGE CONJECTURE

Let X be a proper smooth algebraic variety X over C, and let r ∈ Z. Then the
image of the cycle map Q ⊗ CHr(X) → H2r(X(C),Q) coincides with the inter-
section of H2r(X(C),Q) and filrH2r

dR(X/C).

Here CHr(X) is the Chow group of algebraic cycles on X of codimension r, fil
is the Hodge filtration, and the intersection is taken in C ⊗Q H2r(X(C),Q) =
H2r

dR(X/C).
The following is a one-form of the p-adic Hodge conjecture of Fontaine.

CONJECTURE 3.4.2 (p-ADIC HODGE CONJECTURE)

Let X be a proper, smooth scheme over OK , let X = X ⊗OK
K, and let Y =

X ⊗OK
k. Let r ∈ Z. Then the image of the cycle map Q ⊗ CHr(X) → H2r

dR(X/K)
coincides with the intersection of the image of the cycle map Q ⊗ CHr(Y ) →
H2r

crys(Y ) and filrH2r
dR(X/K).

Here Hm
crys(Y ) = K0 ⊗W (k) Hm

crys(Y/W (k)), fil is the Hodge filtration, and the
intersection is taken in K ⊗K0 H2r

crys(Y ) = H2r
dR(X/K). Here the last = is the

identification by the Berthelot-Ogus isomorphism (see [3]).

3.4.3
The Hodge conjecture has the following formulation in terms of motives.
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In this paper, mixed motives are with Q-coefficients. Morphisms of motives
are considered modulo homological equivalence.

In the following, a Q-Hodge structure means a Hodge structure with Q-
coefficients.

HODGE CONJECTURE

The realization functor from the category of mixed motives over C to the category
of mixed Q-Hodge structures is fully faithful.

This is related to the usual form of Hodge conjecture in Section 3.4.1 as follows.
The intersection H2r(X(C),Q) ∩ filrH2r

dR(X/C) is identified with the space of
homomorphisms Q → H2r(X(C),Q)(r) of Q-Hodge structures, and Q ⊗ CHr(X)
modulo homological equivalence is identified with the space of homomorphisms
Q → H2r(X)(r) of motives over C.

The p-adic Hodge conjecture (Conjecture 3.4.2) of Fontaine also has a for-
mulation below in terms of motives (see Conjecture 3.4.9).

3.4.4
We consider motives in this paper only to make clearer the motivations and the
ideas of various constructions, and we do not need motives in the results in this
paper. So we do not discuss how to define the notion of mixed motive.

For a mixed motive M over K (resp., k) and a prime number � (resp., prime
number � �= p), let M� be the �-adic realization of M . It is a finite-dimensional
Q�-vector space endowed with a continuous linear action of Gal(K̄/K) (resp.,
Gal(k̄/k)). If M is the mixed motive Hm(X)(r) for a scheme X of finite type
over K (resp., k) and for m,r ∈ Z, then M� = Hm

ét (X̄,Q�)(r), where X̄ = X ⊗K K̄

(resp., X ⊗k k̄).
For a mixed motive M over k, let Mcrys be the crystalline realization of M

which is a finite-dimensional K0-vector space endowed with a Frobenius-linear
bijection ϕ : Mcrys → Mcrys. If M = Hm(Y )(r) for a proper smooth scheme Y

over k and for m,r ∈ Z, then Mcrys = Hm
crys(Y ) := K0 ⊗W (k) Hm

crys(Y/W (k)).
The following conjecture is well known. Let the categories CK,� for prime

numbers � be as in Sections 3.2 and 3.3.

CONJECTURE 3.4.5

Let M be a mixed motive over K. Then for any prime numbers � and �′ (they can
be p), the �-adic realization M� belongs to CK,� if and only if M�′ belongs to CK,�′ .

3.4.6
For a mixed motive over K, we say that M is of semistable reduction if M� ∈ CK,�

for any prime number �.

3.4.7
We consider the categories CK , Ck, Ck,K .
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Let CK be the category of mixed motives over K of semistable reduction.
Let Ck be the category of triples (M,W,N), where

• M is a mixed motive over k,
• W is an increasing filtration on M (which need not coincide with the weight

filtration of M ),
• N is a homomorphism M → M(−1) of mixed motives which sends WwM

into (WwM)(−1) for any w ∈ Z such that for any w ∈ Z and m ≥ 0, the homomor-
phism Nm : grW

w+mgrW
w (M) → (grW

w−mgrW
w (M))(−m) is an isomorphism, where

W is the weight filtration of the mixed motive M over k.

Let Ck,K be the category of quadruples (M,W,N,F ), where

• (M,W,N) is an object of Ck,
• F is a decreasing filtration on the K-module K ⊗K0 Mcrys such that

grW
w (Mcrys, ϕ,N,F ) is admissible (3.2.2) for any w ∈ Z.

The p-adic Hodge conjecture formulated as Conjecture 3.4.9 says that there is
a fully faithful functor CK → Ck,K which is compatible with realization functors.

3.4.8
For a prime number � (resp., prime number � �= p), let C̃K,� (resp., C̃k,�) be the
category of pairs (V,W ), where V is an object of CK,� (resp., Ck,�) and W is an
increasing filtration on V by subobjects of V . Let C̃k,K,p be the category of pairs
(D,W ), where D is an object of MFadm

K and W is an increasing filtration on D

by subobjects of D in MFadm
K .

We have the �-adic realization functors

CK → C̃K,� (resp., Ck → C̃k,�)

for any prime number � (resp., prime number � �= p), where the weight filtration
W of the mixed motive over K (resp., the filtration W of an object of Ck) induces
the filtration W on the �-adic realization. We have similarly the p-adic realization
functor

Ck,K → C̃k,K,p.

CONJECTURE 3.4.9 (p-ADIC HODGE CONJECTURE)

There is a fully faithful functor CK → Ck,K having the following properties (1)
and (2).

(1) The following diagrams of categories are commutative. Here � is a prime
number �= p:

CK −→ Ck,K CK −→ Ck,K

−→ −→ −→ −→

C̃K,p � C̃k,K,p C̃K,� � C̃k,�
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Here Ck,K → C̃k,� is the composition Ck,K → Ck → C̃k,�, and the lower equivalences
C̃K,p � C̃k,K,p and C̃K,� � C̃k,� are induced from the equivalences CK,p � MFadd

K

(see Section 3.2.6) and CK,� � Ck,� (see Section 3.3.3), respectively.
(2) Let X be a proper smooth scheme over OK , let X = X ⊗OK

K, and let Y =
X ⊗OK

k. Let m,r ∈ Z. Then the functor CK → Ck,K sends the motive Hm(X)(r)
to the following object (M,W,N,F ): M := Hm(Y )(r), Ww := Hm(Y )(r) for w ≥
m − 2r, Ww = 0 for w < m − 2r, N := 0, and F i := fili+rHm

dR(X/K), where
HdR is the de Rham cohomology and fil is the Hodge filtration. Here we identify
Hm

dR(X/K) and K ⊗K0 Mcrys by the Berthelot-Ogus isomorphism Hm
dR(X/K) ∼=

K ⊗K0 Hm
crys(Y ).

3.4.10
The p-adic Hodge Conjecture 3.4.9 is related to the p-adic Hodge Conjecture 3.4.2
as follows. Let X , Y and (M,W,N,F ) be as in Conjecture 3.4.9(2) with m = 2r.
Then Q ⊗ CHr(X) modulo homological equivalence is identified with the space of
homomorphisms Q → H2r(X)(r) in CK , and the intersection Image(Q ⊗
CHr(Y ) → H2r

crys(Y )) ∩ filrH2r
dR(X/K) is identified with the space of homomor-

phisms Q → (M,W,N,F ) in Ck,K .

3.4.11
Evidence for Conjecture 3.4.9 is the Serre-Tate theory (see [21]). Let A and B

be abelian varieties over K with good reduction, and let Ak and Bk be their
reductions over k, respectively. Then by Serre-Tate theory, we have a bijection

Q ⊗ Hom(A,B)
∼=→ F 0

(
Q ⊗ Hom(Ak,Bk)

)
,

where the right-hand side is the subset of Q ⊗ Hom(Ak,Bk) consisting of all homo-
morphisms such that the induced map H1

dR(B/K) = K ⊗K0 H1
crys(Bk) → K ⊗K0

H1
crys(Ak) = H1

dR(A/K) respects the Hodge filtrations. Note that Q ⊗ Hom(A,B)
(resp., Q ⊗ Hom(Ak,Bk)) is identified with the set of all homomorphisms of
motives H1(B) → H1(A) (resp., H1(Bk) → H1(Ak)) over K (resp., k).

3.4.12
Conjecture 3.4.9 contains the so-called weight-monodromy conjecture. Let X

be a proper smooth scheme over K of semistable reduction. Then the weight-
monodromy conjecture states that for any prime number � �= p, the filtration
on Hm

ét (X̄,Q�) given by the monodromy N : Hm
ét (X̄,Q�) → Hm

ét (X̄,Q�) (it is
M(N,W ), where W is the filtration defined by Wm = Hm(X̄,Q�) and Wm−1 = 0)
coincides with the filtration defined by Frobenius weights. If (M,N,W,F ) is the
object of Ck,K corresponding to the object Hm(X) of CK , then the property
N i : grW

w+igrW
w (M)

∼=→ (grW
w−igrW

w (M))(−i) for w ∈ Z and i ≥ 0 in Section 3.4.7
implies that the weight-monodromy conjecture for Hm

ét (X̄,Q�) holds.
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3.4.13
The functor CK → Ck,K and also the composition CK → Ck,K → Ck should depend
on our choice of ξ. For example, we have the following.

(a) For a ∈ K×, we have a mixed motive Ma over K which is an extension
of Q by Q(1). Write a = ξcu (c = ordξ(a) ∈ Q and u ∈ Q ⊗ O×

K) in Q ⊗ K×.
Then this motive Ma should be sent to the object (M,W,cN), where M is the
extension of Q by Q(1) corresponding to the image of u in Q ⊗ k×, W is the
increasing filtration on M given by

0 = W−3 ⊂ Q(1) = W−2 = W−1 ⊂ M = W0,

and N is the composition of the canonical morphisms M → Q → M(−1).
(b) For a nonzero element q of mK , if we denote by Eq the Tate elliptic

curve K×/qZ and we write q = ξcu (c = ordξ(q) ∈ Q, u ∈ Q ⊗ O×
K) in Q ⊗ K×,

the motive H1(Eq)(1) over K should be sent to the object (M,W,cN) of Ck,
where M and N are the same as above and W is given by

0 = W−2 ⊂ M = W−1.

In Sections 5 and 6, these two examples (a) and (b) are treated in Examples
a and b, respectively. In Sections 5 and 6, since we assume that k is finite there,
Q ⊗ k× = 0 and M = Q(1) ⊕ Q.

3.4.14
We consider here only mixed motives over K of semistable reduction. Concern-
ing general mixed motives, it is believed that the category of mixed motives
over K is equivalent to the category lim−→L

CL/K , where L ranges over all finite
Galois extensions of K in K̄ and CL/K denotes the category of pairs (M,c),
where M is an object of CL and c is Gal(L/K)-descent data of M (the family
of isomorphisms cs : M (s) ∼= M given for s ∈ Gal(L/K) satisfying css′ = css(cs′ )
for s, s′ ∈ Gal(L/K)). Here M (s) denotes the mixed motive over L obtained from
M by applying s. Admitting this, the case of semistable reduction can cover all
mixed motives.

3.5. Toroidal modifications of p-adic Hodge structures
3.5.1
Let D be an admissible filtered module over K (see Section 3.2.2) with ϕ,
N , and F , and let V be the corresponding semistable p-adic representation of
Gal(K̄/K) (see Section 3.2.6).

Let M be the set of all homomorphisms D → D(−1) of filtered modules
over K, where D(−1) is the (−1)-Tate twist of D. That is, M is the set of all
K0-linear maps N ′ : D → D such that N ′ϕ = pϕN ′, NN ′ = N ′N and such that
the induced K-linear map N ′ : DK → DK satisfies N ′F r ⊂ F r−1 for any r ∈ Z.
Via the equivalence of categories in Section 3.2.6, we can understand M also as
the set of all homomorphisms V → V (−1) of representations of Gal(K̄/K).

The aim of this subsection is to show that we can modify the admissible
filtered module D by using elements of M or of K ⊗Qp M to obtain a new
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admissible filtered module. In this modification, we do not change the K0-vector
space D and the operator ϕ, but we modify N and F .

The results of Section 3.5 are used in Section 6.

PROPOSITION 3.5.2

Let N ′ ∈ M. Let D′ = (D,N +N ′, F ) be the filtered module over K obtained from
D by replacing N by N +N ′. (The K0-vector spaces D, ϕ, and F are unchanged.)

(1) D′ is admissible.
(2) The semistable p-adic representation of Gal(K̄/K) corresponding to D′

coincides with

exp(lξ ⊗ N ′)V ⊂ Bst ⊗K0 D = Bst ⊗K0 D′,

where lξ is as in Section 3.2.4.

Proof
Let V ′ = exp(lξ ⊗ N ′)V ⊂ Bst ⊗K0 D.

CLAIM 1

V ′ is stable under the action of Gal(K̄/K) in Bst ⊗K0 D.

Proof
Let t be the generator of Zp(1) ⊂ Bcrys given in Section 3.2. For any s ∈
Gal(K̄/K), s(lξ ⊗ N ′) − lξ ⊗ N ′ ∈ QptN

′. Since an element of M sends V ⊂
Bst ⊗K0 D into V (−1) ⊂ Bst ⊗K0 D (3.5.1), tN ′ sends V into V . Hence s(V ′) ⊂
exp(lξ ⊗ N ′) exp(QptN

′)V = V ′. This proves Claim 1. �

CLAIM 2

For any v′ ∈ V ′ ⊂ Bst ⊗K0 D, we have (ϕ ⊗ ϕ)(v′) = v′, and (N ⊗ 1 + 1 ⊗ (N +
N ′))(v′) = 0.

Proof
Write v′ = exp(lξ ⊗ N ′)v with v ∈ V .

Since ϕ(lξ) = plξ and ϕN ′ = p−1N ′ϕ, and since (ϕ ⊗ ϕ)(v) = v, we have

(ϕ ⊗ ϕ)(v′) = exp(plξ ⊗ p−1N ′)(ϕ ⊗ ϕ)v = exp(lξ ⊗ N ′)(v) = v′.

Since N(lξ) = −1 and (N ⊗ 1 + 1 ⊗ N)(v) = 0,

(N ⊗ 1 + 1 ⊗ N)(v′) = (−1 ⊗ N ′) exp(lξ ⊗ N ′)(v) = −(1 ⊗ N ′)(v′).

This completes the proof of Claim 2. �

CLAIM 3

Identify Bst ⊗Qp V ′ with Bst ⊗Qp V via the isomorphism Bst ⊗Qp V ′ 
→ Bst ⊗K0 D

induced from the inclusion map V ′ → Bst ⊗K0 D. Then Bi
dR ⊗Qp V ′ = Bi

dR ⊗Qp V

in BdR ⊗Qp V for any i ∈ Z.
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Proof
This follows from the fact that Bi

dR ⊗Qp V =
∑

j∈Z Bj
dR ⊗K F i−j , lξ ∈ B1

dR and
N ′F r ⊂ F r−1 for any r ∈ Z. �

The Gal(K̄/K)-fixed part of Bst ⊗Qp V ′ is that of Bst ⊗Qp V , and hence it is D.
Hence V ′ is a semistable representation of Gal(K̄/K), and Dst(V ) is D as a
K0-vector space.

CLAIM 4

The ϕ of Dst(V ′) is the ϕ of D, and N of Dst(V ′) is N + N ′ of D.

Proof
By definition, ϕ of Dst(V ′) is induced by ϕ ⊗ 1 of Bst ⊗Qp V ′. By Claim 2, ϕ ⊗ 1
of Bst ⊗Qp V ′ is ϕ ⊗ ϕ of Bst ⊗K0 D. The last map induces ϕ of D.

By definition, N of Dst(V ′) is induced by N ⊗ 1 of Bst ⊗Qp V ′. By Claim 2,
N ⊗ 1 of Bst ⊗Qp V ′ is N ⊗ 1+1 ⊗ (N +N ′) of Bst ⊗K0 D. The last map induces
N + N ′ of D. This completes the proof of Claim 4. �

CLAIM 5

We have F iDst(V ′)K = F iDK for any i ∈ Z.

Proof
By definition, F iDst(V ′) is the Gal(K̄/K)-fixed part of Bi

dR ⊗Qp V ′. By Claim 3,
this coincides with the Gal(K̄/K)-fixed part of Bi

dR ⊗Qp V which is F iDK . �

By Claims 4 and 5, D′ = Dst(V ′), and hence it is admissible. It follows that V ′

is the semistable p-adic representation of Gal(K̄/K) corresponding to D′. This
completes the proof of Proposition 3.5.2. �

3.5.3
Note that we have an exact sequence

0 → Qp(1) → Bϕ=p
crys ∩ B0

dR → Cp → 0,

where Bϕ=p
crys = {x ∈ Bcrys | ϕ(x) = px}.

PROPOSITION 3.5.4

Let b ∈ K ⊗Qp M. Let D′ = (D,N, exp(b)F ) be the filtered module over K obtained
from D by replacing F by exp(b)F . (The K0-vector spaces D, ϕ, and N are
unchanged.)

(1) D′ is admissible.
(2) Take an element b̃ of (Bϕ=p

crys ∩ B0
dR) ⊗Qp M whose image in Cp ⊗Qp M

coincides with b. Then the semistable p-adic representation of Gal(K̄/K) corre-
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sponding to D′ coincides with

exp(b̃)V ⊂ Bst ⊗K0 D = Bst ⊗K0 D′.

Proof
Let V ′ = exp(b̃)V ⊂ Bst ⊗K0 D.

CLAIM 1

V ′ is stable under the action of Gal(K̄/K) in Bst ⊗K0 D.

Proof
For any s ∈ Gal(K̄/K), s(b̃) − b̃ ∈ QptN

′ by Section 3.5.3. Since tN ′ sends V into
V in Bst ⊗K0 D (see the proof of Claim 1 in the proof of Proposition 3.5.2), we
have s(V ′) ⊂ exp(b̃) exp(QptN

′)V = V ′. This proves Claim 1. �

CLAIM 2

For any v′ ∈ V ′ ⊂ Bst ⊗K0 D, we have (ϕ ⊗ ϕ)(v′) = v′, and (N ⊗ 1 + 1 ⊗
N)(v′) = 0.

Proof
The proof is similar to the proof of Claim 2 in the proof of Proposition 3.5.2. In
the place where we used ϕ(lξ) = plξ (resp., N(lξ) = −1), we use ϕ(b̃) = pb̃ (resp.,
N(b̃) = 0). �

CLAIM 3

Identify Bst ⊗Qp V ′ with Bst ⊗Qp V via the isomorphism Bst ⊗Qp V ′ 
→ Bst ⊗K0 D

induced from the inclusion map V ′ → Bst ⊗K0 D. Then Bi
dR ⊗Qp V ′ = exp(b) ×

(Bi
dR ⊗Qp V ) in BdR ⊗Qp V for any i ∈ Z.

Proof
This follows from the fact that Bi

dR ⊗Qp V ′ = exp(b̃)(Bi
dR ⊗Qp V ), Bi

dR ⊗Qp V =∑
j∈Z Bj

dR ⊗K F i−j , b̃ ≡ b mod B1
dR ⊗Qp M, and N ′F r ⊂ F r−1 for any N ′ ∈ M

and any r ∈ Z. �

The Gal(K̄/K)-fixed part of Bst ⊗Qp V ′ is that of Bst ⊗Qp V , and hence it is D.
Hence V ′ is a semistable representation of Gal(K̄/K), and Dst(V ) is D as a
K0-vector space.

CLAIM 4

The ϕ of Dst(V ′) is the ϕ of D, and N of Dst(V ′) is N of D.

Proof
The proof is similar to that of Claim 4 in the proof of Proposition 3.5.2. �
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CLAIM 5

F iDst(V ′)K = exp(b)F iDK for any i ∈ Z.

Proof
This follows from Claim 3. �

By Claims 4 and 5, D′ = Dst(V ′), and hence it is admissible. It follows that V ′

is the semistable p-adic representation of Gal(K̄/K) corresponding to D′. This
completes the proof of Proposition 3.5.4. �

PROPOSITION 3.5.5

Let b ∈ K ⊗Qp M.

(1) Assume that bF r ⊂ F r for any r ∈ Z. Then b = 0.
(2) Assume that exp(b)F = F . Then b = 0.

Proof
We prove (1). Let U = HomQp(V,V ), and let U ′ = HomGal(K̄/K)(V,V (−1)) ⊂
U(−1). Then, via the identification Bst ⊗K0 D = Bst ⊗Qp V , S := {b ∈ K ⊗Qp

M | bF r ⊂ F r for all r} is identified with (K ⊗Qp U ′) ∩ (B0
dR ⊗Qp U), where the

intersection is taken in BdR ⊗Qp U and where K ⊗Qp U(−1) is embedded in
B−1

dR ⊗Qp U in the natural way. Hence

S ⊂
(
(K ⊗Qp Qp(−1)) ∩ B0

dR

)
⊗Qp U = 0,

where Qp(−1) is embedded in B−1
dR in the natural way. Here (K ⊗Qp Qp(−1)) ∩

B0
dR = 0 because K ⊗ Qp(−1) → B−1

dR/B0
dR is injective.

We prove (2). Assume that exp(b)F = F . Then exp(nb)F = F for any integer
n ≥ 0. By continuity, exp(nb)F = F for any n ∈ Zp. From this, we obtain bF r ⊂
F r for any r ∈ Z, and hence we are reduced to (1). �

4. p-Adic period domains ND and N,ΓD

In Section 4, we consider the p-adic period domains ND and N,ΓD, where the
latter is a refinement of the former by taking the p-adic level structure into
account.

4.1. Notation in Section 4
4.1.1
We use the notation explained in Section 3.1.

4.1.2
In Section 4, we fix a triple (

H,W, (hw,i)w,i∈Z

)
,

where we have the following:
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• H is a finite-dimensional vector space over K0 endowed with a Frobenius-
linear bijection ϕ : H → H ;

• W is an increasing filtration on H such that ϕ(Ww) ⊂ Ww for all w ∈ Z,
Ww = H if w 
 0, and Ww = 0 if w � 0;

• hw,i are integers which are zero for almost all (w, i) such that
∑

i hw,i =
dim(grW

w ) for any w ∈ Z.

4.1.3
Let d = dimK0(H). To discuss level structures, we fix a d-dimensional Qp-vector
space L endowed with an increasing filtration W•L on L such that the Qp-
dimension of WwL is equal to the K0-dimension of Ww ⊂ H for any w ∈ Z.

Let G be the automorphism group of (L,W•L), which we regard as an alge-
braic group over Qp.

4.1.4
Let Ď be the set of all decreasing filtrations on the K-module HK = K ⊗K0 H

such that hw,i = dimK gri
F grW

w,K for any w, i. Then Ď has a natural structure of
an analytic manifold over K.

4.2. p-Adic period domains ND

4.2.1
Let N : H → H be a K0-linear map such that Nϕ = pϕN and NWw ⊂ Ww for
any w ∈ Z. (Such an N is automatically nilpotent.) Define

ND =
{
F ∈ Ď

∣∣ grW
w (N,F ) is admissible (by Section 3.2.2) for any w ∈ Z

}
⊂ Ď.

Here grW
w (N,F ) denotes the K0-vector space grW

w endowed with grW
w (ϕ) : grW

w →
grW

w , grW
w (N) : grW

w → grW
w , and the filtration grW

w (F ) on grW
w,K := K ⊗K0 grW

w ,
regarded as an object of MFK .

PROPOSITION 4.2.2

ND is open in Ď.

This is proved in [24] in the case N = 0 (W is not considered in [25]), and the
proof in [24] works in the general case. Here we write down a proof which is
essentially the same as that in [24].

Proof of Proposition 4.2.2
We may and do assume that k = k̄ and that there is w ∈ Z such that Ww = H

and Ww−1 = 0.
Let tN (H) ∈ Z be as in Section 3.2.2. For any F ∈ ND, tH(H,F ) ∈ Z in

Section 3.2.2 coincides with
∑

i ihw,i. Hence ND is empty if tN (H) �=
∑

i ihw,i.
We assume that tN (H) =

∑
i ihw,i. For integers r ≥ 0 and m, let

P̃r,m =
{

x ∈
r∧

H
∣∣∣ ϕ(x) = pmx,N(x) = 0

}
, Pr,m = (P̃r,m − {0})/Q×

p .
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Here ϕ and N denote the maps
∧r

H →
∧r

H which are induced from ϕ and
N : H → H , respectively. That is, ϕ(v1 ∧ · · · ∧ vr) = ϕ(v1) ∧ · · · ∧ ϕ(vr) and N(v1 ∧
· · · ∧ vr) =

∑r
i=1 v1 ∧ · · · ∧ vi−1 ∧ N(vi) ∧ vi+1 ∧ · · · ∧ vr for v1, . . . , vr ∈ H . Then

Pr,m is compact. Note that Pr,m are empty for almost all (r,m). Let

Sr,m =
{

(x,F ) ∈ Pr,m × Ď
∣∣ x̃ ∈ Fm+1

( r∧
K

HK

)}
.

Here x̃ denotes a lifting of x to P̃r,m − {0} and Fm+1 on
∧r

K HK is induced
by F . Since Pr,m is compact and since Sr,m is closed in Pr,m × Ď, we see that the
map Sr,m → Ď, (x,F ) �→ F is proper. Hence the image of this map is closed in
Ď. Hence for the proof of Proposition 4.2.2, it is sufficient to prove the following
lemma.

LEMMA 4.2.3

Assume that k = k̄, Ww = H , and Ww−1 = 0 for some w, and assume that
tN (H) =

∑
i ihw,i. Then in Ď, ND coincides with the complement of⋃

r,m Image(Sr,m → Ď).

Proof
Let (x,F ) ∈ Sr,m. We prove that F /∈ ND. Let x̃ be a lifting of x ∈ Pr,m in P̃r,m −
{0}, and let S be the one-dimensional K0-subspace of

∧r
H generated by x̃. Since

tN (S) = m < tH(S), (
∧r

H,N,F ) is not admissible. Since the exterior powers of
admissible filtered modules are admissible (this follows from the fact that exterior
powers of semistable Galois representations are semistable, by the equivalence of
categories in Section 3.2.6), this shows that (H,N,F ) is not admissible. Hence
F /∈ ND.

Next, assume that F /∈ ND. We show that there are (r,m) and x ∈ Pr,m such
that (x,F ) ∈ Sr,m. Let S be a K0-subspace of H such that tN (S) < tH(S). Let
r = dimK0 H , and let m = tN (S). Then there is a nonzero element x̃ of

∧r
S such

that ϕ(x̃) = pmx̃. Since tN (S) < tH(S), we have x̃ ∈ Fm+1. Let x be the image
of x̃ ∈ P̃r,m in Pr,m. Then (x,F ) ∈ Sr.m. �

4.2.4
By Proposition 4.2.2, ND is regarded as an open analytic subspace over K of Ď.

4.3. p-Adic level structures and p-adic period domains N,ΓD

We discuss p-adic level structures.

4.3.1
Let N : H → H be a K0-linear map such that Nϕ = pϕN and NWw ⊂ Ww for
all w ∈ Z.
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Let F ∈ ND. By Section 3.2.3, (H,N,F ) is admissible. Let Vp(N,F ) be the
semistable representation of Gal(K̄/K) over Qp corresponding to (H,N,F ) (see
Section 3.2.6).

4.3.2
Let Γ be a compact open subgroup of G(Qp) = AutQp(L,W•L).

We define the notion of a Γ-level structure on Vp(N,F ).

4.3.3. Level structure
Let V be a d-dimensional Qp-vector space endowed with a continuous action of
Gal(K̄/K) and with a Gal(K̄/K)-stable filtration W•V such that dimQp WwV =
dimQp WwL for all w ∈ Z.

For isomorphisms μi : (L,W•L)
∼=→ (V,W•V ) (i = 1,2) of Qp-vector spaces

with filtrations, we say that μ1 and μ2 are Γ-equivalent if μ−1
1 μ2 ∈ Γ.

By a Γ-level structure on V we mean a Γ-equivalence class of an isomorphism
μ : (L,W•L) ∼= (V,W•V ) such that μ−1sμ ∈ Γ for any s ∈ Gal(K̄/K).

For example, if LZp is a finitely generated Zp-submodule of L such that
L = Qp ⊗Zp LZp and Γ = AutZp(LZp ,W•LZp), where W•LZp denotes the restric-
tion of W•L to LZp , then a Γ-level structure on V corresponds in a one-to-one
manner to a Gal(K̄/K)-stable finitely generated Zp-submodule T of V such that
V = Qp ⊗Zp T . The correspondence is given in the following way. If μ is a Γ-level
structure on V and it is the class of μ̃ : L → V , then we have T = μ̃(LZp). Con-
versely, from T , we obtain a Γ-level structure on V as the class of L → V induced
by any isomorphism LZp → T of Zp-modules with filtrations.

4.3.4
Let F ∈ ND. Since grW

w (N,F ) are admissible for all w ∈ Z, Ww(N,F ) are admis-
sible for any w ∈ Z by Section 3.2.3. Let V = Vp(N,F ) (see Section 4.3.1). Let
WwV be the p-adic representation of Gal(K̄/K) corresponding to Ww(N,F ),
which is a subrepresentation of V . We have dimQp WwV = dimK0 Ww (the last
Ww is that of H) = dimQp WwL. Thus we have the situation of Section 4.3.3.

4.3.5
Define

N,ΓD =
{
(F,μ)

∣∣ F ∈ ND, μ is a Γ-level structure on Vp(N,F )
}
.

4.4. The analytic structure over K of N,ΓD

Let N and Γ be as in Section 4.3.

4.4.1
To define a structure of an analytic space over K on N,ΓD, the key idea is to
define a “partial section” (see Section 4.4.8) of the projection N,ΓD → ND and
transfer the analytic structure of ND (4.2.4) to N,ΓD.



594 Kazuya Kato

Let α = (F,μ) ∈ N,ΓD. Then, as is explained below, for a sufficiently small
neighborhood U of F in ND, we have a canonical map (see Section 4.4.8)

eα : U → N,ΓD

such that eα(F ) = α and such that for any F ′ ∈ U , the image of eα(F ′) under the
projection N,ΓD → ND is F ′. Using this map, we define the analytic structure
over K of N,ΓD as in Section 4.4.11 in such a way that the map N,ΓD → ND is
a local isomorphism of analytic spaces over K and eα is a local section of it.

In some examples, N,ΓD → ND is interpreted as a p-adic logarithm map,
and this map eα is interpreted as a p-adic exponential map (see Section 5.5,
Example a).

4.4.2
Let α = (F,μ) ∈ N,ΓD, let V = Vp(N,F ) (see Section 4.3.1), and take a represen-
tative μ̃ : (L,W•L)

∼=→ (V,W•V ) of μ. Let

Bϕ=1
crys =

{
x ∈ Bcrys

∣∣ ϕ(x) = x
}
.

As in Section 4.1.3, let G be the automorphism group of (L,W•L) regarded as
an algebraic group over Qp.

Then we have an injective map

hμ̃ : ND → G(Bϕ=1
crys )/G(Qp)

defined as follows. Let F ′ ∈ ND, and let V ′ = Vp(N,F ′). Then

Bst ⊗Qp V ′ = Bst ⊗K0 H = Bst ⊗Qp V.

Taking the part {x | ϕ(x) = x,N(x) = 0} of this, we have

(3) Bϕ=1
crys ⊗Qp V ′ = Bϕ=1

crys ⊗Qp V in Bst ⊗K0 H.

Take any isomorphism μ̃′ : (L,W•L)
∼=→ (V ′,W•V ′). By (3), we have the compo-

sition

μ̃−1μ̃′ : Bϕ=1
crys ⊗Qp L

μ̃′

−→ Bϕ=1
crys ⊗Qp V

μ̃−1

−→ Bϕ=1
crys ⊗Qp L,

which is regarded as an element of G(Bϕ=1
crys ). Any other choice of μ̃′ is given

by μ̃′γ with γ ∈ G(Qp). We define hμ̃(F ′) ∈ G(Bϕ=1
crys )/G(Qp) to be the class of

μ̃−1μ̃′, which is independent of the choice of μ̃′.
If we replace the representative μ̃ of μ by μ̃γ−1 with γ ∈ Γ, we have

(4) hμ̃γ−1(F ′) = γhμ̃(F ′)γ−1.

4.4.3
For an integer c ≥ 0, define subrings Bc and Bϕ=1

c of Bcrys by

Bc := Acrys

[pc

t

]
⊂ Bcrys, Bϕ=1

c := Bc ∩ Bϕ=1
crys .

Note that

Bc+1 ⊂ Bc, ϕ(Bc+1) ⊂ Bc.
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LEMMA 4.4.4

Assume that c ≥ 2. Then

Bc ∩ Qp = Zp.

This is proved in Section 4.5.8.

4.4.5
Since Γ is compact, there is a finitely generated Zp-submodule LZp of L which
satisfies L = Qp ⊗Zp LZp and which is stable under the action of Γ. In the rest of
Section 4.4, we fix such LZp . Let W•LZp be the restriction of the filtration W•L

to LZp . By abuse of notation, we denote also by G the automorphism group of
(LZp ,W•LZp) regarded as a smooth group scheme over Zp. (G(R) for a ring R

over Zp is defined in the evident way.) We have Γ ⊂ G(Zp).
For n ≥ 0, let

G(Zp)≡1 mod pn = Ker
(
G(Zp) → G(Z/pnZ)

)
,

G(Bc)≡1 mod pn := Ker
(
G(Bc) → G(Bc/pnBc)

)
,

G(Bϕ=1
c )≡1 mod pn := Ker

(
G(Bϕ=1

c ) → G(Bϕ=1
c /pnBϕ=1

c )
)
.

4.4.6
Let α = (F,μ) ∈ N,ΓD. Let μ̃ : (L,W•L)

∼=→ (V,W•V ) with V = Vp(N,F ) be a
representative of μ. For integers c ≥ 2 and n ≥ 0, let

Uα,c,n =
{
F ′ ∈ ND

∣∣ hμ̃(F ′) ∈ Image(G(Bϕ=1
c )≡1 mod pn → G(Bϕ=1

crys )/G(Qp))
}
.

Here hμ̃ is as in 4.4.2. Then Uα,c,n is independent of the choice of the represen-
tative μ̃ of μ. This follows from (4) in Section 4.4.2 and from Γ ⊂ G(Zp).

We have

Uα,c′,n′ ⊂ Uα,c,n if c′ ≥ c and n′ ≥ n.

PROPOSITION 4.4.7

For any c ≥ 2 and n ≥ 0, Uα,c,n is a neighborhood of F in ND.

The proof of this proposition is given in Section 4.6.

4.4.8
We define the “partial section” eα of the projection N,ΓD → ND.

Let α = (F,μ) ∈ N,ΓD, and let μ̃ be a representative of μ. Since Γ is open in
G(Qp), there is an integer n ≥ 0 such that

G(Zp)≡1 mod pn ⊂ Γ.

Take such an n ≥ 0, and take an integer c ≥ 2. Let Uα,c,n be as above. We define
the map

eα : Uα,c,n → N,ΓD
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as follows. Let F ′ ∈ Uα,c,n, let V ′ = Vp(N,F ′), and let h be an element of
G(Bϕ=1

c )≡1 mod pn whose image in G(Bϕ=1
crys )/G(Qp) coincides with hμ̃(F ′). Then

we have an isomorphism μ̃′ := μ̃h : (L,W•L)
∼=→ (V ′,W•V ′).

We show that the Γ-equivalence class μ′ of μ̃′ is independent of the choices of
μ̃ and h and gives a Γ-level structure on V ′. Note that G(Qp) ∩ G(Bc)≡1 mod pn =
G(Zp)≡1 mod pn by Lemma 4.4.4. For another choice h1 of h, we have h1 = hγ with
γ ∈ G(Qp) and γ = h−1h1 ∈ G(Qp) ∩ G(Bϕ=1

c )≡1 mod pn = G(Zp)≡1 mod pn ⊂ Γ,
and hence μ̃h1 ∈ μ̃hΓ. For another choice μ̃γ (γ ∈ Γ) of μ̃, γhγ−1 ∈
G(Bϕ=1

c )≡1 mod pn and the image of γhγ−1 in G(Bϕ=1
crys )/G(Qp) coincides with

hμ̃γ(F ′) by (4) in Section 4.4.2, and μ̃γh ∈ μ̃γhγ−1Γ. It remains to prove that
for s ∈ Gal(K̄/K), we have sμ̃′ ∈ μ̃′Γ. Since V ′ is stable under the action of
Gal(K̄/K), we have sμ̃′ = μ̃′γ′ for some γ′ ∈ G(Qp). We prove that γ′ ∈ Γ. Since
μ is a Γ-level structure, we have sμ = μγ for some γ ∈ Γ. Since μ′ = μh, we have

γ′γ−1 = h−1(γhγ−1) ∈ G(Qp) ∩ G(Bc)≡1 mod pn = G(Zp)≡1 mod pn ,

and hence γ′ ∈ Γ.
We define

eα(F ′) = (F ′, μ′).

Clearly we have eα(F ) = α, and for F ′ ∈ Uα,c,n, the image of eα(F ′) under
N,ΓD → ND coincides with F ′.

When c and n vary, eα defined by various (c,n) are compatible.

PROPOSITION 4.4.9

Let α ∈ N,ΓD. Let c ≥ 2, n ≥ 0, and assume that G(Zp)≡1 mod pn ⊂ Γ. Let F ′ ∈
Uα,c,n, and let α′ = eα(F ′). Then Uα′,c,n = Uα,c,n, and we have

eα(F ′ ′) = eα′ (F ′ ′) for any F ′ ′ ∈ Uα,c,n.

This is seen easily.
By Propositions 4.4.7 and 4.4.9, we have the following.

COROLLARY 4.4.10

The set Uα,c,n (c ≥ 2, n ≥ 0) is open in ND.

4.4.11
Using the map eα in Section 4.4.8, we define the analytic structure over K of
N,ΓD as follows.

We first define the topology of N,ΓD. A subset U of N,ΓD is open if and only if
for each α = (F,μ) ∈ U , we have eα(U ′) ⊂ U for sufficiently small neighborhoods
U ′ of F in ND.

By Proposition 4.4.9, for a sufficiently small open neighborhood U of F in
ND, the map eα : U → N,ΓD is an injective open map and it is a local section of
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the projection N,ΓD → ND. Hence the projection N,ΓD → ND is a local homeo-
morphism. By this, we transfer the analytic structure over K of ND to N,ΓD.

The canonical map N,ΓD → ND becomes locally an isomorphism of analytic
manifolds over K, and eα gives local sections of it.

4.4.12
The analytic structure over K of N,ΓD is independent of the choice of LZp .
This is seen by the following facts. Let L′

Zp
be another choice of LZp , and let

G′ be the automorphism group of (L′
Zp

,W•L′
Zp

) regarded as a group scheme
over Zp. G and G′ coincide over Qp. Take an integer a ≥ 0 such that paLZp ⊂ L′

Zp

and paL′
Zp

⊂ LZp . Then, as is easily shown, for any flat ring R over Zp and for
m = n + 2a, we have

G(R)≡1 mod pm ⊂ G′(R)≡1 mod pn , G′(R)≡1 mod pm ⊂ G(R)≡1 mod pn .

4.5. Subrings Ac and Bc of Bcrys

We prove Lemma 4.4.4, and we give preparations for the proof of Proposi-
tion 4.4.7.

The results given in Section 4.5 are taken from [13] by M. Kurihara, T. Tsuji,
and the author.

4.5.1
For an integer c ≥ 0, we define a subring Ac of Bc as follows.

As in [7], for r ≥ 0, let

FilrAcrys = Acrys ∩ Br
dR,

FilrpAcrys =
{
x ∈ FilrAcrys

∣∣ ϕ(x) ∈ prAcrys

}
.

Define

Ac =
∑
r≥0

(pc

t

)r

· FilrpAcrys ⊂ Bc.

We have

Ac+1 ⊂ Ac, ϕ(Ac) ⊂ Bc.

LEMMA 4.5.2

We have

(1) Bc

[
1
p

]
= Bcrys;

(2) Ac[ 1p ] = Bcrys ∩ B0
dR.

Proof
Assertion (1) follows from the fact that Acrys[1/t] = Bcrys. The last fact shows
that Bcrys ∩ B0

dR =
∑

r≥0 t−rFilrAcrys, and (2) follows from it. �
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PROPOSITION 4.5.3

Assume that c ≥ 1. In the case p = 2, assume that c ≥ 2. Then the sequence

0 → Zp → Ac
1−ϕ−→ Bc → 0

is exact.

Proof
We deduce this from the fundamental exact sequences of Fontaine and Messing
(see [9], [7, Section 5.3.6]):

(5) 0 → p−λ(r)Zp(r) → FilrpAcrys
1−p−rϕ−→ Acrys → 0

for r ≥ 0. Here

λ(r) :=
∞∑

i=0

[ r

(p − 1)pi

]
,

where [x] for x ∈ R denotes the largest integer n such that n ≤ x. In the exact
sequence (5), Zp(r) is identified with Zpt

r ⊂ FilrpAcrys. Note that

(6) λ(r) ≤
∞∑

i=0

r

(p − 1)pi
=

pr

(p − 1)2
.

The following exact sequence is a corollary of the case r = 0 of the exact sequence
(5) (see [7, Section 5.3.7(iii)]):

(7) 0 → Qp → Bcrys ∩ B0
dR

1−ϕ−→ Bcrys → 0.

We prove the surjectivity of 1 − ϕ : Ac → Bc. For x ∈ Acrys and r ≥ 0, by the
exact sequence (5), there is y ∈ FilrpAcrys such that x = (1 − p−rϕ)y. We have(pc

t

)r

x = (1 − ϕ)
((pc

t

)r

y
)

∈ (1 − ϕ)Ac.

Next, we prove that the kernel of 1 − ϕ : Ac → Bc is Zp. By the exact sequence
(7), the kernel of 1 − ϕ : Ac → Bc is contained in Qp which contains Zp. Hence,
to prove that the kernel coincides with Zp, since Qp ∩ OCp = Zp, it is sufficient
to prove that the image of Ac in B0

dR/B1
dR = Cp is contained in OCp . By [7,

Section 5.3.6(ii)], there exists an element x of Fil1Acrys such that

(8) FilrpAcrys ⊂
( ∑

i,j≥0,i+j≥r

Acrys · xip−λ(j)tj
)

+ Bm
dR for any m ≥ 1.

The case m = r + 1 of (8) shows that

(9) t−rFilrpAcrys ⊂
( r∑

i=0

Acrys · p−λ(r−i)(x/t)i
)

+ B1
dR.

Since the image of t−1Fil1Acrys in B0
dR/B1

dR = Cp coincides with p−1/(p−1)OCp

(see [7]), (9) shows that the image of t−rFilrpAcrys in Cp is contained in∑r
i=0 p−λ(r−i)−i/(p−1)OCp . Hence it is sufficient to prove that cr − λ(r − i) −
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i/(p − 1) ≥ 0 for any integers r, i such that 0 ≤ i ≤ r. By (6),

cr − λ(r − i) − i/(p − 1) ≥ cr − p(r − i)/(p − 1)2 − i/(p − 1)

≥
(
c − p

(p − 1)2
)
r ≥ 0. �

PROPOSITION 4.5.4

Let c ≥ 2, and let

B̂c = lim←−
m

Bc/pnBc, Âc = lim←−
n

Ac/pnAc.

Then the canonical maps Bc → B̂c and Ac → Âc are injective.

Proof
The injectivity of Bc → B̂c is reduced to that of Ac → Âc by the commutative
diagram of exact sequences

0 −→ Zp −→ Ac
1−ϕ−→ Bc −→ 0

—
–

—
–

−→ −→

0 −→ Zp −→ Âc
1−ϕ−→ B̂c −→ 0

After preparations in Lemmas 4.5.5 and 4.5.6, we prove the injectivity of Ac → Âc

by defining a ring homomorphism Âc → B0
dR which induces the inclusion map

Ac → B0
dR.

LEMMA 4.5.5

Let m ≥ 1, and let M be a finitely generated (Acrys/FilmAcrys)-module. Then
M

∼=→ lim←−n
M/pnM .

Proof
Consider the following property (P ) of an abelian group A.

(P ) We have A
∼=→ lim←−n

A/pnA, and there is an integer a ≥ 1 such that pa

kills the p-primary torsion part of A.

If 0 → A′ → A → A′ ′ → 0 is an exact sequence of abelian groups and if A′

and A′ ′ have the property (P ), then A also has the property (P ).
First, we consider the case m = 1 of Lemma 4.5.5. In this case, Acrys/

Fil1Acrys = OCp is a valuation ring, and hence a finitely generated OCp -module
has the form O⊕r

Cp
⊕ T , where T is a finitely generated torsion OCp -module. Hence

M has the property (P ) in this case.
We consider the general case. Since FiliAcrys/FilmAcrys is a finitely gen-

erated Acrys-module, the submodules (FiliAcrys)M of M are finitely generated
Acrys-modules for 0 ≤ i ≤ m − 1. From the case m = 1, we see that (FiliAcrys)M/
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(Fili+1Acrys)M (0 ≤ i ≤ m − 1) have the property (P ). Hence M has the prop-
erty (P ). �

LEMMA 4.5.6

Assume that c ≥ 2. Then for any m ≥ 0, the image of Ac in B0
dR/Bm

dR is contained
in a finitely generated Acrys-submodule of B0

dR/Bm
dR.

Proof
Let x be as in (8). Since the images of (x/t)p−1p and (x/t)p in Cp are contained
in OCp ([7]), we can write(x

t

)p−1

p = f + u,
(x

t

)
p = g + v in B0

dR/Bm
dR

with

f, g ∈ Acrys, u, v ∈ B1
dR/Bm

dR.

Let I be the Acrys-submodule of B0
dR/Bm

dR generated by elements of the following
forms (10) and (11):

xep−2m(x/t)−s (0 ≤ e < m,0 ≤ s < m),(10)

xep−puivj (0 ≤ e < m,0 ≤ i < m,0 ≤ j < m).(11)

We prove that the image of Ac in B0
dR/Bm

dR is contained in I .
By (8),

FilrpAcrys ⊂
( ∑

i,j≥0,i+j≥r

Acrys · xip−λ(j)tj
)

+ Br+m
dR

for all r ≥ 0. From this, we have

Ac ⊂
( ∑

i,j,r≥0,0≤i+j−r<m

Acrys ·
(x

t

)r−j

xi+j−rpcr−λ(j)

)
+ Bm

dR.

That is,

(12) Ac ⊂
(∑

r,d,e

Acrys · xepcr−λ(r−d)
(x

t

)d
)

+ Bm
dR,

where r, d, e ranges over all integers satisfying r ≥ d ≥ −e, 0 ≤ e < m, r ≥ 0.
We prove that in the case d ≤ 0 (resp., d ≥ 0), the class of xepcr−λ(r−d)(x/t)d

in B0
dR/Bm

dR is contained in the Acrys-submodule of B0
dR/Bm

dR generated by the
classes of elements of the form (10) (resp., (11)). For d ≤ 0, this follows from

cr − λ(r − d) ≥ cr − (r − d)p(p − 1)−2 =
(
c − p(p − 1)−2

)
r + dp(p − 1)−2

≥ −mp(p − 1)−2 ≥ −2m.

We consider the case d ≥ 0. Write

d = (p − 1)d′ + d′ ′ with d′, d′ ′ ∈ Z, d′ ≥ 0,0 ≤ d′ ′ < p − 1.
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We have (x/t)d = p−d′ −d′ ′
(f + u)d′

(g + v)d′ ′
in B0

dR/Bm
dR. Since um = vm = 0 in

B0
dR/Bm

dR, the case d ≥ 0 is reduced to

cr − λ
(
r − (p − 1)d′ − d′ ′)− d′ − d′ ′

≥ cr −
(
r − (p − 1)d′ − d′ ′)p(p − 1)−2 − d′ − d′ ′

=
(
c − p(p − 1)−2

)
r + d′(p − 1)−1 + d′ ′(p(p − 1)−2 − 1

)
≥ d′ ′(p(p − 1)−2 − 1

)
≥ −p. �

4.5.7
We define a ring homomorphism Âc → B0

dR which is compatible with the inclusion
map Ac → B0

dR. Let m ≥ 1, and let I be a finitely generated Acrys-submodule of
B0

dR/Bm
dR which contains the image of Ac in B0

dR/Bm
dR (see Lemma 4.5.6). By

Lemma 4.5.5, we have I
∼=→ lim←−n

I/pnI . Hence the canonical map Ac → I extends
to Âc → I ⊂ B0

dR/Bm
dR. By taking the inverse limit for m, we obtain the desired

ring homomorphism Âc → B0
dR.

This proves the injectivity of Ac → Âc and completes the proof of Proposi-
tion 4.5.4. �

4.5.8. Proof of Lemma 4.4.4
Since a subring of Qp which contains Zp is either Zp or Qp, if Bc ∩ Qp is not
Zp, it should be Qp. Then this contradicts the injectivity of Bc → lim←−n

Bc/pnBc.
Thus Lemma 4.4.4 is proved. �

4.6. Proof of Proposition 4.4.7
LEMMA 4.6.1

Let m ≥ 1. Then the quotient (B0
dR/Bm

dR)/ Image(Acrys) is a p-primary torsion
group.

Proof
The map Acrys[1/p] → B0

dR/Bm
dR is surjective because the map Acrys[1/p] →

B0
dR/B1

dR = Cp is surjective and Acrys contains a prime element t of B0
dR. Lemma

4.6.1 follows from this. �

LEMMA 4.6.2

For m ≥ 1, B0
dR/Bm

dR has a unique structure of a topological ring such that the
images of pnAcrys in B0

dR/Bm
dR for n ≥ 0 form a fundamental system of neigh-

borhoods of zero.

Proof
As an additive group, B0

dR/Bm
dR clearly has a unique structure of a topologi-

cal abelian group with this fundamental system of neighborhoods of zero. The
continuity of the multiplication follows from Lemma 4.6.1. �
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EndowBdR = lim←−m
B0

dR/Bm
dR with the inverse limit of these topologies ofB0

dR/Bm
dR.

LEMMA 4.6.3

The canonical map K → B0
dR is continuous.

Proof
It is sufficient to prove that K → B0

dR/Bm
dR is continuous for each m ≥ 1. Let U

be a neighborhood of zero in B0
dR/Bm

dR. Since OK is a finitely generated W (k)-
module and W (k) ⊂ Acrys, Lemma 4.6.1 shows that there exists n ≥ 0 such that
pnOK ⊂ U . This proves the continuity of K → B0

dR/Bm
dR. �

4.6.4
In general, if R is a topological ring and M is a finitely generated R-module, then
we have a canonical topology of M as follows. Take a surjective R-homomorphism
h : Rn → M for some n ≥ 0, and endow M with the quotient topology of the
product topology of Rn. Then this topology of M is independent of the choice
of (n,h). With this topology, M is a topological R-module.

4.6.5
For r ∈ Z, Br

dR is regarded as a topological B0
dR-module by Section 4.6.4. For

i ≥ j, the topology of Bi
dR coincides with the restriction of that of Bj

dR.
Fix a finitely generated Zp-submodule LZp of L such that L = Qp ⊗Zp LZp ,

and let G denote the automorphism group of (L,W•L) regarded as a smooth
group scheme over Zp.

LEMMA 4.6.6

Let δ ∈ G(BdR). Let c ≥ 2, n ≥ 0. Then there exists a neighborhood U of 1 in
G(B0

dR) such that for any g ∈ U , the class of δgδ−1 in G(BdR)/G(B0
dR) belongs

to the image of G(Bc)≡1 mod pn .

Proof
Let g(Qp) be the Qp-vector space of all Qp-linear maps L → L which respect W•L,
and let g(Zp) be the Zp-module of all Zp-linear maps LZp → LZp which respect
W•LZp . Take an integer m ≥ 1 such that δ(Bm

dR ⊗Qp g(Qp))δ−1 ⊂ B1
dR ⊗Qp g(Qp),

and take an integer m′ ≥ 1 such that δ−1(Bm′

dR ⊗Qp g(Qp))δ ⊂ Bm
dR ⊗Qp g(Qp). Take

an integer r ≥ 0 such that δ(B0
dR ⊗Qp g(Qp))δ−1 ⊂ B−r

dR ⊗Qp g(Qp). If g ∈ G(B0
dR)

is sufficiently near to 1, δgδ−1 is sufficiently near to 1 in B−r
dR ⊗Qp g(Qp), and

we can write δgδ−1 = 1 + x + y, where x ∈ pnrt−rAcrys ⊗ g(Zp) and y ∈ Bm′

dR ⊗Qp

g(Qp). Since δ−1(1 + x)δ − g = −δ−1yδ ∈ Bm
dR ⊗Qp g(Qp) ⊂ B1

dR ⊗Qp g(Qp), we
have δ−1(1 + x)δ ∈ G(B0

dR). Hence δ−1(1 + x)−1δ ∈ G(B0
dR), and this proves

that δ−1(1 + x)−1yδ = δ−1(1 + x)−1δ · δ−1yδ ∈ Bm
dR ⊗Qp gp. Hence (1 + x)−1y ∈

B1
dR ⊗Qp gp. This shows that 1 + (1 + x)−1y ∈ G(B0

dR) and hence shows that the
class of δgδ−1 = (1 + x)(1 + (1 + x)−1y) in G(BdR)/G(B0

dR) coincides with the
class of 1 + x ∈ G(Bc)≡1 mod pn . �
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LEMMA 4.6.7

Fix α = (F,μ) ∈ N,ΓD, and let V = Vp(N,F ). Fix a representative μ̃ : (L,W•L)
∼=→

(V,W•V ) of μ. Let c ≥ 2, n ≥ 0. Then there is a neighborhood U of F in ND

such that for any F ′ ∈ U , the image of hμ̃(F ′) under the canonical map

G(Bϕ=1
crys )/G(Qp) → G(BdR)/G(B0

dR)

belongs to the image of G(Bc)≡1 mod pn .

Proof
Take an isomorphism ν : (HK ,WK)

∼=→ K ⊗Qp (L,W•L) of K-vector spaces with
filtrations. Let δ ∈ G(BdR) be the composite isomorphism

BdR ⊗Qp L
μ̃−→ BdR ⊗Qp V ∼= BdR ⊗K HK

ν−→ BdR ⊗Qp L.

If g ∈ G(K) and if F ′ := (ν−1gν)F ∈ Ď belongs to ND, then as is easily seen, the
image of hμ̃(F ′) under

G(Bϕ=1
crys )/G(Qp) → G(BdR)/G(B0

dR)

coincides with the class of δgδ−1 ∈ G(BdR). If F ′ ∈ ND converges to F , we can
write F ′ = gF with g ∈ G(K) which converges to 1. By Lemma 4.6.3, g converges
to 1 in G(B0

dR). Hence we are reduced to Lemma 4.6.6. �

LEMMA 4.6.8

Let c ≥ 2, n ≥ 1. Then the map

G(Âc)≡1 mod pn → G(B̂c)≡1 mod pn ;a �→ a−1ϕ(a)

is surjective.

Proof
Let b ∈ G(B̂c)≡1 mod pn . Since G is a smooth group scheme over Zp and since 1 −
ϕ : Ac → Bc is surjective (see Proposition 4.5.3), we can find bm ∈ G(B̂c)≡1 mod pm

and am ∈ G(Âc)≡1 mod pm for integers m ≥ n such that bn = b and bm = a−1
m ×

bm+1ϕ(am) for any m ≥ n. Let a ∈ G(Âc)≡1 mod n be the limit of an+man+m−1 ·
. . . · an+2an+1an (m → ∞). Then b = a−1ϕ(a). �

LEMMA 4.6.9

Let c ≥ 2, n ≥ 1, b ∈ G(Bc+1)≡1 mod pn . Then the class of b in G(B̂c)/G(Âc)
belongs to the image of G(B̂ϕ=1

c )≡1 mod pn .

Proof
By Lemma 4.6.8, we have b−1ϕ(b) = a−1ϕ(a) in G(B̂c) for some a ∈ G(Âc). Let
b′ = ba−1 ∈ G(B̂c). Then ϕ(b′) = b′, and hence b′ belongs to G(B̂ϕ=1

c ). �

LEMMA 4.6.10

Let c ≥ 2, n ≥ 1, and let h be an element of G(Bϕ=1
crys )/G(Qp) whose image in
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G(BdR)/G(B0
dR) belongs to the image of G(Bc+1)≡1 mod pn . Then h belongs to

the image of G(Bϕ=1
c )≡1 mod pn .

Proof
Assume that the image of h in G(BdR)/G(B0

dR) coincides with the image
of b ∈ G(Bc+1)≡1 mod pn . By Lemma 4.6.9, we can write b = b′a with b′ ∈
G(B̂ϕ=1

c )≡1 mod pn and a ∈ G(Âc)≡1 mod pn . In G(B̂c[1/p])/G(Âc[1/p]), the class
of h and that of b′ coincide. Since ((B̂c)ϕ=1)[1/p] ∩ Âc[1/p] = Qp, the map
G((B̂c)ϕ=1[1/p])/G(Qp) → G(B̂c[1/p])/G(Âc[1/p]) is injective. Hence in
G((B̂c)ϕ=1[1/p])/G(Qp), the class of h coincides with that of b′. Since B̂c ∩
Bc[1/p] = Bc, b′ belongs to G(Bϕ=1

c )≡1 mod pn . �

4.6.11
Now Proposition 4.4.7 follows from Lemmas 4.6.7 and 4.6.10. In fact, by Lemma
4.6.7, there is a neighborhood U of F in ND such that for any F ′ ∈ U , the image
of hμ̃(F ′) in G(BdR)/G(B0

dR) belongs to the image of G(Bc+1)≡1 mod pn . By
Lemma 4.6.10, hμ̃(F ′) belongs to the image of G(Bϕ=1

c )≡1 mod pn . This completes
the proof of Proposition 4.4.7. �

5. p-Adic period domains D and ΓD (finite residue field case)

In Section 5, assuming that the residue field k of K is finite and modifying the
formulation in Section 4 slightly, we consider p-adic period domains D and ΓD.
The difference from Section 4 is that in Sections 5 and 6, we consider �-adic
Galois representations for all prime numbers �. The space ΓD is a refinement
of the space D by taking �-adic level structures for all prime numbers � into
account.

5.1. Notation in Sections 5 and 6
5.1.1
We use the notation explained in Section 3.1. In Sections 5 and 6, we assume
that k is a finite field, that is, K is a finite extension of Qp.

5.1.2
Let

Q
f
A = Q ⊗Z Ẑ with Ẑ = lim←−

n

Z/nZ

be the nonarchimedean part of the adèle ring of Q. Let Q
f
A,non-p be the non-p-part

of Q
f
A.
In Sections 5 and 6, assume that we are given a quadruple(

H,W, (hw,i)w,i∈Z,N
)
.

• H is a free (K0 × Q
f
A,non-p)-module of finite rank. Write H = Hp × Hnon-p,

where Hp is the K0-component of H and Hnon-p is the non-p component of H .



Toroidal partial compactifications of p-adic period domains 605

We assume that we are given a Frobenius-linear bijection ϕ : Hp → Hp and a
continuous Q

f
A,non-p-linear action of Gal(k̄/k) on Hnon-p, which satisfy condition

(C) in Section 5.1.3. For each prime number � �= p, let H� be the Q�-component
of Hnon-p.

• W is an increasing filtration on H by (K0 × Q
f
A,non-p)-submodules Ww

(w ∈ Z) such that Ww = H for w 
 0 and Ww = 0 for w � 0. We assume that for
any w ∈ Z, Ww is a free (K0 × Q

f
A,non-p)-module and is a (K0 × Q

f
A,non-p)-direct

summand of H , that WwHp is stable under ϕ, and that WwHnon-p is stable under
the action of Gal(k̄/k).

• hw,i are integers which are zero for almost all (w, i) and which satisfy∑
i hw,i = rankgrW

w for all w ∈ Z.
• N is a finite-dimensional Q-vector subspace of the space of all (K0 ×

Q
f
A,non-p)-linear homomorphisms N : H → H such that Nϕ = pϕN on Hp,

sNs−1 = κ(s)N on Hnon-p for any s ∈ Gal(k̄/k), where κ is the cyclotomic
character, and NWw ⊂ Ww for all w ∈ Z. We assume that the canonical map
(K0 × Q

f
A,non-p) ⊗Q N → EndK0×Q

f

A,non-p

(H) is injective and that the image of

this injection is a (K0 × Q
f
A,non-p)-direct summand.

Note that N : H → H is nilpotent for any N ∈ N.
See Section 5.4 for the motivation to consider this space N from the point of

view of motives.

5.1.3
Condition (C) is as follows.

Let f = [k : Fp]. Define polynomials P�(T ) for all prime numbers � as follows.
Let Pp(T ) ∈ K0[T ] be the eigenpolynomial of the K0-linear operator ϕf on Hp.
For � �= p, let σ be the element of Gal(k̄/k) defined by σ(x) = x−1/pf

for x ∈ k̄,
and let P�(T ) ∈ Q�[T ] be the eigenpolynomial of the Q�-linear action of σ on H�.

(C) P�(T ) ∈ Q[T ] for any prime number �, and P�(T ) is independent of the
prime number �. Write P�(T ) as P (T ). Then for any root α of P (T ) in C, there
is an integer w ∈ Z such that all conjugates of α over Q have complex absolute
value pfw/2.

5.1.4
We define an increasing filtration W on H , which we call the filtration by Frobe-
nius weights.

Let the notation P (T ) ∈ Q[T ], σ ∈ Gal(k̄/k), and f = [k : Fp] be as in Sec-
tion 5.1.3.

Clearly we have a unique decomposition P (T ) =
∏

w∈Z P (w)(T ) with
P (w)(T ) ∈ Q[T ] such that all roots of P (w)(T ) in C have absolute value pfw/2.

For each prime number �, we have a direct decomposition H� =
⊕

w∈Z H
(w)
�

defined as follows. If � = p, H
(w)
p is the kernel of the K0-linear operator P (w)(ϕf )

on Hp. If � �= p, H
(w)
� is the kernel of the Q�-linear operator P (w)(σ) on H�.
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We show that there is a unique decomposition

(13) H =
⊕
w∈Z

H(w)

as a (K0 × Q
f
A,non-p)-module such that the K0-component of H(w) is H

(w)
p and

the Q�-component of H(w) for any prime number � �= p is H
(w)
� . Write Ẑ = Zp ×

Ẑnon-p, where Ẑnon-p =
∏

�
=p Z�. Take a Gal(k̄/k)-stable free Ẑnon-p-submodule
Tnon-p of Hnon-p of finite rank which generates Hnon-p over Q

f
A,non-p. If w,w′ ∈ Z

and w �= w′, then P (w)(T ) and P (w′)(T ) are prime to each other in Q[T ]. Hence
there is a finite set S of prime numbers such that p ∈ S and such that if � is a
prime number which is not contained in S, then P (w)(T ) ∈ Z�[T ] for any w ∈ Z

and P (w)(T )Z�[T ] + P (w′)(T )Z�[T ] = Z�[T ] for any integers w,w′ ∈ Z such that
w �= w′. For any prime number � �= p, let T� be the Z�-component of Tnon-p, and
write Tnon-S =

∏
�/∈S T�. Then Tnon-S =

⊕
w∈Z T

(w)
non-S , where T

(w)
non-S is the kernel

of P (w)(σ) in Tnon-S . This proves that we have the direct decomposition (13).
We define the increasing filtration W on H by

Ww =
⊕

w′ ≤w

H(w′).

Note that

(14) N Ww ⊂ Ww−2 for any N ∈ N and any w ∈ Z.

5.1.5
Let d be the rank of the (K0 × Q

f
A,non-p)-module H . To discuss level structures,

we fix a free Q
f
A-module L of rank d endowed with an increasing filtration W•L

having the following property. For each w ∈ Z, WwL is free and is a direct sum-
mand of L as a Q

f
A-module, and its rank is the same as the rank of Ww ⊂ H as a

(K0 × Q
f
A,non-p)-module. For each prime number �, let L� be the Q�-component

of L.
Let G be the automorphism group of (L,W•L), which we regard as a group

scheme over Q
f
A.

5.1.6
Let

HK = K ⊗K0 Hp.

As in Section 4.1.4, let Ď be the set of all decreasing filtrations on the K-module
HK such that hw,i = dimK gri

F grW
w,K for any w, i.

5.1.7
The triple (Hp,W•Hp, (hw,i)) becomes a triple in Section 4.1. The Qp-component
(Lp,W•Lp) of (L,W•L) becomes (L,W•L) of Section 4.1. When we refer to Sec-
tion 4, we take the data in Section 4.1 in this way.
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5.1.8
Thus we consider �-adic structures for all prime numbers � in Sections 5 and
6, though we considered only p-adic structures in Section 4. We intend to apply
Sections 5 and 6 to motives over K (see Section 5.4) which have �-adic realizations
for all prime numbers � and whose adelic level structures are considered. On the
other hand, Section 4 can be applied also to objects like p-divisible groups which
have p-adic realizations (but not �-adic realizations for � �= p) and whose p-adic
level structures are considered.

5.2. Spaces C of monodromy operators and p-adic period domains D

5.2.1
Let C ⊂ N be the set of all elements N of N satisfying the following condition.

(i) W is the relative monodromy filtration (see Section 2.3.2) of N : H → H

with respect to W .

5.2.2
We define

D =
{
(N,F )

∣∣N ∈ C,F ∈ ND
}
.

5.2.3
We define the analytic structure over K of D by regarding it as the disjoint union
over N ∈ C of the analytic manifolds ND over K (see Section 4.2.4).

5.3. Level structures and the space ΓD

5.3.1
For (N,F ) ∈ D, we define a representation V (N,F ) over Q

f
A as follows.

First, for N ∈ N, let Vnon-p(N) be the following representation of Gal(K̄/K)
over Q

f
A,non-p. As a Q

f
A,non-p-module, Vnon-p(N) = Hnon-p. For each prime number

� �= p, let V�(N) be the space H� having the action of Gal(K̄/K) associated to
N defined as in Section 3.3.3. Then the subset Hnon-p of

∏
�
=p H� is stable under

this action. This is the action of Gal(K̄/K) on Vnon-p(N).
For (N,F ) ∈ D, let Vp(N,F ) be the representation of Gal(K̄/K) over Qp

associated to the admissible filtered module (Hp,N,F ) (see Section 3.2.6). We
define

V (N,F ) = Vp(N,F ) × Vnon-p(N).

5.3.2
Let Γ be a compact open subgroup of G(Qf

A).
Let V be a free Q

f
A-module of finite rank endowed with a continuous action of

Gal(K̄/K) and with a Gal(K̄/K)-stable filtration W•V by Q
f
A-direct summands

such that rankV = rankL and rankWwV = rankWwL for all w ∈ Z.
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For isomorphisms μi : (L,W•L)
∼=→ (V,W•V ) (i = 1,2) of Q

f
A-modules with

filtrations, we say that μ1 and μ2 are Γ-equivalent if μ−1
1 μ2 ∈ Γ.

By a Γ-level structure on V we mean a Γ-equivalence class of an isomorphism
μ : (L,W•L)

∼=→ (V,W•V ) such that μ−1sμ ∈ Γ for any s ∈ Gal(K̄/K).
For example, if L

Ẑ
is a finitely generated Ẑ-submodule of L such that L =

Q
f
A ⊗

Ẑ
L

Ẑ
and Γ = Aut

Ẑ
(L

Ẑ
,W•L

Ẑ
), where W•L

Ẑ
denotes the restriction of W•L

to L
Ẑ
, then a Γ-level structure on V corresponds in a one-to-one manner to a

Gal(K̄/K)-stable finitely generated Ẑ-submodule T of V such that V = Q
f
A ⊗

Ẑ
T

(see Section 4.3.3).

5.3.3
For a compact open subgroup Γ of G(Qf

A), define

ΓD =
{
(N,F,μ)

∣∣ (N,F ) ∈ D,μ is a Γ-level structure of V (N,F )
}
.

5.3.4
We define the analytic structure over K of ΓD as follows, by using the results in
Section 4.4.

Let α = (N,F,μ) ∈ ΓD. Then for a sufficiently small neighborhood U of
F in ND, we have a canonical map eα : U → ΓD defined as follows. Let V =
V (N,F ), let μ̃ : (L,W•L)

∼=→ (V,W•V ) be a representative of μ, and let μ̃p (resp.,
μ̃non-p) be the Qp (resp., Q

f
A,non-p)-component of μ̃. We have the map hμ̃p : ND →

G(Bϕ=1
crys )/G(Qp) (see Section 4.4.2). Take a finitely generated Zp-submodule LZp

of the Qp-component Lp of L which satisfies Lp = Qp ⊗Zp LZp and which is stable
under the action of Γ through Γ → G(Qp). By abuse of notation, we use the letter
G also for the automorphism group of (LZp × Hnon-p,W•(LZp × Hnon-p)) regarded
as a smooth group scheme over Zp × Q

f
A,non-p. Take integers c ≥ 2 and n ≥ 0

such that G(Zp)≡1 mod pn ⊂ Γ ∩ G(Qp). As in Section 4.4.6, let Uα,c,n be the set
of all F ′ ∈ ND such that hμ̃p(F ′) belongs to the image of G(Bϕ=1

c )≡1 mod pn →
G(Bϕ=1

crys )/G(Qp). Then by Section 4.4.2(4), Uα,c,n is independent of the choice of
the representative μ̃ of μ and, by Corollary 4.4.10, Uc,α,n is an open neighborhood
of F in ND. We define the map

eα : Uα,c,n → ΓD

as follows. Let F ′ ∈ Uα,c,n, and let h be an element of G(Bϕ=1
c )≡1 mod pn whose

image in G(Bϕ=1
crys )/G(Qp) coincides with hμ̃p(F ′). Let μ′ be the Γ-equivalence

class of (μ̃ph, μ̃non-p) : (L,W•L)
∼=→ (V (N,F ′),W•Vp(N,F ′)). Then μ′ is indepen-

dent of the choices of the representative μ̃ of μ and the element h. We define
eα(F ′) = (N,F ′, μ′).

We define the topology of ΓD as follows. A subset U of ΓD is open if and only
if for any α = (N,F,μ) ∈ ΓD, eα(U ′) ⊂ U for a sufficiently small neighborhood U

of F in ND. Then ΓD → D is a local homeomorphism. We transfer the analytic
structure over K of D to ΓD via this local homeomorphism.
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The projection ΓD → D becomes locally an isomorphism of analytic spaces
over K, and eα is a local section of it.

This topology and the analytic structure are independent of the choice of
LZp (see Section 4.4).

5.4. Remarks on motives
By using the p-adic Hodge conjecture of Fontaine (see Conjecture 3.4.9), we
explain the ideas of some definitions in Section 5 from the point of view of
motives.

5.4.1
Fix a triple (M,W, (hw,i)w,i∈Z), where M is a mixed motive over k, W is an
increasing filtration on M by mixed submotives such that Ww = M for w 
 0
and Ww = 0 for w � 0, and hw,i are nonnegative integers such that for each i,∑

i hw,i is equal to the rank of the motive grW
w (M).

Then Hp in Section 5.1.2 is obtained as the crystalline realization of M and
Hnon-p in Section 5.1.2 is obtained as the Q

f
A,non-p-adic étale realization of M .

N in Section 5.1.2 is given as

N = Hom
(
M,M(−1)

)
.

The filtration W in Section 5.1.4 is given by the weight filtration of the mixed
motive M over k.

For N ∈ N, (M,W,N) belongs to the category Ck in Section 3.4.7 if and only
if N belongs to C ⊂ N.

5.4.2
Let Dmotive be the set of all isomorphism classes of pairs (M̃, ι), where

• M̃ is a mixed motive over K whose de Rham realization M̃dR satisfies
dimK gri

F grW
w M̃dR = hw,i for any w, i ∈ Z, where W is the weight filtration of the

motive M̃ over K and F is the Hodge filtration on M̃dR;
• ι is an isomorphism (M ′,W ′) ∼= (M,W ), where we denote by (M ′,W ′,N,F )

the object of Ck,K corresponding to M̃ in Conjecture 3.4.9.

If we assume Conjecture 3.4.9, the realization functors give an injection

Dmotive
⊂→ D

into the space D in Section 5.2.
It seems to be a very difficult problem to determine the image of this injec-

tion.

5.5. Examples
In Sections 5.5 and 6.6, we describe the p-adic versions of Examples a–d in
Section 2. Most things written in Sections 5.5 and 6.6 are checked easily, but
their complete proofs will be given in a later part of this series of papers after
we develop some general theory.



610 Kazuya Kato

5.5.1. Example a
This is a p-adic analogue of Section 2.2, Example a. The multiplicative group C×

appeared in Section 2.2, Example a, and the multiplicative group K× appears
here.

In the formulation of Section 5.4, let (M,W, (hw,i)w,i∈Z) be as follows:

M = Q(1) ⊕ Q,

0 = W−3 ⊂ Q(1) = W−2 = W−1 ⊂ M = W0,

h0,0 = h−2,−1 = 1, other hw,i are zero.

In the formulation in Section 5.1, we take a quadruple (H,W, (hw,i),N) as follows.
H is a free (K0 × Q

f
A,non-p)-module of rank 2 with basis e1, e2, ϕ : Hp → Hp

is defined by

ϕ(e1,p) = p−1e1,p, ϕ(e2,p) = e2,p,

and the action of Gal(k̄/k) on Hnon-p is given by

se1,non-p = κ(s)e1,non-p, se2,non-p = e2,non-p
(
s ∈ Gal(k̄/k)

)
,

where κ is the cyclotomic character,

0 = W−3 ⊂ (K0 × Q
f
A,non-p) · e1 = W−2 = W−1 ⊂ H = W0,

hw,i are as above,

N = QN where N(e1) = 0, N(e2) = e1.

Then we have an isomorphism of analytic manifolds over K,

D ∼= Q × K,

where Q is discrete. Here (c, z) ∈ Q × K corresponds to (cN,F (z)) ∈ D, where
F = F (z) ∈ Ď is defined as

0 = F 1 ⊂ K(ze1,p + e2,p) = F 0 ⊂ HK = F −1.

We describe Vp(cN,F (z)). We have an exact sequence

0 → Qp(1) → Bϕ=p
crys ∩ B0

dR → Cp → 0,

where Bϕ=p
crys := {x ∈ Bcrys | ϕ(x) = px}. Recall that we denote by t the generator

of Zp(1) ⊂ Bcrys corresponding to (ζpn)n≥0 as in Section 3.2. As a subset of
Bst ⊗K0 Hp, Vp(cN,F (z)) is the two-dimensional Qp-subspace with basis te1,p

and (clξ + b)e1,p + e2,p, where lξ is as in Section 3.2.4 and where b is any element
of Bϕ=p

crys ∩ B0
dR whose image in Cp coincides with z.

To consider level structures, let L be the free Q
f
A-module of rank 2 with basis

e1,L, e2,L endowed with the weight filtration

0 = W−3L ⊂ Q
f
A · e1,L = W−2L = W−1L ⊂ L = W0L.

Let

Γ =

(
Ẑ× Ẑ

0 Ẑ×

)
⊂ Aut(L).
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Let ΓD◦ be the subset of ΓD consisting of all elements (cN,F (z), μ) such that
the restrictions of μ to grW

w are the standard ones for all w. The last condition means
that some representative μ̃ : L → V (cN,F (z)) of μ has the following properties:

μ̃p(e1,L,p) = te1,p, μ̃p(e2,L,p) ≡ e2,p mod Bst · e1,p,

μ̃non-p(e1,L,non-p) = e1,non-p,

μ̃non-p(e2,L,non-p) ≡ e2,non-p mod Q
f
A,non-p · e1,non-p.

Then ΓD◦ is open and closed in ΓD. We have an isomorphism of analytic man-
ifolds over K,

ΓD◦ ∼= K×,

via which the projection ΓD◦ → D corresponds to (ordξ, log) : K× → Q × K. We
describe this isomorphism.

Let

P (K) =
{
(an)n≥1

∣∣ an ∈ K̄×, am
mn = an(m,n ≥ 1), a1 ∈ K×}.

Then P (K) is a torsion-free locally compact abelian group. We have an exact
sequence

0 → Ẑ(1) → P (K) → K× → 0,

where the map P (K) → K× sends (an) to a1. Let

log : P (K) → Bϕ=p
st :=

{
x ∈ Bst

∣∣ ϕ(x) = px
}

be the logarithm (see [7]). It is the unique homomorphism which sends (an)n≥1 ∈
P (K) such that a1 ∈ O×

K to log([(apn)n≥1]) (where [(apn)n≥1] is as in Section 3.2.4
and log : A×

crys → Acrys[1/p] is the logarithm of Acrys (see [7])) and sends (ξ1/n)n≥1

to lξ . For a ∈ K× and for an element ã of P (K) whose image in K× is a, we
have log(ã) = ordξ(a)lξ + b for some b ∈ Bϕ=p

crys ∩ B0
dR such that the image of b in

Cp is log(a). On the other hand, define the homomorphism

lognon-p : P (K) → Q
f
A,non-p

as follows. Since k× is finite and Ker(O×
K → k×) is a pro-p group, there is a unique

continuous homomorphism P (K) → Q
f
A,non-p which kills (ξ1/n)n ∈ P (K) and

whose restriction to Ẑ(1) ⊂ P (K) is Ẑ(1) ∼= Ẑ → Q
f
A,non-p, where the isomorphism

is defined by (ζn)n.
Then a ∈ K× corresponds to (Na, Fa, μa) ∈ ΓD◦, where Na = ordξ(a)N , Fa =

F (log(a)), and where μa is as follows. Take a lifting ã of a to P (K). Note that
Vp(Na, Fa) is generated by te1,p and log(ã)e1,p +e2,p over Qp. The level structure
μa is the Γ-equivalence class of the following isomorphism μ̃a : L → V (Na, Fa)
over Q

f
A:

μ̃a,p(e1,L,p) = te1,p, μ̃a,p(e2,L,p) = log(ã)e1,p + e2,p,

μ̃a,non-p(e1,L,non-p) = e1,non-p,

μ̃a,p(e2,L,non-p) = lognon-p(ã)e1,non-p + e2,non-p.
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We describe a relation with Kummer theory. Let T (a) be the Ẑ-submodule of
V (Na, Fa) generated by μ̃a(ej,L) (j = 1,2). That is, T (a) is the Gal(K̄/K)-stable
Ẑ-lattice in V (Na, Fa) corresponding to μ (see Section 5.3.2). Consider the exact
sequence of Gal(K̄/K)-modules

0 → Ẑ(1) → T (a) → Ẑ → 0

in which the generator of Ẑ(1) corresponding to (ζn)n is sent to μ̃(e1,L) ∈ T (a)
and the map T (a) → Ẑ sends μ̃(e2,L) to 1. This exact sequence determines an
element of Ext1Gal(K̄/K)(Ẑ, Ẑ(1)) = H1(K, Ẑ(1)), where Hm(K, ) (m ∈ Z) denotes
the continuous Galois cohomology Hm(Gal(K̄/K), ). This element of H1(K,

Ẑ(1)) coincides with the image of a under the canonical homomorphism K× →
H1(K, Ẑ(1)) defined by Kummer theory. This is because the image of a in
H1(K, Ẑ(1)) by Kummer theory is the class of the exact sequence 0 → Ẑ(1) →? →
Z → 0 which is obtained from the exact sequence 0 → Ẑ(1) → P (K) → K× → 0
by Z → K×,1 �→ a.

We describe the map eα in Section 4.4.8. For a ∈ K×, if α denotes the element
of ΓD◦ corresponding to a, then for integers c ≥ 2 and n ≥ 0, Uα,c,n coincides
with the set of F (z) for z ∈ K such that z ≡ log(a) mod pn+cOK , and for such z,
eα(F (z)) coincides with the element of ΓD◦ corresponding to a exp(z − log(a)) ∈
K×.

5.5.2. Example b
This is a p-adic analogue of Section 2.2, Example b. The unit disc without the
origin Δ∗ over C appeared in Section 2.2, Example b. The p-adic unit disc without
the origin Δ∗ appears here.

In the formulation of Section 5.4, let (M,W, (hw,i)w,i∈Z) be as follows:

M = Q(1) ⊕ Q,

0 = W−2 ⊂ M = W−1,

h−1,0 = h−1,−1 = 1, other hw,i are zero.

In the formulation in Section 5.1, we take a quadruple (H,W, (hw,i),N).
Define a quadruple (H,W, (hw,i),N) as follows:

• H and N are the same as those of Example a,
• 0 = W−2 ⊂ H = W−1,
• hw,i are as above.

Then we have an isomorphism of analytic manifolds over K,

D ∼= (Q − {0}) × K,

where Q − {0} is discrete. Let N ∈ N be as in Section 5.5.1, Example a. Then in
this isomorphism, (c, τ) ∈ (Q − {0}) × K corresponds to (cN,F (τ)), where F (τ)
is defined in the same way as in Example a. The subset C of N in Section 5.2 in
this case is N − {0}.

We have the description of Vp(cN,F (τ)) of the same form as in Example a.
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Let L and Γ be the same as in Example a. Let ΓD◦ be the subset of ΓD

consisting of all elements (cN,F (τ), μ) such that c > 0 and such that for some
representative μ̃ : L → V (cN,F (τ)), μ̃(e1,L) and μ̃(e2,L) mod (K0 × Q

f
A,non-p) · e1

are given as in the definition of ΓD◦ in Example a. Then ΓD◦ is open and closed
in ΓD. We have an isomorphism of analytic manifolds over K,

ΓD◦ ∼= Δ∗,

where Δ∗ = Δ − {0}, Δ = {q ∈ K | |q|p < 1}. The projection ΓD◦ → D corre-
sponds to Δ∗ → Q × K,q �→ (ordξ(q), log(q)). The level structure of the element
of ΓD◦ corresponding to q ∈ Δ∗ is described in the same form as in Example a.

Let E be the Tate elliptic curve K×/qZ with q ∈ mK − {0}. Then for any
prime number �, the �-adic Tate module T�(E) is the extension of Z� by Z�(1)
associated to q by Kummer theory. The relation with Kummer theory explained
in Example a shows the following. Let c = ordξ(q), and let τ = log(q). Then
V (cN,F (τ)) = Q

f
A ⊗

Ẑ

∏
� T�(E), and the level structure defined by q ∈ Δ∗ = ΓD◦

is identified with the integral structure
∏

� T�(E) of Q
f
A ⊗

Ẑ

∏
� T�(E).

The example of (D,Γ) in the introduction related to Tate elliptic curves is
the (−1)-Tate twist of this Example b with Γ as above. In general, Tate twists
D, ΓD, and also ΓDΣ in Section 6 are canonically isomorphic to the original D,
Γ \ D, and Γ \ DΣ, respectively.

5.5.3. Example c
This is a p-adic analogue of Section 2.2, Example c. The universal elliptic curve
appeared in Section 2.2, Example c. The universal Tate elliptic curve appears
here.

In the formulation of Section 5.4, let (M,W, (hw,i)w,i∈Z) be as follows:

M = Q(1) ⊕ Q ⊕ Q,

0 = W−2 ⊂ Q(1) ⊕ Q ⊕ 0 = W−1 ⊂ M = W0,

h0,0 = h−1,0 = h−1,−1 = 1, other hw,i are zero.

In the formulation in Section 5.1, we take a quadruple (H,W, (hw,i),N) as follows.
H is a free (K0 × Q

f
A,non-p)-module of rank 3 with basis e1, e2, e3; ϕ : Hp → Hp

is defined by

ϕ(e1,p) = p−1e1,p, ϕ(e2,p) = e2,p, ϕ(e3,p) = e3,p;

the action of Gal(k̄/k) on Hnon-p is given by

se1,non-p = κ(s)e1,non-p, se2,non-p = e2,non-p, se3,non-p = e3,non-p

(s ∈ Gal(k̄/k)), where κ is the cyclotomic character.
W is the increasing filtration on H defined by

0 = W−2 ⊂
2⊕

j=1

(K0 × Q
f
A,non-p) · ej = W−1 ⊂ H = W0,

hw,i are as above.
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N is the set of all (K0 × Q
f
A,non-p)-linear maps H → H which send e1 to zero

and e2 and e3 into Qe1.
Then we have an isomorphism of analytic manifolds over K,

D ∼= (Q − {0}) × Q × K2,

where (Q − {0}) × Q is discrete. Here (c, c′, τ, z) ∈ (Q − {0}) × Q × K2 corresponds
to (Nc,c′ , F (τ, z)) ∈ D, where N = Nc,c′ is defined by

N(e1) = 0, N(e2) = ce1, N(e3) = c′e1,

and where F = F (τ, z) is defined by

0 = F 1 ⊂ K(τe1,p + e2,p) + K(ze1,p + e3,p) = F 0 ⊂ HK = F −1.

Let L be the free Q
f
A-module of rank 3 with basis (ej,L)1≤j≤3 endowed with

the weight filtration W defined by

0 = W−2L ⊂
2⊕

j=1

Q
f
A · ej = W−1L ⊂ L = W0L.

Let

Γ =

(
GL2(Ẑ) ∗

0 Ẑ×

)
⊂ Aut(L), ∗ =

(
Ẑ

Ẑ

)
.

Let ΓD◦ be the subset of ΓD consisting of all elements whose restriction to W−1

belongs to the ΓD◦ of Example b and whose level structure induces on grW
0

the standard level structure. Then ΓD◦ is open and closed in ΓD. We have an
isomorphism of analytic manifolds over K,

ΓD◦ ∼= Δ∗ × K×.

Here (q, r) ∈ Δ∗ ×K× corresponds to
(
Nordξ(q),ordξ(r), F (log(q), log(r)), μ

)
∈ ΓD◦,

where μ is the class of μ̃ defined by

μ̃(e1,L,p) = te1,p, μ̃(ej,L,p) = log
(
q̃ (resp., r̃)

)
e1,p + ej,p (j = 2, resp., 3),

μ̃(e1,L,non-p) = e1,non-p, μ̃(ej,L,non-p) = log
(
q̃ (resp., r̃)

)
e1,non-p + ej,non-p

(j = 2, resp., 3).

Here q̃ (resp., r̃) denotes a lifting of q (resp., r) to P (K) (see Section 5.5.1).
The space ΓD◦ is a p-adic analogue of Γ2 \ D over C in Section 2.2.
A p-adic analogue of Γ3 \ D in Section 2.2 is the quotient Γ0 \ ΓD◦ of ΓD◦,

where

Γ0 =

⎛
⎝1 0 0

0 1 Z

0 0 1

⎞
⎠⊂ Aut(H).
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This quotient Γ0 \ D◦ is also an analytic space over K, and we have a commuta-
tive diagram

(Q − {0}) × Q × K2 ∼= D

−→ −→

Δ∗ × K× ∼= ΓD◦

−→ −→
⋃

q∈Δ∗ K×/qZ ∼= Γ0 \ ΓD◦

which is similar to a diagram in Section 2.2.5. Thus Γ0 \ ΓD◦ is the universal
Tate elliptic curve over Δ∗.

This action of the group Γ0 is understood in terms of motives as follows. In
general, in the formulation of Section 5.4, the group Aut(M,W ) acts naturally
on Dmotive by (M̃, ι) �→ (M̃, aι) (a ∈ Aut(M,W )). In this Example c, Γ0 is a
subgroup of Aut(M,W ), and the action of Γ0 on ΓD◦ is compatible with the
action of Aut(M,W ) on Dmotive (D in this case).

5.5.4. Example d
This is a p-adic analogue of Section 2.2, Example d.

In the formulation of Section 5.4, let (M,W, (hw,i)w,i∈Z) be as follows:

M = Q(2) ⊕ Q(1) ⊕ Q,

0 = W−5 ⊂ Q(2) = W−4 = W−3 ⊂ W−3 + Q(1) = W−2 = W−1 ⊂ M = W0,

h0,0 = h−2,−1 = h−4,−2 = 1, other hw,i are zero.

In the formulation in Section 5.1, we take a quadruple (H,W, (hw,i),N) as follows.
H is a free (K0 × Q

f
A,non-p)-module of rank 3 with basis e1, e2, e3; ϕ : Hp → Hp

is defined by

ϕ(e1,p) = p−2e1,p, ϕ(e2,p) = p−1e2,p, ϕ(e3,p) = e3,p;

the action of Gal(k̄/k) on Hnon-p is given by

se1,non-p = κ(s)2e1,non-p, se2,non-p = κ(s)e2,non-p, se3,non-p = e3,non-p

(s ∈ Gal(k̄/k), κ is the cyclotomic character).
W is the increasing filtration on H defined by

0 = W−5 ⊂ (K0 × Q
f
A,non-p) · e1 = W−4 = W−3

⊂ W−3 + (K0 × Q
f
A,non-p) · e2 = W−2 = W−1 ⊂ H = W0,

hw,i are as above.

N is the set of all (K0 × Q
f
A,non-p)-linear maps H → H which send e1 to zero,

e2 into Qe1, and e3 into Qe2.
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Then we have an isomorphism of analytic spaces over K,

D ∼= Q2 × K3,

where Q2 is discrete. Here (c, c′, z1, z2, z3) ∈ Q2 × K3 corresponds to (Nc,c′ , F (z1,

z2, z3)) ∈ D, where N = Nc,c′ is defined by

N(e1) = 0, N(e2) = ce1, N(e3) = c′e2,

and F = F (z1, z2, z3) is defined by

0 = F 1 ⊂ K(z1e1,p + z2e2,p + e3,p) = F 0 ⊂ F 0 + K(z3e1,p + e2,p)

= F −1 ⊂ HK = F −2.

Let L be the free Q
f
A-module of rank 3 with basis (ej,L)1≤j≤3 endowed with

the weight filtration

0 = W−5L ⊂ Q
f
A · e1 = W−4L = W−3L ⊂ W−3L + Q

f
A · e2 = W−2L = W−1L ⊂ L

= W0L.

Let

Γ =

⎛
⎜⎝Ẑ× Ẑ Ẑ

0 Ẑ× Ẑ

0 0 Ẑ×

⎞
⎟⎠.

Let ΓD◦ be the subset of ΓD consisting of all points whose level structures induce
on grW

w the standard level structures for all w. Then ΓD◦ is open and closed in
ΓD. Since the data given on W−2 and on H/W−3 are isomorphic to the data
given in Example a, the restriction to W−2 and the projection to H/W−3 give
an analytic map over K,

ΓD◦ → K× × K×.

Let μ(K) be the finite group of all roots of 1 in K, let ( , )μ(K) : K× × K× → μ(K)
be Hilbert symbol map, and let S = {(x, y) ∈ K× × K× | (x, y)μ(K) = 1}. Then
S is an open set of K× × K×. It can be shown that the image of ΓD◦ →
K× × K× coincides with S, and that as an analytic space over K, ΓD◦ is an
H1(K, Ẑ(2))-torsor over S. Here H1(K, Ẑ(2)) denotes the continuous Galois coho-
mology H1(Gal(K̄/K), Ẑ(2)), which is regarded as a compact Lie group over K

by transporting the analytic structure of K via the local homeomorphism

H1
(
K, Ẑ(2)

)
→ H1

(
K,Qp(2)

)∼= K,

where the last isomorphism is given by the exponential map exp : K
∼=→ H1(K,

Qp(2)) (see [4]). The action of H1(K, Ẑ(2)) on ΓD◦ over S is characterized as
follows. Let x, y ∈ K×. By Kummer theory, x and y determine extensions of
representations of Gal(K̄/K) over Ẑ:

0 → Ẑ(2) → T (x) → Ẑ(1) → 0, 0 → Ẑ(1) → T (y) → Ẑ → 0.

The connecting map H1(K, Ẑ(1)) → H2(K, Ẑ(2)) in the exact sequence

0 → H1
(
K, Ẑ(2)

)
→ H1

(
K,T (x)

)
→ H1

(
K, Ẑ(1)

)
→ H2

(
K, Ẑ(2)

)
→ · · ·
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associated to the extension T (x) sends the class of the extension T (y) in H1(K,

Ẑ(1)) to the Hilbert symbol (x, y)μ(K) ∈ μ(K) ∼= H2(K, Ẑ(2)). Hence the condi-
tion (x, y) ∈ S is equivalent to the following condition. There exists a represen-
tation T of Gal(K̄/K) over Ẑ having an increasing filtration by subrepresen-
tations WwT such that W−5T = 0; W0T = T ; grW

w T is Ẑ(2), 0, Ẑ(1), 0, Ẑ for
w = −4, −3, −2, −1,0, respectively; and W−2T = T (x), T/W−3T = T (y). For a ∈
H1(K, Ẑ(2)), the action of a on ΓD◦ sends (N,F,μ) ∈ ΓD◦ with F = F (z1, z2, z3)
to (N,F ′, μ′), where F ′ = F (z1 + exp−1(a), z2, z3) and μ′ is characterized by the
following property. Let T (μ) be the Ẑ-lattice in V (N,F ) corresponding to μ.
Then T (μ) has the property of the above T , that is, W−2T (μ) = T (x) and
T (μ)/W−3T (μ) = T (y). The extension 0 → T (x) → T (μ′) → Ẑ → 0 is the Baer
sum of the extension 0 → T (x) → T (μ) → Ẑ → 0 and the pushout 0 → T (x) →
? → Ẑ → 0 of 0 → Ẑ(2) → T (a) → Ẑ → 0 corresponding to a by the inclusion map
Ẑ(2) → T (x).

6. Toroidal partial compactifications ΓDΣ

Let the notation be as in Section 5.1. In particular, we assume that the residue
field k of K is finite.

In this section, we construct the toroidal partial compactifications ΓDΣ

of ΓD.

6.1. p-Adic nilpotent orbits in D̃

In Sections 6.1 and 6.2, we define the p-adic analogues (see Sections 6.1.5, 6.2.7)
of the notion of nilpotent orbit in Hodge theory (see Section 2.3.4).

6.1.1
Let

D̃ =
{
(N,F )

∣∣N ∈ N, F ∈ ND
}
.

We have

D ⊂ D̃ ⊂ N × Ď.

6.1.2
We call a subset σ of N a nilpotent cone in N if the following conditions (i) and
(ii) are satisfied:

(i) σ is a finitely generated Q≥0-cone; that is,

σ = Q≥0N1 + · · · + Q≥0Nn

for some n ≥ 0 and N1, . . . ,Nn ∈ N;
(ii) NN ′ = N ′N for any N,N ′ ∈ σ.

For a nilpotent cone σ in N, let σQ be the Q-linear span of σ in N. That is,
σQ = {a − b | a, b ∈ σ} ⊂ N. For a commutative ring R over Q, let σR = R ⊗Q σQ ⊂
R ⊗Q N.
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6.1.3
Let σ be a nilpotent cone in N. Let

D̃(σ) ⊂ D̃

be the subset of D̃ consisting of all elements (N,F ) which satisfy the following
conditions (i) and (ii):

(i) NN ′ = N ′N for any N ′ ∈ σ;
(ii) N ′F r ⊂ F r−1 for all N ′ ∈ σ and all r ∈ Z (Griffiths transversality).

Note that for (N,F ) ∈ D̃, (N,F ) ∈ D̃(σ) if and only if as a set of K0-linear
maps Hp → Hp, σQp is contained in the space M of (Hp,N,F ) in Section 3.5.1.

PROPOSITION 6.1.4

Let σ be a nilpotent cone in N. Let (N,F ) ∈ D̃(σ). Then for any b ∈ σK and
c ∈ σQ, we have (N + c, exp(b)F ) ∈ D̃(σ).

This follows from Propositions 3.5.2 and 3.5.4.

6.1.5. p-adic nilpotent orbit in D̃

Let σ be a nilpotent cone in N, and let Z be a subset of D̃. We say that Z is a
σ-nilpotent orbit if the following conditions (i)–(iv) are satisfied.

(i) We have Z ⊂ D̃(σ).
(ii) Let (N,F ) ∈ Z. Then Z = {(N + c, exp(b)F ) | c ∈ σQ, b ∈ σK }.
(iii) Write σ = Q≥0N

′
1 + · · · + Q≥0N

′
n. Let (N,F ) ∈ Z. Then N +

∑n
j=1 yj ×

N ′
j ∈ C if yj ∈ Q and yj 
 0.

(iv) For any N ′ ∈ σ, the relative monodromy filtration M(N ′,W ) exists.
(This is a condition on σ.)

REMARK 6.1.6 (COMPARISON WITH NILPOTENT ORBIT OVER C)

Condition (i) (resp., (ii), (iii), (iv)) in Section 6.1.5 is an analogue of condition (ii)
(resp., (i), (iii), (iv)) in Section 2.3.4.

PROPOSITION 6.1.7

Let σ be a nilpotent cone in N, and let (N,F ) ∈ D̃(σ). Let N ′ ∈ σ, and assume
that the relative monodromy filtration M(N ′,W ) exists. Denote M(N ′,W ) by W ′.
Then for any i ∈ Z, the subobject W ′

i (Hp,N,F ) of (Hp,N,F ) in MFK is admis-
sible.

Proof
Let V = Vp(N,F ). Let t be the generator of Zp(1) ⊂ Bcrys given in Section 3.2.

Then the filtration Bst ⊗K0 W ′
•Hp on Bst ⊗K0 Hp is the relative monodromy

filtration of tN ′ : Bst ⊗K0 Hp → Bst ⊗K0 Hp with respect to Bst ⊗K0 W•Hp. Hence
the map tN ′ : V → V (see Section 3.5.1; see also the proof of Claim 1 in the
proof of Proposition 3.5.2) has a relative monodromy filtration with respect
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to W•V , which we denote by W ′
•V , and W ′

•V induces the above filtration on
Bst ⊗K0 Hp = Bst ⊗Qp V . Since the map N ′ : V → V (−1) is compatible with the
action of Gal(K̄/K), the filtration W ′

•V is stable under the action of Gal(K̄/K).
Since W ′

i (Hp,N,F ) corresponds to the semistable Galois representation W ′
iV ,

W ′
i (Hp,N,F ) is admissible. �

6.2. p-Adic nilpotent orbits in ΓD̃

6.2.1
For a compact open subgroup Γ of G(Qf

A), let ΓD̃ be the set of all triples
(N,F,μ), where (N,F ) ∈ D̃ (see Section 6.1.3) and where μ is a Γ-level structure
on V (N,F ) = Vp(N,F ) × Vnon-p(N).

6.2.2
Let σ be a nilpotent cone in N, let Γ be a compact open subgroup of G(Qf

A),
and let α = (N,F,μ) ∈ ΓD̃(σ). Then we define a submonoid

σ(α) ⊂ σ

as follows. By Section 3.5.1, for a ∈ Qp(1) × Q
f
A,non-p and N ′ ∈ σQ, we have

exp(aN ′) : V (N,F ) → V (N,F ). Let σ(α) be the subset of σ consisting of all
elements N ′ such that for any a ∈ Zp(1) × Ẑnon-p, exp(aN ′) : V (N,F ) → V (N,F )
does not change the level structure μ. Here the last condition means that if
μ̃ : L → V (N,F ) is a representative of μ, then for each a ∈ Zp(1) × Ẑnon-p, there
is γ ∈ Γ such that exp(aN ′)μ̃ = μ̃γ.

LEMMA 6.2.3

The Z-linear span σ(α)Z = {a − b | a, b ∈ σ(α)} of σ(α) in N is a finitely generated
Z-module, σ(α) = σ(α)Z ∩ σ, and σQ = Q ⊗Z σ(α)Z.

Proof
Take a representative μ̃ : L → V (N,F ) of μ. We have an injective homomorphism

Q
f
A ⊗Q σQ → G(Qf

A), a �→ μ̃−1 exp(apt, anon-p)μ̃.

This is a continuous homomorphism and is a closed map. Hence the inverse image
I of Γ under this homomorphism is a compact open subgroup of Q

f
A ⊗Q σQ.

Hence the intersection σQ ∩ I is a finitely generated Z-module which generates
σQ over Q. Since σ(α) = σ ∩ I , we have the lemma. �

6.2.4
Let the notation be as in Section 6.2.2. Let

ordξ : K× ⊗Z σ(α)Z → σQ, log : K× ⊗Z σ(α)Z → σK

be the homomorphisms induced by ordξ : K× → Q and log : K× → K, respec-
tively.
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6.2.5
Let the notation be as in Section 6.2.2. For a ∈ K× ⊗Z σ(α)Z, we define

aα =
(
N + ordξ(a), exp(log(a))F,aμ

)
∈ ΓD̃(σ),

where aμ is as follows.
Let P (K) be as in Section 5.5.1, let log : P (K) → Bϕ=p

st be the logarithm
(see [7]) as in Section 5.5.1, let lognon-p : P (K) → Q

f
A,non-p be as in Section 5.5.1,

and let

log : P (K) ⊗Z σ(α)Z → Bst ⊗Q σQ, lognon-p : P (K) ⊗Z σ(α)Z → Q
f
A,non-p ⊗Q σQ

be the induced homomorphisms, respectively. Take an element ã of P (K) ⊗Z

σ(α)Z whose image in K× is a. Then define aμ to be the Γ-equivalence class
of ã ◦ μ̃ : L → V

(
N + ordξ(a), exp(log(a))F

)
, where ã denotes the automorphism(

exp(log(ã)), exp(lognon-p(a))
)

of (Bst ⊗K0 Hp) × Hnon-p and where μ̃ : L → V (N,

F ) is a representative of μ (see Propositions 3.5.2(2), 3.5.4(2)). By the definition
of σ(α), aμ is independent of the choices of ã and μ̃.

LEMMA 6.2.6

Let the notation be as in Section 6.2.2.

(1) For a ∈ K× ⊗Z σ(α)Z, we have σ(aα) = σ(α).
(2) For a, b ∈ K× ⊗Z σ(α)Z, we have (ab)α = a(bα).

This is shown easily.

6.2.7. p-adic nilpotent orbits in ΓD̃

Let σ be a nilpotent cone in N, and let Γ be an compact open subgroup of
G(Qf

A).
By a (σ,Γ)-nilpotent orbit, we mean a nonempty subset Z of ΓD̃(σ) satisfying

the following conditions (i) and (ii):

(i) Z = {aα | a ∈ K× ⊗Z σ(α)Z} for some (and hence for any) α ∈ Z;
(ii) let (N,F,μ) ∈ Z; then {(N +c, exp(b)F ) | c ∈ σQ, b ∈ σK } is a σ-nilpotent

orbit (see Section 6.1.5).

PROPOSITION 6.2.8

Let σ be a nilpotent cone in N, and let Γ be an compact open subgroup of G(Qf
A).

Let Z ⊂ ΓD̃(σ) be a (σ,Γ)-nilpotent orbit, and let α,β ∈ Z. Then the element a

of K× ⊗Z σ(α)Z such that β = aα is unique.

Proof
Assume that a′ ∈ K× ⊗Z σ(α)Z also has the property of a. Then exp(log(a/a′)) ×
F = F , and hence log(a/a′) = 0 by Proposition 3.5.5. Since N + ordξ(a) = N +
ordξ(a′), we have ordξ(a/a′) = 0. Hence a/a′ is a root of 1. Next, since aα =
a′α, a/a′ does not change the level structure μ of α. Let u be an element of
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P (K) ⊗Z σ(α)Z whose image in K× is a/a′. Since a/a′ is a root of 1, u belongs
to Ẑ(1) ⊗Z σQ in P (K) ⊗Z σQ. It is sufficient to prove that u ∈ Ẑ(1) ⊗Z σ(α)Z.
Let (N ′

j)1≤j≤n be a Z-basis of σ(α)Z, and write u in the form u1N
′
1 + · · · +unN ′

n

with uj ∈ Q
f
A(1). If there is a j such that uj /∈ Ẑ(1), there are j and a nonzero

integer m such that muj /∈ Ẑ(1) and muj′ ∈ Ẑ(1) for j′ �= j. Then exp of the
image of mujN

′
j in (Qp(1) × Q

f
A,non-p) ⊗Z σ(α)Z does not change μ. This shows

that cN ′
j ∈ σ(α)Z for some c ∈ Q which does not belong to Z, a contradiction. �

6.3. The space ΓDΣ

6.3.1
In Sections 6.3–6.5, Σ denotes a nonempty set of nilpotent cones in N satisfying
the following conditions (i) and (ii).

(i) Any element σ of Σ is sharp (that is, σ ∩ (−σ) = {0}).
(ii) If σ ∈ Σ, then all faces of σ belong to Σ.

6.3.2
Let Γ be a compact open subgroup of G(Qf

A), and let Σ be as in Section 6.3.1.
We define

ΓDΣ =
{
(σ,Z)

∣∣ σ ∈ Σ, Z is a (σ,Γ)-nilpotent orbit
}
.

We denote an element (σ,Z) of ΓDΣ, as (σ, class(α)) for α ∈ Z.

6.3.3
We have an embedding

ΓD
⊂→ ΓDΣ, α �→ ({0}, {α}).

In fact, ΓD is identified with the subset of ΓDΣ consisting of all elements (σ,Z)
such that σ = {0}.

6.4. The analytic structure over K of ΓDΣ

Let Γ be an compact open subgroup of G(Qf
A), and let Σ be as in Section 6.3.1.

We endow ΓDΣ with a topology, a sheaf of analytic functions over K, and a log
structure (see Section 6.4.8).

In Sections 6.4.1–6.4.7, we fix σ ∈ Σ and α = (N,F,μ) ∈ ΓD̃(σ).

6.4.1
Let the affine toric variety toricσ(α) be the set of all homomorphisms σ(α)∨ → K,
where K is regarded as a multiplicative monoid. Here σ(α)∨ denotes the dual
monoid Hom(σ(α),N) of σ(α). (N is regarded as an additive monoid.) The torus
K× ⊗Z σ(α)Z = Hom(σ∨

,K×) is contained in toricσ(α) as a dense open subset
and acts on toricσ(α).

For a face τ of σ, let 0τ be the element of toricσ(α) which sends an element
h of σ(α)∨ to 1 ∈ K if h : σ(α) → N kills σ(α) ∩ τ , and to 0 ∈ K otherwise. Any
element of toricσ(α) is written in the form a0τ for some face τ of σ and for some
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a ∈ K× ⊗Z σ(α)Z. (Here we have a0τ by the action of K× ⊗Z σ(α)Z on toricσ(α).)
For a, b ∈ K× ⊗Z σ(α)Z, a0τ = b0τ if and only if a−1b ∈ K× ⊗Z (σ(α) ∩ τ)Z.

For q ∈ toricσ(α), the face τ of σ such that q = a0τ for some a ∈ K× ⊗Z σ(α)Z

is uniquely determined by q and is denoted by σ(q).

LEMMA 6.4.2

Write σ = Q≥0N
′
1 + · · · + Q≥0N

′
n. For c > 0, let Ac =

{∑n
j=1 yjN

′
j

∣∣ yj ≥ c
}

⊂ σ.
Then we have the following.

(1) Let U be a neighborhood of 0σ in toricσ(α). Then there exists c > 0 such
that any element a of K× ⊗Z σ(α)Z such that ordξ(a) ∈ Ac belongs to U .

(2) Let c > 0. Then there exists a neighborhood U of 0σ in toricσ(α) such
that ordξ(a) ∈ Ac for any a ∈ U ∩ (K× ⊗Z σ(α)Z).

This is proved easily. (This lemma is essentially [20, Lemma 2.5.6].)

6.4.3
For an open set U of Ď, we define sets

Eσ,α(U) ⊂ Ẽσ,α(U) ⊂ toricσ(α) × Ď

as follows. Let Ẽσ,α(U) be the subset of toricσ(α) × U consisting of all elements
(q,F ′) satisfying the following condition (i).

(i) F ′ satisfies Griffiths transversality for all elements of the cone σ(q). That
is, N ′(F ′)r ⊂ (F ′)r−1 for any N ′ ∈ σ(q) and r ∈ Z.

Let Eσ,α(U) be the subset Ẽσ,α(U) consisting of all elements (q,F ′) satisfying
the following condition (ii).

(ii) Write q = 0τa with a ∈ K× ⊗Z σ(α)Z, and write τ = Q≥0N
′
1 + · · · +

Q≥0N
′
n. Then N + ordξ(a) +

∑n
j=1 yjN

′
j ∈ C if yj ∈ Q and yj 
 0 (1 ≤ j ≤ n).

This condition does not depend on the choice of a such that q = 0τa.
Condition (ii) shows that {bβ | b ∈ toricτ(β)} with β = aα is a (τ,Γ)-nilpotent

orbit.
Endow Ẽσ,α(U) with the topology as a subspace of toricσ(α) × Ď, with the

pullback of the sheaf of analytic functions over K of toricσ(α) × Ď, and with the
pullback of the canonical log structure of the affine toric variety toricσ(α).

Note that Eσ,α(U) is an open set of Ẽσ,α(U). We endow Eσ,α(U) with the
restrictions of these structures of Ẽσ,α(U).

Our method to endow ΓDΣ with a topology, a sheaf of analytic functions,
and a log structure is to relate ΓDΣ to the spaces Eσ,α(U) for various (σ,α).

PROPOSITION 6.4.4

Let I be a compact (additive) subgroup of σK , and let J be a compact subgroup of
σQp . Then there exists a neighborhood U of F in Ď such that exp(a)F ′ ∈ N+cD

for any F ′ ∈ U , a ∈ I, and c ∈ J .
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Proof
This is proved by modifying the proof of Proposition 4.2.2 slightly as follows.

We may and do assume that there is w ∈ Z such that Ww = H and Ww−1 = 0,
and that tN (Hp) =

∑
w,i ihw,i. Let K ′

0 = W (k̄) ⊗W (k) K0, and let K ′ = K ⊗K0 K ′
0;

so K ′
0 (resp., K ′) is the completion of the maximal unramified extension of K0

(resp., K). Let H ′ = K ′
0 ⊗K0 H . For integers r ≥ 0 and m, let

P̃r,m =
{

(x, c) ∈
( r∧

K′
0

H ′
)

× J
∣∣∣ ϕ(x) = pmx, (N + c)(x) = 0

}
,

Pr,m = (P̃r,m − {0})/Q×
p .

Here Q×
p acts on P̃r,m by (x, c) �→ (zx, c) (z ∈ Q×

p ). Then Pr,m is compact. Note
that Pr,m are empty for almost all (r,m). Let

Sr,m =
{

(x, c,F ′, a) ∈ Pr,m × Ď × I
∣∣∣ exp(a)x̃ ∈ (F ′)m+1

( r∧
K′

HK′

)}
.

Here x̃ denotes a lifting of x to
(∧r

K′
0
H ′) − {0}, and (F ′)m+1

(∧r
K′ HK′

)
is

induced by F ′. Since Pr,m × I is compact and Sr,m is closed in Pr,m × Ď × I , the
map Sr,m → Ď; (x, c,F ′, a) �→ F ′ is proper. Hence the image of this map is closed
in Ď. Let U ⊂ Ď be the complement of the union of the images of this map for
all (r,m). Then U is open. Furthermore, since exp(a)F ∈ N+cD for any a ∈ σK

and c ∈ σQp by Propositions 3.5.2 and 3.5.4, we have F ∈ U . �

PROPOSITION 6.4.5

Fix a finitely generated Zp-submodule LZp of L which satisfies L = Qp ⊗Zp LZp

and which is stable under the action of Γ via Γ → G(Qp). Denote the automor-
phism group of (LZp × Lnon-p,W•(LZp × Lnon-p)) regarded as a smooth group
scheme over Zp × Q

f
A,non-p by G. Fix a representative μ̃ : L → V (N,F ) of μ. Fix

integers c ≥ 2 and n ≥ 0. Let Uσ,α,c,n be the subset of Ď consisting of all elements
F ′ of Ď satisfying the following condition (i).

(i) For any a ∈ K× ⊗Z σ(α)Z, we have exp(log(a))F ′ ∈ Uaα,c,n, where Uaα,c,n

is as in Section 4.4.6.

Then Uσ,α,c,n is an open neighborhood of F in Ď.

Proof
This is proved by modifying slightly the proof of Proposition 4.4.7. Take a repre-
sentative μ̃ : L → V (N,F ) of μ. By the proof of Proposition 4.4.7 given in Section
4.6, it is sufficient to prove that there is a neighborhood U of F in Ď such that
for any F ′ ∈ U , any a ∈ K× ⊗Z σ(α)Z, and any lifting ã ∈ P (K) ⊗Z σ(α)Z of a,
exp(log(a))F ′ ∈ N+ordξ(a)D and the image of hãμ̃(F ′) in G(BdR)/G(B0

dR) belongs
to the image of G(Bc)≡1 mod pn . Here ãμ̃ denotes exp(log(ã))μ̃. Let ν and δ be as
in Lemma 4.6.7. As is easily seen, if g ∈ G(K) and if F ′ = ν−1gνF ∈ N+ordξ(a)D,
the image of hãμ̃(F ′) in G(BdR)/G(B0

dR) is equal to PãgP −1
ã mod G(B0

dR), where
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Pã = μ̃−1 exp(− log(ã))μ̃δ−1ν exp(log(a))ν−1. (Here log(ã) is understood as an
element of Bst ⊗Q σQ, and log(a) is understood as an element of σK .) There is
a compact subset of B0

dR ⊗Q σQ (resp., σK) which contains the elements log(ã)
(resp., log(a)) for all a ∈ K× ⊗Z σ(α)Z. Hence by Proposition 6.4.4 and by the
proof of Lemma 4.6.6, there exists a neighborhood U of 1 in G(B0

dR) such that,
for any g ∈ U , any a ∈ K× ⊗Z σ(α)Z, and any lifting ã of a to P (K) ⊗Z σ(α)Z,
the class of PãgP −1

ã in G(BdR)/G(B0
dR) belongs to the image of G(Bc)≡1 mod pn .

This proves Proposition 6.4.5. �

6.4.6
Take n such that G(Zp)≡1 mod pn ⊂ Γ ∩ G(Qp). Take c ≥ 2, and let Uσ,α,c,n be as
in Proposition 6.4.5. We have a map

eσ,α : Eσ,α(Uσ,α,c,n) → ΓDΣ,

(a0τ , F ′) �→
(
τ, class(N + ordξ(a), eaα(exp(log(a))F ′))

)
(a ∈ torusσ(a) = K× ⊗Z σ(α)Z),

where eaα : Uaα,c,n → N+ordξ(a),ΓD is as in Section 4.4.8.
The following properties of this map eσ,α are proved easily.

LEMMA 6.4.7

(1) Assume that N ∈ C. For the unit element 1 ∈ K× ⊗Z σ(α)Z ⊂ toricσ(α)

and for F ′ ∈ Uσ,α,c,n, we have

eσ,α(1, F ′) =
(
N,eα(F ′)

)
∈ ΓD.

(2) Let a ∈ K× ⊗Z σ(α)Z, and let F ′ ∈ Uσ,α,c,n. Then exp(log(a))F ′ ∈
Uσ,aα,c,n. For q ∈ toricσ(α), (qa,F ′) ∈ Eσ,α(Uσ,α,c,n) if and only if

(
q,

exp(log(a))F ′) ∈ Eσ,aα(Uσ,aα,c,n). If these equivalent conditions are satisfied, we
have

eσ,aα

(
q, exp(log(a))F ′)= eσ,α(qa,F ′).

(3) Let τ be a face of σ, let F ′ ∈ Uσ,α,c,n, and assume that β := (N,

eα(F ′)) ∈ ΓD̃ belongs to ΓD̃(τ). Then τ(β) = σ(α) ∩ τ , Uσ,α,c,n ⊂ Uτ,β,c,n, and on
Eτ,β(Uσ,α,c,n), the restriction of eσ,α : Eσ,α(Uσ,α,c,n) → ΓDΣ and the restriction
of eτ,β : Eτ,β(Uτ,β,c,n) → ΓDΣ coincide.

6.4.8
We define the topology of ΓDΣ, the sheaf of analytic functions on it, and the log
structure on it as follows.

Endow ΓDΣ with the following topology. A subset S of ΓDΣ is open if and
only if for any σ ∈ Σ, any α = (N,F,μ) ∈ ΓD̃(σ), and any c ≥ 2 and n ≥ 0 such
that G(Zp)≡1 mod pn ⊂ Γ ∩ G(Qp), the inverse image of S under the map eσ,α :
Eσ,α(Uσ,α,c,n) → ΓDΣ (see Section 6.4.6) is open. We define the sheaf of analytic
functions on ΓDΣ as follows. For a K-valued function f on an open set S of
ΓDΣ, f is analytic if and only if for any σ,α, c,n as above, the pullback of f on
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the inverse image of S in Eσ,α(Uσ,α,c,n) is analytic. The log structure of ΓDΣ is
defined as the subsheaf of the sheaf of analytic functions as follows. For an open
set S of ΓDΣ and for an analytic function f on S, f belongs to the log structure
if and only if f does not have value zero on S ∩ ΓD.

The topology, the sheaf of analytic functions, and the log structure of ΓDΣ

are independent of the choice of LZp (see Section 4.4).

6.4.9
The definitions in Section 6.4.8 are similar to the case over C in [20] and [14] III.
In the theory over C, we define a subset Eσ of the product space (a toric variety)
×Ď for each σ ∈ Σ, we define maps Eσ → Γ \ DΣ, and we define the topology, the
sheaf of analytic functions, and the log structure of Γ \ DΣ by using these maps.
The above eσ,α : Eσ,α(Uσ,α,c,n) → ΓDΣ are the p-adic analogues of Eσ → Γ \ DΣ

over C.

6.4.10
Let σ ∈ Σ, and let α = (N,F,μ) ∈ ΓD̃(σ). Then when a ∈ K× ⊗Z σ(α)Z tends to
0σ ∈ toricσ(α), the element (σ, class(α)) of ΓDΣ is the limit of aα ∈ ΓD.

Here 0σ ∈ toricσ is the homomorphism σ
∨ → K which sends the unit element

of σ
∨ to 1 and all other elements to zero.
This is proved easily.
This is the p-adic analogue of Section 2.3.10.

6.4.11
We have

ΓDΣ =
⋃

σ∈Σ

ΓDσ,

where ΓDσ := ΓDface(σ). This is an open covering. In particular, ΓD = ΓD{0} is
a dense open subset of ΓDΣ.

6.5. p-Adic log manifolds
6.5.1
We define the notion of a “log manifold” over K. This is the p-adic version of
the notion of a log manifold in the complex analytic case (see Section 2.3.11).

By a log manifold over K we mean a local ringed space over K endowed with
an fs log structure which has an open covering (Uλ)λ with the following property.
For each λ, there exist an affine toric variety Zλ endowed with the canonical log
structure, a finite subset Iλ of Γ(Zλ,Ω1

Zλ
(log)), and an isomorphism of local

ringed spaces over K with log structures between Uλ and an open subset of

Sλ =
{
z ∈ Zλ

∣∣ the image of Iλ in Ω1
z(log) is zero

}
,

where Sλ is endowed with the induced topology in Zλ, with the inverse image
OZλ

of the sheaf of analytic functions OZλ
on Zλ, and with the inverse image

MSλ
of the log structure MZλ

of Zλ.
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Here an affine toric variety means an analytic space over K of the form
Hom(S,K), where S is the intersection of a finitely generated Q≥0-cone τ and a
finitely generated Z-submodule of τQ, and Hom is the set of homomorphisms of
monoids where K is regarded as a multiplicative monoid. We regard Hom(S,K)
as an analytic space over K in the natural way. An affine toric variety is endowed
with a canonical log structure.

In the complex analytic case, we used the strong topology (that was important
for having a good theory). Here we do not need such strong topology.

PROPOSITION 6.5.2

Let the notation be as in Section 6.4.3. Then Eσ,α(U) and Ẽσ,α(U) are log man-
ifolds over K.

Proof
The statement for Ẽσ,α(U) is proved easily just as in the proof of [20, Sec-
tion 3.5.10], where we proved that a space Ẽσ over C, whose definition is similar
to that of Ẽσ,α(U), is a log manifold. The statement for Eσ,α(U) follows from
that for Ẽσ,α(U) because Eσ,α(U) is an open set of Ẽσ,α(U). �

6.5.3
Consider (σ, class(α)) ∈ ΓDΣ, α = (N,F,μ). Take a K-linear subspace S of
EndK(HK ,WK) such that

EndK(HK ,WK) = F 0EndK(HK ,WK) ⊕ σK ⊕ S.

Here F 0EndK(HK ,WK) is the set of all K-linear maps HK → HK which respect
W and F . The existence of such S follows from Proposition 3.5.5. For an
open neighborhood U of 0σ in toricσ(α) and for an open neighborhood U ′ of
zero in S such that the exponential map into AutK(HK ,WK) converges on U ′,
let X(U,U ′) ⊂ U × U ′ be the set of all elements (q, x) of U × U ′ such that
(N, exp(x)F ) ∈ D̃(σ(q)) (i.e., such that exp(x)F satisfies Griffiths transversal-
ity for σ(q)). Endow X(U,U ′) with the sheaf of analytic functions which is the
pullback of that of U × U ′, and define the log structure of X(U,U ′) to be the
pullback of the canonical log structure of toricσ(α).

PROPOSITION 6.5.4

Let the notation be as in Section 6.5.3. Then X(U,U ′) is a log manifold over K.

Proof
This can be seen easily also just as in the proof of [20, Section 3.5.10]. �

PROPOSITION 6.5.5

Let the notation be as in Section 6.5.3. Let c ≥ 2, let n ≥ 0, and assume that
G(Zp)≡1 mod pn ⊂ Γ ∩ G(Qp). Then if U and U ′ are sufficiently small, (q,
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exp(x)F ) ∈ Eσ,α(Uσ,α,c,n) for any (q, x) ∈ X(U,U ′), and the composition

X(U,U ′) → Eσ,α(Uσ,α,c,n) → ΓDΣ

is an open immersion of local ringed spaces over K with log structures. Here the
first arrow is (q, x) �→ (q, exp(x)F ) and the second is eσ,α.

This can be deduced from Lemma 6.4.7.
Proposition 6.5.5 proves the following.

THEOREM 6.5.6

ΓDΣ is a log manifold over K.

6.5.7
In the theory over C, it is proved that the toroidal partial compactification asso-
ciated to a weak fan in Section 2.3 is Hausdorff. Here in Theorem 6.5.6, we do
not tell whether ΓDΣ is Hausdorff. The Hausdorffness will be discussed in the
later part of this series of papers.

6.6. Examples
Let the notation be as in Section 5.5. In Section 5.5, in each Example a–d, we
defined an open closed subset ΓD◦ of ΓD. In this section, in each Example a–d,
we define a subset ΓD◦

Σ of ΓDΣ, where Σ is as below, as the set of all elements
(σ,Z) of ΓDΣ such that Z contains an element of ΓD◦. It is an open and closed
subset of ΓDΣ.

6.6.1. Example a
This is a p-adic analogue of Section 2.3, Example a. The compactification P1(K)
of K× appears here.

Let the notation be as in Section 5.5.1.
Let Σ = { {0}, σ, −σ}, where σ (resp., −σ) denotes the cone of all elements

of N which send e1 to zero and e2 into Q≥0 · e1 (resp., Q≤0 · e1). The isomor-
phism K× ∼= ΓD◦ in Section 5.5.1 extends uniquely to an isomorphism of analytic
manifolds over K,

P1(K) ∼= ΓD◦
Σ.

In this isomorphism, 0 ∈ P1(K) (resp., ∞ ∈ P1(K)) corresponds to (σ,Z) ∈ ΓD◦
Σ

(resp., (−σ,Z) ∈ ΓD◦
Σ), where Z = ΓD◦.

Let α ∈ ΓD◦ be the element corresponding to 1 ∈ K×. We describe eσ,α :
Eσ,α(Uσ,α,c,n) → ΓDΣ. The monoid σ(α) is generated by N , K× ⊗Z σ(α)Z = K×,
where a ⊗ N (a ∈ K×) is identified with a, this identification is extended to
the identification toricσ(α) = K, Uσ,α,c,n = {F (z) | z ∈ pc+nOK }, Eσ,α(Uσ,α,c,n) =
K × Uσ,α,c,n, eσ,α : Eσ,α(Uσ,α,c,n) → ΓD◦

Σ sends (a,F (z)) with a �= 0 to the ele-
ment of ΓD◦ corresponding to a exp(z) ∈ K×, and sends (0, F (z)) to (σ,Z), where
Z = ΓD◦.
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6.6.2. Example b
This is a p-adic analogue of Section 2.3, Example b. The p-adic unit disc Δ (with
the origin) appears here.

Let the notation be as in Section 5.5.2.
Let Σ = { {0}, σ}, where σ denotes the cone of all elements of N which send

e1 to zero and e2 into Q≥0 · e1. The isomorphism Δ∗ ∼= ΓD◦ in Section 5.5.2
extends uniquely to an isomorphism of analytic manifolds over K,

Δ ∼= ΓD◦
Σ.

In this isomorphism, 0 ∈ Δ corresponds to (σ, class(α)) ∈ ΓD◦
Σ with α ∈ ΓD◦,

which is independent of the choice of α.

6.6.3. Example c
This is a p-adic analogue of Section 2.3, Example c. A model of the universal
Tate elliptic curve with degenerate fiber on 0 ∈ Δ appears here.

Let the notation be as in Section 5.5.3.
For n ∈ Z, let Nn ∈ N be the element which sends e1 to zero, e2 to e1,

and e3 to ne1. Let Σ = { {0}, σn(n ∈ Z), σn,n+1(n ∈ Z)}, where σn = Q≥0Nn,
σn,n+1 = Q≥0Nn + Q≥0Nn+1.

Then ΓD◦
Σ is an analytic manifold over K and is the p-adic analogue of

Γ2 \ DΣ over C in Section 2.3, Example c. The quotient Γ0 \ ΓD◦
Σ of ΓD◦

Σ is
still an analytic manifold over K. It is a p-adic analogue of Γ3 \ DΣ over C in
Section 2.3, Example c, and is identified with the set of all K-rational points of a
proper model over Δ of the universal elliptic curve over Δ∗. The fiber on q ∈ Δ∗

of Γ0 \ ΓD◦
Σ → Δ is the Tate elliptic curve K×/qZ (see Section 5.5.3), and the

fiber on 0 ∈ Δ is P1(K)/(0 ∼ ∞), the quotient of P1(K) obtained by identifying
zero and ∞.

Let S be the fiber on 0 ∈ Δ in ΓD◦
Σ. Then S is an infinite chain of P1(K).

More precisely, for each n ∈ Z, we have an open immersion

un : K× → S,a �→
(
σn, class(αa)

)
,

where αa is the image of (q, aqn) ∈ Δ∗ × K× in ΓD◦. (Then the class of the
(σn,Γ)-nilpotent orbit containing αa is independent of the choice of q ∈ Δ∗.)
We have um(K×) ∩ un(K×) = ∅ if m �= n. This un extends uniquely to a closed
immersion ūn : P1(K) → S, and S =

⋃
n∈Z ūn(P1(K)). If m,n ∈ Z and

n /∈ {m − 1,m,m + 1}, then ūm(P1(K)) ∩ ūn(P1(K)) = ∅. We have ūn(P1(K)) ∩
ūn+1(P1(K)) = {ūn(0)} = {ūn+1(∞)}, and this point ūn(0) is (σn,n+1, class(α)),
where α is any element of ΓD◦. (The (σn,n+1,Γ)-nilpotent orbit containing α is
independent of the choice of such α.) The action of the standard generator Γ0

sends ūn(a) (a ∈ P1(K)) to ūn+1(a). The fiber on 0 ∈ Δ of Γ0 \ ΓD◦
Σ → Δ is the

quotient of S by this action.

6.6.4. Example d
This is a p-adic analogue of Section 2.3, Example d. Let the notation be as in
Section 5.5.4.
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Let Σ be the set of the cones Q≥0N , where N ranges over all elements of N.
Then a remarkable fact is that ΓDΣ◦ has a slit and is not an analytic space.

We describe it. Let σ = Q≥0N with N(e1) = N(e2) = 0, N(e3) = e2. For u ∈
K×, let α(u) =

(
ordξ(u)N,F (0, log(u),0), μu

)
∈ ΓD̃(σ) ∩ ΓD◦, where μu is the

Γ-equivalence class of μ̃u which is defined by

μ̃u(e1,L,p) = t2e1,p, μ̃u(e2,L,p) = te2,p, μ̃u(e3,L,p) = log(ũ)e2,p + e3,p,

μ̃u(ej,L,non-p) = ej,non-p for j = 1,2,

μ̃u(e3,L,non-p) = lognon-p(ũ)e2,non-p + e3,non-p.

Here ũ is a lifting of u to P (K) (see Section 5.5.1). Then there is an open
immersion of log manifolds over K from a sufficiently small open neighborhood
U of (0,0,0) in {

(z1, u, z3) ∈ K3
∣∣ if u = 0, then z3 = 0

}
to ΓD◦

Σ which sends (z1, u, z3) ∈ U with u �= 0 to eα(u)

(
F (z1, log(u), z3)

)
and

sends (z,0,0) ∈ U to
(
σ, class(eα(1)(F (z,0,0)))

)
. Here the log structure of U is

defined by the divisor u = 0 on K3. The slit appears by Griffiths transversality:
(N,F (z1, z2, z3)) satisfies Griffiths transversality if and only if z3 = 0.

The p-adic theory of dilog sheaves (a special case of the p-adic theory of
polylog sheaves) shows that there is a unique morphism P1(K) → ΓD◦

Σ of log
manifolds over K (here P1(K) is endowed with the log structure defined by
{0,1, ∞}) which sends u ∈ K× ⊂ P1(K) with |u|p < 1 to

eα(u)

(
F
(

−
∞∑

n=1

un

n2
, log(u), log(1 − u)

))
.

The image of 0 ∈ P1(K) under this morphism is
(
σ, class(α(1))

)
. We plan to

discuss this in a later part of this series.
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[17] , Néron models in log mixed Hodge theory by weak fans, Proc. Japan

Acad. Ser. A Math. Sci. 86A (2010), 143–148.

[18] K. Kato and S. Usui, “Logarithmic structures and classifying spaces

(summary)” in The Arithmetic and Geometry of Algebraic Cycles, CRM Proc.

Lect. Notes 24 (1999), 115–130.

[19] , “Borel-Serre spaces and spaces of SL(2)-orbits” in Algebraic Geometry

2000 (Azumino, Japan), Adv. Stud. Pure Math. 36, Math. Soc. Japan, Tokyo,

2002, 321–382.

[20] , Classifying Spaces of Degenerating Polarized Hodge Structures, Ann. of

Math. Stud. 169, Princeton Univ. Press, Princeton, 2008.

[21] N. Katz, “Serre-Tate local moduli” in Algeraic Surfaces (Orsay, France,

1976–78), Lecture Notes in Math. 868, Springer, Berlin, 1981, 138–202.

[22] M. Kerr and G. Pearlstein, An exponential history of functions with logarithmic

growth, preprint, arXiv:0903.4903v2 [math.AG]

[23] M. Rapoport, “Non-Archimedean period domains” in Proceedings of the

International Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994),
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