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Abstract. In this article, we obtain new additive results on the generalized
Drazin inverse of a sum of two elements in a Banach algebra. Applying these
additive results, we also give explicit formulas for the generalized Drazin inverse
of a block matrix in a Banach algebra.

1. Introduction

Let A be a complex unital Banach algebra with unit 1. We denote the sets of
all invertible, nilpotent, and quasinilpotent elements of A by A−1, Anil, and Aqnil,
respectively.

The generalized Drazin inverse of a ∈ A (or Koliha–Drazin inverse of a; see
[12]) is the unique element ad ∈ A which satisfies

adaad = ad, aad = ada, a− a2ad ∈ Aqnil.

Recall that ad exists if and only if 0 /∈ accσ(a), where accσ(a) is the set of all
accumulation points of the spectrum of a. If the generalized Drazin inverse of
a exists, then a is the generalized Drazin invertible. The set of all generalized
Drazin invertible elements of A is denoted by Ad. For a ∈ Ad, aπ = 1−aad is the
spectral idempotent of a corresponding to the set {0}. If a ∈ Aqnil, then ad = 0.

If we suppose that a − a2ad ∈ Anil in the above definition, then ad = aD is
the ordinary Drazin inverse of a. A particular case of the Drazin inverse is the
group inverse for which a = aada instead of a − a2ad ∈ Anil. By a# and A# we
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denote the group inverse of a and the set of all group invertible elements of A,
respectively.

The following auxiliary result gives a property of quasinilpotent elements.

Lemma 1.1 (see [10]). Let q ∈ A. Then q is quasinilpotent if and only if 1+xq ∈
A−1 for all x ∈ A satisfying xq = qx.

We state now one well-known additive result on the generalized Drazin inverse
in a Banach algebra.

Lemma 1.2 ([4, Corollary 3.4]). Let b ∈ Ad and a ∈ Aqnil. If ab = 0, then
a+ b ∈ Ad and

(a+ b)d =
∞∑
n=0

(bd)n+1an.

For p = p2 ∈ A, any element a ∈ A can be expressed as

a =

[
a11 a12
a21 a22

]
,

where a11 = pap, a12 = pa(1− p), a21 = (1− p)ap, a22 = (1− p)a(1− p).
Let us recall that if a ∈ Ad, then

a =

[
a1 0
0 a2

]
relative to p = aad, where a1 ∈ (pAp)−1 and a2 ∈ ((1 − p)A(1 − p))qnil. In this
case, the generalized Drazin inverse of a is given by

ad =

[
ad 0
0 0

]
=

[
a−1
1 0
0 0

]
.

We will use the next result related to the generalized Drazin inverse of a trian-
gular block matrix.

Lemma 1.3 ([4, Theorem 2.3]). Let x = [ a 0
c b ] ∈ A relative to the idempotent

p ∈ A, and let y = [ b c
0 a ] ∈ A relative to the idempotent 1− p.

(i) If a ∈ (pAp)d and b ∈ ((1− p)A(1− p))d, then x, y ∈ Ad and

xd =

[
ad 0
u bd

]
, yd =

[
bd u
0 ad

]
,

where

u =
∞∑
n=0

(bd)n+2canaπ +
∞∑
n=0

bπbnc(ad)n+2 − bdcad.

(ii) If x ∈ Ad and a ∈ (pAp)d, then b ∈ ((1− p)A(1− p))d and xd is given as
in part (i).
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One special topic concerning the generalized Drazin inverse is to find explicit
expressions for the generalized Drazin inverse of a sum of two elements. Much
has been written on this subject (see [4], [6], [9]), but the motivation for this
article was Liu and Qin [13]. They presented a formula for the generalized Drazin
inverse of the sum of two elements of a Banach algebra under some conditions
which contain akb = ab (k > 1) and/or ba = ab2 (or arb = bat, r, t ∈ N).

Under new conditions involving aπakb = aπab and aπbat = aπarbm (or baπ = b
or albaπ = aπbam), k, l,m, r, t ∈ N , k > 1, we investigate the existence of the
generalized Drazin inverse of the sum a+ b in a Banach algebra and give explicit
representations for the generalized Drazin inverse of this sum. As an application
of our results, we obtain several expressions for the generalized Drazin inverse of
a block matrix.

2. Generalized Drazin inverse of the sum

First, we study the existence and present the formula for the generalized Drazin
inverse of the sum a+ b under the assumptions aπakb = aπab and aπbat = aπarbm

(k,m, r, t ∈ N , k > 1).

Theorem 2.1. Let a, b ∈ Ad, aπakb = aπab, and aπbat = aπarbm, for some
k,m, r, t ∈ N such that k > 1. If aπb (or baπ or aπbaπ) is generalized Drazin
invertible, then

a+ b ∈ Ad ⇔ e = (a+ b)aad ∈ Ad ⇔ aad(a+ b) ∈ Ad ⇔ aad(a+ b)aad ∈ Ad.

In this case,

(a+ b)d = ed +
∞∑
n=0

(ed)n+2baπ(a+ b)n
(
aπ −

t−1∑
j=0

aπb(bd)j+1aj
)

+
∞∑
n=0

eπenaadbxn+2 + (1− edb)x, (2.1)

where x =
∑t−1

j=0 a
π(bd)j+1aj.

Proof. We have the following matrix representations of a and b relative to p = aad:

a =

[
a1 0
0 a2

]
, b =

[
b1 b2
b3 b4

]
, (2.2)

where a1 ∈ (pAp)−1 and a2 ∈ ((1− p)A(1− p))qnil.
Observe that, by[

0 0
ak2b3 ak2b4

]
= aπakb = aπab =

[
0 0

a2b3 a2b4

]
,

we conclude that ak2b3 = a2b3 and ak2b4 = a2b4. Since a2 ∈ ((1−p)A(1−p))qnil, by
Lemma 1.1, (1− p)− ak−1

2 ∈ ((1− p)A(1− p))−1. From ((1− p)− ak−1
2 )a2b3 = 0
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and ((1 − p) − ak−1
2 )a2b4 = 0, we get a2b3 = 0 and a2b4 = 0. Hence, aπab = 0

which gives

0 = aπarbm = aπbat =

[
0 0

b3a
t
1 b4a

t
2

]
,

that is, b3a
t
1 = 0 and b4a

t
2 = 0. Because a1 is invertible, we deduce that b3 = 0.

Since

b =

[
b1 b2
0 b4

]
and aπb (or baπ or aπbaπ) are generalized Drazin invertible, by Lemma 1.3, b4 ∈
((1− p)A(1− p))d, b1 ∈ (pAp)d,

bd =

[
bd1 v
0 bd4

]
and bπ =

[
bπ1 −b1v − b2b

d
4

0 bπ4

]
,

where

v =
∞∑
n=0

(bd1)
n+2b2b

n
4b

π
4 +

∞∑
n=0

bπ1b
n
1b2(b

d
4)

n+2 − bd1b2b
d
4.

Using Lemma 1.2, note that a2 + b4 ∈ ((1− p)A(1− p))d and

(a2 + b4)
d =

t−1∑
j=0

(bd4)
j+1aj2.

Thus,

(a2 + b4)
π = (1− p)− (a2 + b4)

t−1∑
j=0

(bd4)
j+1aj2

= (1− p)−
t−1∑
j=0

b4(b
d
4)

j+1aj2.

By Lemma 1.3, a+ b = [ a1+b1 b2
0 a2+b4

] is generalized Drazin invertible if and only
if

e = (a+ b)aad =

[
a1 + b1 0

0 0

]
= a1 + b1 = aad(a+ b)aad

is generalized Drazin invertible if and only if aad(a + b) is generalized Drazin
invertible. In this case,

(a+ b)d =

[
ed u
0 (a2 + b4)

d

]
, (2.3)

where

u =
∞∑
n=0

(ed)n+2b2(a2 + b4)
n(a2 + b4)

π +
∞∑
n=0

eπenb2
[
(a2 + b4)

d
]n+2 − edb2(a2 + b4)

d.
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Using the equalities

x =
t−1∑
j=0

aπ(bd)j+1aj =
t−1∑
j=0

[
0 0

0 (bd4)
j+1aj2

]
=

[
0 0
0 (a2 + b4)

d

]
,

ed − edbx =

[
ed −edb2(a2 + b4)

d

0 0

]
,

aπ −
t−1∑
j=0

aπb(bd)j+1aj =

[
0 0
0 (a2 + b4)

π

]
,

∞∑
n=0

(ed)n+2baπ(a+ b)n =
∞∑
n=0

[
0 (ed)n+2b2(a2 + b4)

n

0 0

]
,

∞∑
n=0

eπenaadbxn+2 =
∞∑
n=0

[
0 eπenb2[(a2 + b4)

d]n+2

0 0

]
and (2.3), we get (2.1). �

Note that Theorem 2.1 generalizes [13, Theorem 8] which involves conditions
a, b, aad(a+ b) ∈ Ad, akb = ab and arb = bat (k, r, t ∈ N , k > 1).

In the case that bat = aπarbm instead of aπbat = aπarbm in Theorem 2.1, we
obtain a simpler expression for (a+ b)d.

Theorem 2.2. Let a, b ∈ Ad. If aπakb = aπab and bat = aπarbm, for some
k,m, r, t ∈ N such that k > 1, then a+ b ∈ Ad and

(a+ b)d = ad +
∞∑
n=0

(ad)n+2b(a+ b)n
(
aπ −

t−1∑
j=0

aπb(bd)j+1aj
)

+ (1− adb)
t−1∑
j=0

aπ(bd)j+1aj. (2.4)

Proof. If we suppose that a ∈ Aqnil, note that akb = ab, bat = arbm and, by
Lemma 1.1, 1 − ak−1 ∈ A−1. Then, by (1 − ak−1)ab = 0, we get ab = 0. So,
bat = 0 and the formula (2.4) holds by Lemma 1.2. When a ∈ A−1, we have that
bat = 0 yields b = 0 and the formula (2.4) is satisfied.

In the case that a is neither invertible nor quasinilpotent, we consider matrix
representations of a and b relative to p = aad given by (2.2). As in the proof of
Theorem 2.1, notice that aπakb = aπab yields a2b3 = 0 and a2b4 = 0. From

0 = aπarbm = bat =

[
b1a

t
1 b2a

t
2

b3a
t
1 b4a

t
2

]
,

we get b1 = 0, b3 = 0, and b2a
t
2 = b4a

t
2 = 0, that is,

b =

[
0 b2
0 b4

]
.
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Now, by Lemma 1.3, b4 ∈ ((1− p)A(1− p))d,

bd =

[
0 b2(b

d
4)

2

0 bd4

]
and bπ =

[
p −b2b

d
4

0 bπ4

]
. (2.5)

Applying Lemma 1.2, a2 + b4 ∈ ((1 − p)A(1 − p))d and we represent (a2 + b4)
d

and (a2 + b4)
π as in the proof of Theorem 2.1. Then, by Lemma 1.3, a + b ∈ Ad

and

(a+ b)d =

[
a1 b2
0 a2 + b4

]d
=

[
a−1
1 u
0 (a2 + b4)

d

]
, (2.6)

where

u =
∞∑
n=0

a
−(n+2)
1 b2(a2 + b4)

n(a2 + b4)
π − a−1

1 b2(a2 + b4)
d.

The equalities

adb =

[
0 a−1

1 b2
0 0

]
,

t−1∑
j=0

aπ(bd)j+1aj =
t−1∑
j=0

[
0 0

0 (bd4)
j+1aj2

]
=

[
0 0
0 (a2 + b4)

d

]
,

aπ −
t−1∑
j=0

aπb(bd)j+1aj =

[
0 0
0 (a2 + b4)

π

]
,

∞∑
n=0

(ad)n+2b(a+ b)n =

[
0

∑∞
n=0 a

−(n+2)
1 b2(a2 + b4)

n

0 0

]
and (2.6) imply that (2.4) holds. �

If we suppose that t = 1 in Theorem 2.2, we have the following consequence.

Corollary 2.3. Let a, b ∈ Ad. If aπakb = aπab and ba = aπarbm, for some
k,m, r ∈ N such that k > 1, then a+ b ∈ Ad and

(a+ b)d = aπbd +
∞∑
n=0

(ad)n+1bnbπ. (2.7)

Proof. The assumption ba = aπarbm gives adbja = 0 for all j ∈ N . Now, by
Theorem 2.2, we obtain (2.7). �

If we define the reverse multiplication in a Banach algebra A by a ◦ b = ba, we
obtain a Banach algebra (A, ◦). Applying Theorem 2.2 and Corollary 2.3 to the
new algebra (A, ◦), we get the next result.

Corollary 2.4. Let a, b ∈ Ad and bakaπ = baaπ for some k ∈ N such that k > 1.
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(i) If atb = bmaraπ, for some m, r, t ∈ N , then a+ b ∈ Ad and

(a+ b)d = ad +
∞∑
n=0

(
aπ −

t−1∑
j=0

aj(bd)j+1baπ
)
(a+ b)nb(ad)n+2

+
t−1∑
j=0

aj(bd)j+1aπ(1− bad).

(ii) If ab = bmaraπ, for some m, r ∈ N , then a+ b ∈ Ad and

(a+ b)d = bdaπ +
∞∑
n=0

bπbn(ad)n+1.

If we replace the hypothesis aπbat = aπarbm of Theorem 2.1 with ba = abm

or aπba = aπabm, we show the following theorem (cf. [13, Theorem 6] where the
representation for (a+ b)d was given when akb = ab and ba = ab2).

Theorem 2.5. Let a, b ∈ Ad, aπakb = aπab, and (ba = abm or aπba = aπabm),
for some k,m ∈ N such that k > 1. If aπb (or baπ or aπbaπ) is generalized Drazin
invertible, then

a+ b ∈ Ad ⇔ e = (a+ b)aad ∈ Ad ⇔ aad(a+ b) ∈ Ad ⇔ aad(a+ b)aad ∈ Ad.

In this case,

(a+ b)d = ed + aπbd + (ed)2baπbπ +
∞∑
n=1

(ed)n+2baπ(an + bnbπ)

+
∞∑
n=0

eπenbaπ(bd)n+2 − edbaπbd. (2.8)

Proof. Let a and b be represented as in (2.2) relative to p = aad. The equality
aπakb = aπab gives a2b3 = 0 = a2b4 as in the proof of Theorem 2.1. Then, by
ba = abm (or aπba = aπabm), we deduce that b3 = 0 and b4a2 = 0. So, b, bd, and
bπ are represented as in the proof of Theorem 2.1. By Lemma 1.2, we deduce that
a2 + b4 ∈ ((1− p)A(1− p))d, (a2 + b4)

d = bd4, and (a2 + b4)
π = bπ4 .

Using Lemma 1.3, a + b = [ a1+b1 b2
0 a2+b4

] is generalized Drazin invertible if and

only if e(= (a+ b)aad = aad(a+ b)aad) = a1 + b1 is generalized Drazin invertible
if and only if aad(a+ b) is generalized Drazin invertible. In this case,

(a+ b)d =

[
ed u
0 bd4

]
, (2.9)

where

u = (ed)2b2b
π
4 +

∞∑
n=1

(ed)n+2b2(a
n
2 + bn4b

π
4 ) +

∞∑
n=0

eπenb2(b
d
4)

n+2 − edb2b
d
4.
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From

X1 = ed + aπbd − edbaπbd =

[
ed −edb2b

d
4

0 bd4

]
,

X2 = (ed)2baπbπ +
∞∑
n=1

(ed)n+2baπ(an + bnbπ)

=

[
0 (ed)2b2b

π
4

0 0

]
+

∞∑
n=1

[
0 (ed)n+2b2(a

n
2 + bn4b

π
4 )

0 0

]
,

X3 =
∞∑
n=0

eπenbaπ(bd)n+2 =
∞∑
n=0

[
0 eπenb2(b

d
4)

n+2

0 0

]
and (2.9), we get (2.8). �

In the case that akb = ab (k > 1) and baπ = b, the expression for the generalized
Drazin inverse (a + b)d was proved in [13, Theorem 4]. Now, using conditions
aπakb = aπab and baπ = b, we obtain the same formula for (a+ b)d.

Theorem 2.6. Let a, b ∈ Ad. If aπakb = aπab and baπ = b, for some k ∈ N such
that k > 1, then a+ b ∈ Ad and

(a+ b)d = ad + aπ
∞∑
n=0

(bd)n+1an +
∞∑
n=0

(ad)n+2b(a+ b)nbπ

−
∞∑
n=0

∞∑
k=0

(ad)n+2b(a+ b)n(bd)k+1ak+1

− adb
∞∑
n=0

(bd)n+1an. (2.10)

Proof. In the case that a ∈ Aqnil, by akb = ab, we get ab = 0 as in the proof
of Theorem 2.2. Thus, using Lemma 1.2, the formula (2.10) is satisfied. When
a ∈ A−1, b = 0 and (2.10) holds.

If a is neither invertible nor quasinilpotent, we assume that a and b have matrix
representations as in (2.2) relative to p = aad. The hypothesis baπ = b implies
b1 = 0 and b3 = 0. Hence,

b =

[
0 b2
0 b4

]
and so bd and bπ are represented by (2.5).

From [
0 0
0 ak2b4

]
= aπakb = aπab =

[
0 0
0 a2b4

]
,

we deduce that ak2b4 = a2b4. Because a2 ∈ ((1−p)A(1−p))qnil and (1−p)−ak−1
2 ∈

((1−p)A(1−p))−1, then a2b4 = 0. Using Lemma 1.2, a2+ b4 ∈ ((1−p)A(1−p))d

and

(a2 + b4)
d =

∞∑
n=0

(bd4)
n+1an2 .
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By Lemma 1.3, observe that a+ b ∈ Ad and

(a+ b)d =

[
a1 b2
0 a2 + b4

]d
=

[
a−1
1 u
0 (a2 + b4)

d

]
, (2.11)

where

u =
∞∑
n=0

a
−(n+2)
1 b2(a2 + b4)

n(a2 + b4)
π − a−1

1 b2(a2 + b4)
d.

The equality a2b4 = 0 yields a2b
d
4 = 0 and

(a2 + b4)
π = (1− p)− (a2 + b4)(a2 + b4)

d = (1− p)− b4

∞∑
n=0

(bd4)
n+1an2

= bπ4 −
∞∑
n=0

(bd4)
n+1an+1

2 .

Thus,

u =
∞∑
n=0

a
−(n+2)
1 b2(a2 + b4)

nbπ4 −
∞∑
n=0

∞∑
k=0

a
−(n+2)
1 b2(a2 + b4)

n(bd4)
k+1ak+1

2

− a−1
1 b2(a2 + b4)

d.

Now, from (2.11),

X1 = ad + aπ
∞∑
n=0

(bd)n+1an =

[
a−1
1 0
0 0

]
+

∞∑
n=0

[
0 0
0 (bd4)

n+1an2

]
=

[
a−1
1 0
0 (a2 + b4)

d

]
,

X2 =
∞∑
n=0

(ad)n+2b(a+ b)nbπ =

[
0

∑∞
n=0 a

−(n+2)
1 b2(a2 + b4)

nbπ4
0 0

]
,

X3 = −
∞∑
n=0

∞∑
k=0

(ad)n+2b(a+ b)n(bd)k+1ak+1

=

[
0 −

∑∞
n=0

∑∞
k=0 a

−(n+2)
1 b2(a2 + b4)

n(bd4)
k+1ak+1

2

0 0

]
,

X4 = −adb

∞∑
n=0

(bd)n+1an =

[
cc0 −a−1

1 b2(a2 + b2)
d

0 0

]
,

we obtain

(a+ b)d = X1 +X2 +X3 +X4,

that is, the formula (2.10) is satisfied. �

If we apply Theorem 2.6 to the algebra (A, ◦), we obtain the following result
as a consequence.
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Corollary 2.7. Let a, b ∈ Ad. If bakaπ = baaπ and aπb = b, for some k ∈ N such
that k > 1, then a+ b ∈ Ad and

(a+ b)d = ad +
∞∑
n=0

an(bd)n+1aπ + bπ
∞∑
n=0

(a+ b)nb(ad)n+2

−
∞∑
n=0

∞∑
k=0

ak+1(bd)k+1(a+ b)nb(ad)n+2 −
∞∑
n=0

an(bd)n+1bad.

Under conditions aπakb = aπab and albaπ = aπbam (k, l,m ∈ N and k > 1),
we will now give the representation for the generalized Drazin inverse of a + b.
The following result recovers [13, Theorem 8], where the conditions akb = ab and
alb = bam were considered.

Theorem 2.8. Let a, b ∈ Ad, aπakb = aπab, and albaπ = aπbam, for some
k, l,m ∈ N such that k > 1. Then

a+ b ∈ Ad ⇔ e = (a+ b)aad ∈ Ad ⇔ aad(a+ b) ∈ Ad ⇔ aad(a+ b)aad ∈ Ad.

In this case,

(a+ b)d = ed +
m−1∑
n=0

(bd)n+1anaπ. (2.12)

Proof. Suppose that a and b are given by (2.2) relative to p = aad. From aπakb =
aπab, we have a2b3 = 0 = a2b4. The hypothesis albaπ = aπbam gives al1b2 =
b3a

m
1 = b4a

m
2 = 0, that is, b2 = b3 = 0. Since

b =

[
b1 0
0 b4

]
is generalized Drazin invertible, we deduce that b1 ∈ (pAp)d, b4 ∈ ((1− p)A(1−
p))d and bd = [

bd1 0

0 bd4
]. By Lemma 1.2, a2 + b4 ∈ ((1− p)A(1− p))d and

(a2 + b4)
d =

m−1∑
n=0

(bd4)
n+1an2 .

Therefore, a + b = [ a1+b1 0
0 a2+b4

] is generalized Drazin invertible if and only if

e(= (a + b)aad = aad(a + b) = aad(a + b)aad) = a1 + b1 is generalized Drazin
invertible. Then

(a+ b)d =

[
ed 0
0 (a2 + b4)

d

]
implies that (2.12) holds. �

Replacing the condition albaπ = aπbam of Theorem 2.8 with albaπ = bam, we
obtain the following theorem.
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Theorem 2.9. Let a, b ∈ Ad, aπakb = aπab, and albaπ = bam, for some k, l,m ∈
N such that k > 1. Then a+ b ∈ Ad and

(a+ b)d = ad +
m−1∑
n=0

(bd)n+1an. (2.13)

Proof. Using the representations of a and b as in (2.2) relative to p = aad, by
aπakb = aπab and albaπ = bam, we obtain a2b3 = a2b4 = 0, b1 = b3 = b4a

m
2 = 0,

and al1b2 = b2a
m
2 . For any s ∈ N , by a2 ∈ ((1− p)A(1− p))qnil, the last equality

yields

0 ≤ ‖b2‖
1

sm = ‖a−sl
1 b2a

sm
2 ‖

1
sm ≤ ‖a−sl

1 ‖
1

sm‖b2‖
1

sm‖asm2 ‖
1

sm ,

that is, b2 = 0. So,

b =

[
0 0
0 b4

]
and bd =

[
0 0
0 bd4

]
.

Also, we have a2 + b4 ∈ ((1 − p)A(1 − p))d and (a2 + b4)
d =

∑m−1
n=0 (b

d
4)

n+1an2 .
Hence, a+ b ∈ Ad,

(a+ b)d =

[
a1 0
0 a2 + b4

]d
=

[
a−1
1 0
0 (a2 + b4)

d

]
,

and (2.13) is satisfied. �

As in Theorem 2.9, we can verify the next result.

Theorem 2.10. Let a, b ∈ Ad, aπakb = aπab, and alb = aπbam, for some k, l,m ∈
N such that k > 1. Then a+ b ∈ Ad and (a+ b)d is represented as in (2.13).

As a consequence of Theorem 2.9 and Theorem 2.10 in (A, ◦), we get the
following expression for (a+ b)d.

Corollary 2.11. Let a, b ∈ Ad, bakaπ = baaπ, and (aπbal = amb or bal = ambaπ),
for some k, l,m ∈ N such that k > 1. Then a+ b ∈ Ad and

(a+ b)d = ad +
m−1∑
n=0

an(bd)n+1.

We remark that if a ∈ A# in the previous results, then the conditions aπakb =
aπab and bakaπ = baaπ, for k > 1, are satisfied and can be omitted.

3. Applications

Generalized inverses of block matrices have important applications in auto-
matics, probability, statistics, mathematical programming, numerical analysis,
game theory, econometrics, control theory, and so on (see [1], [2]). Campbell
and Meyer [2] proposed the problem of finding a formula for the Drazin inverse
of a 2 × 2 matrix in terms of its various blocks. Until now, no complete solu-
tion was known to this problem, but some particular cases can be found in
[3], [5], [7], [11], [15], [14], and [17].
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Let

x =

[
a b
c d

]
∈ A (3.1)

relative to the idempotent p ∈ A, where a ∈ (pAp)d and d ∈ ((1−p)A(1−p))d. In
this section, applying Corollary 2.3 and Theorem 2.6, we present new expressions
for the generalized Drazin inverse of a block matrix x.

Theorem 3.1. Let x be defined as in (3.1), and let aπab = aπa2b and (−cad −
du)ab+ dπcb = (−cad − du)a2b+ dπ(cab+ dcb), where

u =
∞∑
n=0

(dd)n+2canaπ +
∞∑
n=0

dπdnc(ad)n+2 − ddcad. (3.2)

If

(i) bc = 0, bd = aπab and (−cad − du)ab+ dπcb = 0, then x ∈ Ad and

xd =

[
ad (ad)2b
u dd + uadb+ ddub

]
; (3.3)

(ii) bddd = 0 and
∑∞

n=0 bd
nc(ad)n+1 = 0, then x ∈ Ad and

xd =

[
ad 0
u dd

]
+

∞∑
n=0

[
0 (ad)n+2b

0
∑n+1

k=0(d
d)ku(ad)n−k+1b

]
xn; (3.4)

(iii) bd = 0 and bcad = 0, then x ∈ Ad and xd is represented as in (3.4).

Proof. We can write

x =

[
a 0
c d

]
+

[
0 b
0 0

]
:= y + z. (3.5)

Then, by z2 = 0, zd = 0 and zπ = 1. Also, by Lemma 1.3, we have y ∈ Ad,

yd =

[
ad 0
u dd

]
and yπ =

[
aπ 0

−cad − du dπ

]
,

where u is defined as in (3.2).
Since

yπyz =

[
0 aπab
0 (−cad − du)ab+ dπcb

]
and

yπy2z =

[
0 aπa2b
0 (−cad − du)a2b+ dπ(cab+ dcb)

]
,

we deduce that yπyz = yπy2z.

(i) By zy = yπyz and Corollary 2.3, x ∈ Ad and xd = yd + (yd)2z, which
implies (3.3).
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(ii) From bddd = 0 and

bcad + bdu = bcad +
∞∑
n=0

bdn+1c(ad)n+2 =
∞∑
n=0

bdnc(ad)n+1 = 0,

we have zyπ = z. Applying Theorem 2.6, x ∈ Ad,

xd = yd +
∞∑
n=0

(yd)n+2zxn

and (3.4) holds.
(iii) This part follows by (ii).

�

The assumptions aπab = aπa2b and (−cad − du)ab+ dπcb = (−cad − du)a2b+
dπ(cab+ dcb) of Theorem 3.1 can be replaced with ab = a2b and dπcb = dπ(cab+
dcb) (or ab = a2b and dπc = 0).

Corollary 3.2. Let x be defined as in (3.1), and let ab = a2b and dπc = 0. If
u1 =

∑∞
n=0(d

d)n+2canaπ − ddcad,

(i) bc = 0, bd = aπab, and (−cad − du1)ab = 0, then x ∈ Ad and

xd =

[
ad (ad)2b
u1 dd − ddc(ad)2b+ ddu1b

]
;

(ii) bddd = 0 and
∑∞

n=0 bd
nc(ad)n+1 = 0, then x ∈ Ad and

xd =

[
ad 0
u1 dd

]
+

∞∑
n=0

[
0 (ad)n+2b

0 −
∑n+1

k=0(d
d)k+1c(ad)n−k+2b

]
xn; (3.6)

(iii) bd = 0 and bcad = 0, then x ∈ Ad and xd is represented as in (3.6).

Theorem 3.3. Let x be defined as in (3.1), and let u be defined as in (3.2). If

(i) bc = 0 and bd = 0, then x ∈ Ad and xd is represented as in (3.3);
(ii) bc = 0, bd = 0, and dc = 0, then x ∈ Ad and

xd =

[
ad (ad)2b

c(ad)2 dd + c(ad)3b

]
.

Proof. Suppose that x is given by (3.5).

(i) Since yzπ = y and zπzy = 0 = zπzmy, for m ≥ 2, by Theorem 2.6, we
check this part.

(ii) This is proved as a consequence of part (i).
�

Theorem 3.3(ii) recovers [8, Theorem 5.3] for operator matrices.

Theorem 3.4. Let x be defined as in (3.1), and let dπdc = dπd2c and aπbc +
(−av − bdd)dc = aπ(abc+ bdc) + (−av − bdd)d2c, where

v =
∞∑
n=0

(ad)n+2bdndπ +
∞∑
n=0

aπanb(dd)n+2 − adbdd. (3.7)
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If

(i) cb = 0, ca = dπdc and aπbc+ (−av − bdd)dc = 0, then x ∈ Ad and

xd =

[
ad + advc+ vddc v

(dd)2c dd

]
; (3.8)

(ii) caad = 0 and
∑∞

n=0 ca
nb(dd)n+1 = 0, then x ∈ Ad and

xd =

[
ad v
0 dd

]
+

∞∑
n=0

[∑n+1
k=0(a

d)kv(dd)n−k+1c 0
(dd)n+2c 0

]
xn; (3.9)

(iii) ca = 0 and cbdd = 0, then x ∈ Ad and xd is represented as in (3.9).

Proof. We prove this result as Theorem 3.1, using the representation

x =

[
a b
0 d

]
+

[
0 0
c 0

]
:= y + z. �

Observe that Theorem 3.1 and Theorem 3.4 recover parts (iii) and (iv) of
Corollaries 3.1 and 3.3 in [16].

Similarly as in Theorem 3.3, we check the next theorem by the representation
of x as in the proof of Theorem 3.4.

Theorem 3.5. Let x be defined as in (3.1), and let v be defined as in (3.7). If

(i) ca = 0 and cb = 0, then x ∈ Ad and xd is represented as in (3.8);
(ii) ca = 0, cb = 0 and ab = 0, then x ∈ Ad and

xd =

[
ad + b(dd)3c b(dd)2

(dd)2c dd

]
.

If we suppose that a ∈ (pAp)# and d ∈ ((1− p)A(1− p))# in Theorem 3.1(iii)
and Theorem 3.4(iii), we get the following result.

Corollary 3.6. Let x be defined as in (3.1), and let a ∈ (pAp)# and d ∈ ((1 −
p)A(1− p))#.

(i) If dπcaπb = 0, bd = 0 and bca# = 0, then x ∈ Ad and

xd =

[
a# 0

(d#)2caπ + dπc(a#)2 − d#ca# d#

]
+

∞∑
n=0

[
0 (a#)n+2b

0 dπc(a#)n+3b−
∑n+1

k=0(d
#)k+1c(a#)n−k+2b+ (d#)n+3caπb

]
xn.

(ii) If aπbdπc = 0, ca = 0 and cbd# = 0, then x ∈ Ad and

xd =

[
a# (a#)2bdπ + aπb(d#)2 − a#bd#

0 d#

]
+

∞∑
n=0

[
aπb(d#)n+3c−

∑n+1
k=0(a

#)k+1b(d#)n−k+2c+ (a#)n+3bdπc 0
(d#)n+2c 0

]
xn.
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