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GEOMETRIC DESCRIPTION OF MULTIPLIER MODULES
FOR HILBERT C∗-MODULES IN SIMPLE CASES

ZHU JINGMING

Communicated by J. Hamhalter

Abstract. In this article we suggest a vector bundle description for multi-
plier modules of vector bundles over noncompact spaces. We prove that the
isomorphism classes of multiplier modules are dependent on the isomorphism
classes of their underlying modules. This gives a way to evaluate the set of
extensions of Hilbert modules in topological terms in simple cases.

1. Introduction

Multiplier modules of Hilbert C∗-modules are generalizations of multiplier alge-
bras of C∗-algebras first studied in [2]. Instead of being all the adjointable opera-
tors from a C∗-algebra A to itself, multiplier modules of a Hilbert A-module E are
the set of all adjointable operators from A to E. The set M(E) of all multipliers
of E is a Hilbert M(A)-module in a natural way. Similarly to the problem of clas-
sification of extensions of C∗-algebras, which uses the Busby invariant and can be
described in KK-theory terms, classification of extensions of Hilbert C∗-modules
uses an analog of the Busby invariant, which is a map into the outer multiplier
module. But classification of extensions of Hilbert C∗-modules is much more dif-
ficult than that of C∗-algebras. One of the simplest cases was considered in [6],
where extensions of a free singly generated Hilbert C∗-module were classified.
This paper provides a tool for the next step: classification of extensions of finitely
generated projective Hilbert C∗-modules over commutative C∗-algebras. We give
a description of the multiplier modules for projective Hilbert C∗-modules of finite
type over a nonunitial commutative C∗-algebra A. As is well known, a Hilbert
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A-module E of this type can be described by the cocycles for some open cover
on the spectrum space of A. We show that the multiplier module of E can be
described by the cocycles for a corresponding open cover on the spectrum space
of the multiplier algebra M(A).

2. Preliminaries

For a compact Hausdorff space Y and a locally compact Hausdorff path-
connected space X, let A = C0(X × Y ). It is well known that all projections
p in K0(Y ) could be identified with isomorphism classes of vector bundles over
Y , and any vector bundle V over Y could be identified with a pair (hij, Yi)
for some finite open cover {Yi}i with Yij = Yi ∩ Yj with the transition matrix-
valued functions hij ∈ Un×n(C(Yij)) for some n ∈ N acting on the local sections

fi = {f (1)
i , f

(2)
i , . . . , f

(n)
i } ∈

⊕n
k=1C(Yi) of the bundle V . Because X is con-

tractible, all projections p in K0(X × Y ) could be identified with isomorphism
classes of vector bundles over X × Y , and any vector bundle V over X × Y
could be identified with a pair (gij, X × Yi) for some finite open cover {X × Yi}i
with X × Yij = (X × Yi) ∩ (X × Yj) with the transition matrix-valued functions
gij ∈ Un×n(C(X × Yij)) for some n ∈ N.

For every subset X × Yi, we say that X × Yi is C∗-embedding into X × Y if
every f ∈ Cb(X × Yi) could extend to Cb(X × Y ).

Remark 2.1. Although we usually use finite open cover {Yi}i to describe the
cocycles, in this paper we will use finite closed C∗-embedding cover instead to
simplify the argument. From now on, the cover {Yi}i will always be assumed to
be finite, closed, and C∗-embedding.

For [gij, X × Yi] ∈ K0(X × Y ), let

V(gij ,X×Yi) =
{
ξ = (ξ1, . . . , ξn) : ξi = (ξ

(1)
i , ξ

(2)
i , . . . , ξ

(n)
i ) ∈

n⊕
k=1

C0(X × Yi)

s.t. gij · ξi|X×Yij
= ξj|X×Yij

}
,

where gij ∈ Un×n(C(X × Yij)).
It is easy to see that Vp is a Hilbert A-module in a standard way. First,

C∗-algebra A could be identified with

A '
{
h = (h1, . . . , hn) : hi = (h

(1)
i , h

(2)
i , . . . , h

(n)
i ) ∈

n⊕
k=1

C0(X × Yi)

s.t. tij · hi|X×Yij
= hj|X×Yij

}
,

and so Vp is a right A-module and its module structure is defined by

(ξi)i · (hi)i = (ξi · hi)i (2.1)

for (ξi)i ∈ Vp and (hi)i ∈ A with gijξi · hi = gijξihi.



GEOMETRIC DESCRIPTION OF MULTIPLIER MODULES 53

There is also a natural sesquilinear form defined on Vp by 〈·, ·〉 : Vp × Vp → A:〈
(ξi)i, (ηi)i

〉
= (ξiηi)i =

(
(ξ

(1)
i , ξ

(2)
i , . . . , ξ

(n)
i )(η

(1)
i , η

(2)
i , . . . , η

(n)
i )

)
i

= (ξ
(1)
i η

(1)
i , ξ

(2)
i η

(2)
i , . . . , ξ

(n)
i η

(n)
i )i

with (ξi)i, (ηi)i ∈ Vp and ξi|X×Yij
· gij · gij · ηi|X×Yij

= ξjηj|X×Yij
.

We also have a norm ‖ · ‖ related to this sesquilinear form defined by∥∥(ξi)i∥∥ = max
1≤i≤n

{
sup

x∈X×Yi

∣∣〈(ξi(y))i, (ξi(y))i〉∣∣ 12}.
With all the structure above, Vp becomes a Hilbert A-module.
It is well known that the multiplier algebra M(A) is the closure of A with

respect to the strict topology defined by the seminorms

a→ ‖ab‖, a→ ‖ba‖, ∀a ∈ A

for any b ∈ A.
The following theorem is from Pedersen’s book [7].

Theorem 2.2 (see [7, p. 84]). For a C∗-algebra A, its completion with respect to
the strict topology is its multiplier algebra M(A).

Remark 2.3. Then any m ∈ M(A) could be identified with a Cauchy net {mλ}
in A such that

ma = lim
λ→∞

mλa, ∀a ∈ A (2.2)

because A = C0(X × Y ) is commutative. Corresponding to the same m ∈M(A),
there could be many Cauchy nets satisfying the condition (2.2). Here we introduce
the “standard” one. Let {eλ}λ be a self-adjoint approximate identity in A. For
any m ∈ M(A), it is easy to see that {meλ}λ is a Cauchy net in A with the
condition (2.2).

Similarly to A, we can identify the multiplier algebra M(A) as

M(A) =
{
f = (f1, . . . , fn) : fi = (f

(1)
i , f

(2)
i , . . . , f

(n)
i ) ∈

n⊕
k=1

Cb(X × Yi)

s.t. fi|X×Yij
= fj|X×Yij

}
.

It is also worth noting that the multiplier algebra M(A) could also be identified
by the set of all the A-linear adjointable maps from A to itself. Similarly to the
case of C∗-algebras, for the Hilbert A-module Vp, the multiplier module M(Vp)
could also be identified by the set of all the A-linear adjointable maps from A to
Vp; that is, L(A, Vp)

.
= M(Vp).

With all the preparation above, now we can give a geometric description of
multiplier modules for some special Hilbert C∗-module.
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3. Geometric description of multiplier modules

Since we have given the cocycle description for the module Vp in the previous
section, our aim in this section is to give a cocycle description for the multiplier
module M(Vp). For this reason, we first give the following notation.

For the C∗-algebra A and Hilbert A-module Vp in Section 2, we denote

βVp =
{
ξ = (ξ1, . . . , ξn) : ξi = (ξ

(1)
i , ξ

(2)
i , . . . , ξ

(n)
i ) ∈

n⊕
k=1

Cb(X × Yi)

s.t. gij · ξi|X×Yij
= ξj|X×Yij

}
(3.1)

in which {Yi}i is a finite closed cover of Y with all the Yi’s contractible and
gij ∈ Un×n(Cb(X × Yij)).

Similarly to Vp, it is easy to see βVp is a (right) M(A)-module with the module
action defined as follows:

(ξi)i · (fi)i = (ξi · fi)i (3.2)

in which ξ = (ξ1, . . . , ξn) ∈ βVp with gij ·ξi|X×Yij
= ξj|X×Yij

and (fi)i ∈M(A) with
trivial cocycle condition hi|X×Yij

= hj|X×Yij
. There is also a natural sesquilinear

form defined on βVp by 〈·, ·〉 : βVp × βVp →M(A):〈
(ξi)i, (ηi)i

〉
= (ξiηi)i =

(
(ξ

(1)
i , ξ

(2)
i , . . . , ξ

(n)
i )(η

(1)
i , η

(2)
i , . . . , η

(n)
i )

)
i

=
(
(ξ

(1)
i η

(1)
i ), (ξ

(2)
i η

(2)
i ), . . . , (ξ

(n)
i η

(n)
i )

)
i

(3.3)

for (ξi)i, (ηi)i being the sections of βVp, in which ξi|X×Yij
· gij · gij · ηi|X×Yij

=

ξjηj|X×Yij
.

We also have a norm ‖ · ‖ related to this sesquilinear form defined by∥∥(ξi)i∥∥ = max
1≤i≤n

{
sup

y∈X×Yi

∣∣〈(ξi(y))i, (ξi(y))i〉∣∣ 12}.
With all the structure above, βVp becomes a Hilbert M(A)-module.

Proposition 3.1. The (right) M(A)-module βVp is a Hilbert M(A)-module with
respect to the sesquilinear form (3.3).

Proof. This result follows from all the structure mentioned above if we can show
that βVp is closed with respect to the norm. Suppose ξ(α) = (ξ1,(α), . . . , ξn,(α))
is a Cauchy net in βVp. Then, by definition, for each i, ξi,(α) is a Cauchy net
with respect to the supremum norms in

⊕n
k=1 Cb(X × Yi), respectively. But⊕n

k=1Cb(X × Yi) is complete with respect to their own supremum norms, and
so there are (ξi)i ∈

⊕n
k=1 Cb(X × Yi) s.t. ξi,(α) → ξi for any i, which means that

(ξi,(α))i → (ξi)i and βVp is complete with respect to the norm above. �

The first main result of this section is the following theorem, which claims that
the module βVp is just the multiplier module of Vp.

Theorem 3.2. For the module βVp, M(Vp) defined above, βVp = M(Vp).

In order to prove the theorem, we first show that βVp ⊂M(Vp).
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Proposition 3.3. There is a natural inclusion Vp ⊂ βVp ⊂M(Vp).

Proof. The first inclusion is obvious, and it suffices to prove the second one. By
the formula (2.1), the left multiplier of (ξi)i ∈ βVp on M(Vp) defines an A-linear
map from A to Vp. It is easy to see it is a bounded operator, and so we only need
to show adjointability. For any (ξi)i ∈ βVp, h = (hi)i ∈ A, and (hi)i ∈ Vp with
conditions gij ·ξi|X×Yij

= ξj|X×Yij
, gij ·hi|X×Yij

= hj|X×Yij
, and hi|X×Yij

= hj|X×Yij
,〈

(hi)i, (ξi)i(hi)i
〉
=

〈
(hi)i, (ξihi)i

〉
= (hiξihi)i =

〈
(hiξi)i, (hi)i

〉
=

〈
(hi)i(ξi)i, (hi)i

〉
(3.4)

with 〈(hi)(ξi), (hi)〉 ∈ C0(X × Yi). Then 〈(hi)i(ξi)i, (hi)i〉 ∈ A and the adjoint

operator of (ξi)i is (ξi)
∗
i = (ξi)i, and hence there is a natural inclusion βVp ⊂

L(A, Vp)
.
= M(Vp). �

Remark 3.4. By the inclusion and the inner product on M(Vp), we identify r(v)
as 〈r, v〉 for any r ∈M(Vp) and v ∈ Vp. And for r ∈M(Vp), x ∈ βVp, and v ∈ Vp,
the inner products 〈r, x〉, 〈r, v〉, and 〈x, v〉 are well defined.

Remark 3.5. It is worth pointing out that, after multiplication by A, the inclusion
becomes the equality M(Vp)A = βVpA = Vp. First, any x ∈ M(Vp), and also xa
for any a ∈ A, could be also viewed as an A-linear adjointable map from A to
Vp. Then xa(b) = x(ab) = x(a)b for any b ∈ A, and hence M(Vp)A ⊂ Vp. Finally,
M(Vp)A = βVpA = Vp since VpA = Vp implies that M(Vp)A = Vp.

For a Hilbert B-module V and an essential ideal I in B, we denote the VI
.
=

{vb : v ∈ V, b ∈ I}. Recall the following definition.

Definition 3.6 (see [2, Definition 1.3]). Let V be a Hilbert B-module, let I be
an essential ideal in B, and let VI be the associated ideal submodule. The strict
topology with respect to VI (or the VI-strict topology) on V is defined by two
families of seminorms v → ‖〈v, x〉‖ for any x ∈ VI and v → ‖vb‖ for any b ∈ B.

Similarly to the case of multiplier algebras for C∗-algebras, Bakić and Guljăs
proved the following results.

Theorem 3.7 (see [2, Proposition 1.6]). Let V be a Hilbert B-module, let I be
an essential ideal in B, and let VI be the essential ideal submodule. Each VI-strict
Cauchy net in V determines an adjointable map v ∈M(VI).

Remark 3.8. In Theorem 3.7, if we let B = I, then VI = V , and hence each
V -strict Cauchy net in V determines an adjointable map v ∈M(V ).

Theorem 3.9 (see [2, Theorem 1.8]). Let W be a full Hilbert I-module. M(W )
is a W -strict completion of W .

In this article, for I = A, B = M(A), W = Vp, V = M(Vp), and hence
VI = M(Vp)A, we have the corresponding corollaries since A is an essential ideal
in M(A).

Corollary 3.10. Each Vp-strict Cauchy net determines an adjointable map v ∈
M(Vp).



56 Z. JINGMING

Corollary 3.11. It holds that M(Vp) is the Vp-strict completion of Vp.

Remark 3.12. Since A is an essential ideal inM(A), by Remark 3.4,M(Vp)A = Vp.
Then the corollary above could be rewritten as “M(Vp) is strict completion of Vp

with respect to Vp strict topology.”

By Corollary 3.10 and Definition 3.6, any r ∈ M(Vp) could be identified as a
Vp-strict Cauchy net {rλ}λ such that

(1) 〈r, x〉 = limλ〈rλ, x〉,∀x ∈ Vp,
(2) rb = limλ rλb,∀b ∈ A.

Corresponding to any r ∈ M(A), there could be many Vp-strict Cauchy nets
{rλ}λ with the conditions above. Similarly to the case of M(A), we introduce a
“standard” one. Let {eλ}λ be a self-adjoint approximate identity in A. For any
r ∈M(Vp), it is easy to see that {reλ}λ is a Cauchy net in Vp with the condition
(1) and (2).

Lemma 3.13. For any r ∈M(Vp), there exists a w ∈ βVp such that

(1) 〈w, x〉 = 〈r, x〉, ∀x ∈ βVp

(2) rb = wb, ∀b ∈ A.

Proof. For each b ∈ A, {reλb}λ is a Cauchy net in Vp. After restricting on X×Yi,
{(reλb)i}λ is a Cauchy net in

⊕m
k=1C0(X×Yi) for each i. Since b ∈ A is arbitrarily

chosen, {(reλ)i}λ strictly converges to an element wi ∈
⊕m

k=1 Cb(X × Yi). By the
definition, reλ ∈ Vp with gij · (reλ)i = (reλ)j, and so w = (w1, . . . , wn) ∈ βVp with
gij · wi = wj, and hence limλ→∞ reλb = wb,∀b ∈ A.

For each x ∈ Vp, {〈reλ, x〉}λ is a Cauchy net in A. Again after restricting on
X×Yi, {(〈reλ, x〉)i}λ = {(reλ)ixi}λ becomes a Cauchy net in

⊕m
k=1 C0(X×Yi) for

each i. Since x ∈ Vp is arbitrarily chosen, {(reλ)i}λ strictly converges to the same
element wi ∈

⊕m
k=1Cb(X × Yi) as above. Then limλ→∞〈reλ, x〉 = 〈w, x〉,∀x ∈

Vp. �

The lemma above could be rewritten as follows.

Lemma 3.14. We have that βVp is closed with respect to strict topology.

By taking the closure of the inclusion Vp ⊂ βVp ⊂ M(Vp) with respect to the
Vp-strict topology, it is easy to prove Theorem 3.2.

The second main result of this section is the following theorem, which declares
that the module βVp we constructed is a vector bundle.

Theorem 3.15. The module βVp is a vector bundle over β(X × Y ).

In order to prove the theorem, we need the following lemmas.

Lemma 3.16. We have
n⋃

i=1

β(X × Yi) = β(X × Y ).

Proof. Since, in Section 2, all the X × Yi’s are assumed to be C∗-embedded into
X × Y , by [8], β(X × Yi) equals the closure of X × Yi in β(X × Y ); that is,
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β(X × Yi) = clβ(X×Y )(X × Yi) ⊂ β(X × Y ). For the inverse, ∀x ∈ β(X × Y ),
∃{xλ}λ a Cauchy net in X × Y which converges to x. Since

⋃n
i=1(X × Yi) =

X × Y , there exists at least one of them, for example, X × Yi0 , that contains
a subnet of {xλ}λ which also converges to x. Then x ∈ β(X × Yi0), and hence⋃n

i=1 β(X × Yi) = β(X × Y ). �

As a special case, after taking the closure in β(X × Y ), we have the corollary.

Corollary 3.17. We have

β(X × Yi) ∪ β(X × Yj) = β
(
(X × Yi) ∪ (X × Yj)

)
.

For the intersection, we have another lemma.

Lemma 3.18. We have

β(X × Yi) ∩ β(X × Yj) = β
(
(X × Yi) ∩ (X × Yj)

)
= β(X × Yij).

Proof. Since β(X × Yi) ∪ β(X × Yj) = β((X × Yi) ∪ (X × Yj)), C(β(X × Yi) ∪
β(X × Yj)) = C(β((X × Yi) ∪ (X × Yj))). Because C(β(X × Yi) ∪ β(X × Yj))
could be identified as{

(fi, fj) : fk ∈ C
(
β(X × Yk)

)
, fi|β(X×Yi)∩β(X×Yj) = fj|β(X×Yi)∩β(X×Yj), k = i, j

}
and C(β((X × Yi) ∪ (X × Yj))) could be identified as{

(gi, gj) : gk ∈ Cb(X × Yk), gi|X×Yij
= gj|X×Yij

, k = i, j
}
,

or in another form{
(gi, gj) : gk ∈ C

(
β(X × Yk)

)
, gi|X×Yij

= gj|X×Yij
, k = i, j

}
,

then

gi|X×Yij
= gj|X×Yij

⇔ gi|β(X×Yi)∩β(X×Yj) = gj|β(X×Yi)∩β(X×Yj). (3.5)

For k = i, j, because gk ∈ C(β(X × Yk)) and β(X × Yij) ⊂ β(X × Yk),

gi|X×Yij
= gj|X×Yij

⇔ gi|β(X×Yij) = gj|β(X×Yij). (3.6)

Combining (3.5) and (3.6) together, because the functions gk’s are arbitrarily
chosen, the lemma follows. �

Then the space βX × Y has a (not necessarily open) cover {β(X × Yi)}i with
the intersections β(X × Yi)∩ β(X × Yj) = β(X × Yij). Compared with (3.1), the
module βVp could also be identified as

βVp =
{
ξ = (ξ1, . . . , ξn) : ξi = (ξ

(1)
i , ξ

(2)
i , . . . , ξ

(n)
i ) ∈

n⊕
k=1

C
(
β(X × Yi)

)
s.t. βgij · ξi|β(X×Yij) = ξj|β(X×Yij)

}
,

in which βgij ∈ C(β(X × Yij)) is the unique function such that βgij|X×Yij
= gij,

and hence Theorem 3.15 follows.
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4. The isomorphism classes of multiplier modules

The isomorphism class of βVp defines an element [βVp] in K0(β(X × Y )). It is
a natural question whether they are the same in K0(β(X × Y )), or, in another
word, whether [βVp] = [βVq] when p 6= q. In this section, we will give a negative
answer as follows.

Theorem 4.1. We have

[βVp] 6= [βVq] in K0
(
β(X × Y )

)
when p 6= q in K0(Y ).

We postpone the proof until the end of this section. For a cover {Yi}ni=1 of
Y and any two projections p 6= q ∈ K0(Y ), as in Section 2, p and q could be
identified as two isomorphism classes of vector bundles [Zp] and [Zq] with the
cocycle conditions (pij, Yi) and (qij, Yi), respectively; that is,

Zp =
{
f = (f1, . . . , fn) : fi = (f

(1)
i , f

(2)
i , . . . , f

(n)
i ) ∈

n⊕
k=1

C(Yi),

s.t. pijfi|Yij
= fj|Yij

}
, (4.1)

Zq =
{
f = (f1, . . . , fn) : fi = (f

(1)
i , f

(2)
i , . . . , f

(n)
i ) ∈

n⊕
k=1

C(Yi),

s.t. qijfi|Yij
= fj|Yij

}
. (4.2)

Thus if p 6= q in K0(Y ), then [Zp] 6= [Zq].
Corresponding to the same cover {Yi}ni=1 of Y and the cocycles (pij, Yi) and

(qij, Yi), there is a cover {βX × Yi}ni=1 of βX × Y and the cocycles (p̂ij, βX × Yi)
and (q̂ij, βX × Yi) with p̂ij ∈ C(βX × Yij) defined by p̂ij(x, y) = pij(y) and
q̂ij ∈ C(βX × Yij) defined by q̂ij(x, y) = qij(y).

Then corresponding to Zp and Zq, over βX × Y , there are vector bundles

Wp =
{
f = (f1, . . . , fn) : fi = (f

(1)
i , f

(2)
i , . . . , f

(n)
i ) ∈

n⊕
k=1

C(βX × Yi),

s.t. p̂ijfi|βX×Yij
= fj|βX×Yij

}
, (4.3)

Wq =
{
f = (f1, . . . , fn) : fi = (f

(1)
i , f

(2)
i , . . . , f

(n)
i ) ∈

n⊕
k=1

C(βX × Yi),

s.t. q̂ijfi|βX×Yij
= fj|βX×Yij

}
. (4.4)

Since X × Yij is dense in βX × Yij, Wp and Wq could be identified as

Wp =
{
f = (f1, . . . , fn) : fi = (f

(1)
i , f

(2)
i , . . . , f

(n)
i ) ∈

n⊕
k=1

C(βX × Yi),

s.t. p̂ijfi|X×Yij
= fj|X×Yij

}
, (4.5)
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Wq =
{
f = (f1, . . . , fn) : fi = (f

(1)
i , f

(2)
i , . . . , f

(n)
i ) ∈

n⊕
k=1

C(βX × Yi),

s.t. q̂ijfi|X×Yij
= fj|X×Yij

}
. (4.6)

Since X path connected and so is βX, we can choose any point x0 ∈ βX as a
base point, and we can identify Y as {x0} × Y , the cover {Yi}i as {{x0} × Yi}i,
and hence K0(Y ) as K0({x0}×Y ). If we denote the natural surjective map from
βX×Y onto {x0}×Y by h1, it induces an injective map h∗

1 from Vect({x0}×Y ),
the set of vector bundles over {x0}×Y , to Vect(βX ×Y ), and hence an injective
homomorphism fromK0({x0}×Y ) ' K0(Y ) toK0(βX×Y ) which is also denoted
by h∗

1 when there is no confusion.

Lemma 4.2. We have h∗
1([Zp]) = [Wp] and h∗

1([Zq]) = [Wq].

Proof. By the definition of h∗
1, h

∗
1(Zp) is the pullback of Zp to the base space

βX×Y . Then, according to (4.1), after identifying {x0}×Y as Y and {{x0}×Yi}i
as {Yi},

h∗
1(Zp) =

{
h∗
1(f) =

(
h∗
1(f1), . . . , h

∗
1(fn)

)
:

h∗
1(fi) =

(
h∗
1(f

(1)
i ), h∗

1(f
(2)
i ), . . . , h∗

1(f
(n)
i )

)
∈

n⊕
k=1

C(βX × Yi)

s.t. h∗
1(pij)h

∗
1(fi)|βX×Yij

= h∗
1(fj)|βX×Yij

}
. (4.7)

Because h∗
1([Zp]) = [h∗

1(Zp)], by (4.3), we have h∗
1([Zp]) = [Wp]. Replacing p by q

in the argument above, the second result follows. �

Because h∗
1 is injective and p 6= q ∈ K0(Y ), we have the following.

Corollary 4.3. For p 6= q ∈ K0(Y ), [Wp] 6= [Wq].

Since both βX × Y and β(X × Y ) are compact and contain X × Y as a dense
subset, by the property of Stone–Čech compactification, there is a continuous
surjective map h2 from β(X × Y ) to βX × Y with h2|X×Y = id, which induces
an injective homomorphism h∗ from C(βX × Y ) to C(β(X × Y )). In fact, h2

also induces another injective homomorphism h∗
2 from Vect(βX × Y ), the set of

complex bundles over βX × Y , to Vect(β(X × Y )), and hence a homomorphism
from K0(βX × Y ) to K0(β(X × Y )). These two maps would be still denoted by
h∗
2 when there is no confusion.

Lemma 4.4. Given that X×Yi is dense in h−1
2 (βX×Yi), we have h

−1
2 (βX×Yi) =

β(X × Yi).

Proof. By the definition of h2 and the property of the Stone–Čech compactifica-
tion, there are surjective continuous maps fi from βX × Yi onto X × Yi, ∀i and
the commutative diagrams:

X × Y → β(X × Y )
↘ ↓h2

βX × Y
and

X × Yi→ β(X × Yi)
↘ ↓fi

βX × Yi

(4.8)
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If we denote by t the inclusion β(X × Yi)(= clβ(X×Y )(X × Yi)) ↪→ β(X × Y )
and denote by t′ the inclusion βX × Yi ↪→ βX × Y , together with the diagrams
above, we have their corresponding commutative diagrams of algebras:

C0(X × Y )� Cb(X × Y )
t∗

� Cb(X × Yi) � C0(X × Yi)
‖ ↑h∗

2 ↑h∗
2|Cb(X)⊗C(Yi)

‖
C0(X × Y )� Cb(X)⊗ C(Y )

t′∗

� Cb(X)⊗ C(Yi)� C0(X × Yi)

(4.9)

The right square in the diagram above gives a commutative diagram of spaces

X × Yi→ β(X × Yi)
↘ ↓l

βX × Yi

in which l∗ = h∗
2|Cb(X)⊗C(Yi). Then, by (4.9) and β(X × Yi) = clβ(X×Y )(X × Yi),

we have the commutative diagram of spaces

X × Y ↪→ β(X × Y )
t←↩ clβ(X×Y )(X × Yi)←↩ X × Yi

‖ ↓h2 ↓l ‖
X × Y ↪→ βX × Y

t′←↩ βX × Yi ←↩ X × Yi

Then h2|clβ(X×Y )
(X × Yi) = l. After identifying βX × Yi as t′(βX × Yi), we

have h−1
2 (βX × Yi) = l−1(βX × Yi) = β(X × Yi), and hence X × Yi is dense in

h−1
2 (βX × Yi). �

Lemma 4.5. We have

h∗
2(Wp) ∈ [βVp] and h∗

2(Wq) ∈ [βVq].

Proof. By the definition of h∗
2, h

∗
2(Wp) is the pullback of Wp to the base space

β(X × Y ). Then, according to (4.5),

h∗
2(Wp) =

{
h∗
2(f) =

(
h∗
2(f1), . . . , h

∗
2(fn)

)
:

h∗
2(fi) =

(
h∗
2(f

(1)
i ), h∗

2(f
(2)
i ), . . . , h∗

2(f
(n)
i )

)
∈

n⊕
k=1

C
(
h−1
2 (βX × Yi)

)
s.t. h∗

2(pij)h
∗
2(fi)|h−1

2 (X×Yij)
= h∗

2(fj)|h−1
2 (X×Yij)

}
. (4.10)

By Lemma 4.4, h∗
2(Wp) could be identified as

h∗
2(Wp) =

{
h∗
2(f) =

(
h∗
2(f1), . . . , h

∗
2(fn)

)
:

h∗
2(fi) =

(
h∗
2(f

(1)
i ), h∗

2(f
(2)
i ), . . . , h∗

2(f
(n)
i )

)
∈

n⊕
k=1

C
(
β(X × Yi)

)
s.t. h∗

2(pij)h
∗
2(fi)|X×Yij

= h∗
2(fj)|X×Yij

}
. (4.11)

Because Cb(X × Yi) could be identified as C(β(X × Yi)), compared with (3.1),
we have h∗

2(Wp) ∈ [βVp] and similarly h∗
2(Wq) ∈ [βVq]. �
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Remark 4.6. It is well known that, for the cover {β(X × Yi)}i, the vector bun-
dles determined by two cocycles (h∗

2(pij), β(X × Yi)) and (h∗
2(qij), β(X × Yi)) are

isomorphic if and only if they are equivalent systems of transition functions; that
is, for each i, there exists ri ∈ Un(β(X × Yi)) such that

h∗
2(pij)|β(X×Yij) = rih

∗
2(qij)r

−1
i |β(X×Yij). (4.12)

Now we can begin to prove Theorem 4.1.

Proof of Theorem 4.1. If [βVp] = [βVq], by Lemma 4.5, the vector bundle h∗
2(Wp)

is isomorphic to h∗
2(Wq). By Remark 4.6, there exists ri ∈ Un(β(X × Yi)) with

the condition (4.12). But if X × Yij is dense in β(X × Yij), then the condition
(4.12) could be identified as

h∗
2(pij)|X×Yij

= rih
∗
2(qij)r

−1
i |X×Yij

. (4.13)

By the definition of h2, p̂ij, and q̂ij, h
∗
2(p̂ij)|X×Yij

= pij and h∗
2(q̂ij)|X×Yij

= qij. If
we denote r′i = ri|X×Yij

∈ Un(Cb(X × Yij)), then we have

pij|X×Yij
= r′iqijr

′−1
i |X×Yij

, (4.14)

which induces the equivalence of the cocyles (pij, X×Yi) and (qij, X×Yi). Again
by Remark 4.6, we have the isomorphism between Zp and Zq, and hence p = q,
which is a contradiction to the assumption in the theorem. �

Remark 4.7. In the argument above, we use a map h2 from β(X ×Y ) to βX ×Y
with h2|X×Y = idX×Y . Generally, the map h2 is not surjective, or, in other words,
β(X × Y ) and βX × Y might not be the same [4].
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