Ann. Funct. Anal. 8 (2017), no. 1, 51-62
http://dx.doi.org/10.1215/20088752-3749995
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

GEOMETRIC DESCRIPTION OF MULTIPLIER MODULES FOR HILBERT C^{*}-MODULES IN SIMPLE CASES

ZHU JINGMING

Communicated by J. Hamhalter

Abstract

In this article we suggest a vector bundle description for multiplier modules of vector bundles over noncompact spaces. We prove that the isomorphism classes of multiplier modules are dependent on the isomorphism classes of their underlying modules. This gives a way to evaluate the set of extensions of Hilbert modules in topological terms in simple cases.

1. Introduction

Multiplier modules of Hilbert C^{*}-modules are generalizations of multiplier algebras of C^{*}-algebras first studied in [2]. Instead of being all the adjointable operators from a C^{*}-algebra A to itself, multiplier modules of a Hilbert A-module E are the set of all adjointable operators from A to E. The set $M(E)$ of all multipliers of E is a Hilbert $M(A)$-module in a natural way. Similarly to the problem of classification of extensions of C^{*}-algebras, which uses the Busby invariant and can be described in $K K$-theory terms, classification of extensions of Hilbert C^{*}-modules uses an analog of the Busby invariant, which is a map into the outer multiplier module. But classification of extensions of Hilbert C^{*}-modules is much more difficult than that of C^{*}-algebras. One of the simplest cases was considered in [6], where extensions of a free singly generated Hilbert C^{*}-module were classified. This paper provides a tool for the next step: classification of extensions of finitely generated projective Hilbert C^{*}-modules over commutative C^{*}-algebras. We give a description of the multiplier modules for projective Hilbert C^{*}-modules of finite type over a nonunitial commutative C^{*}-algebra A. As is well known, a Hilbert

[^0]There is also a natural sesquilinear form defined on V_{p} by $\langle\cdot, \cdot\rangle: V_{p} \times V_{p} \rightarrow A$:

$$
\begin{aligned}
\left\langle\left(\xi_{i}\right)_{i},\left(\eta_{i}\right)_{i}\right\rangle & \left.=\left(\overline{\xi_{i}} \eta_{i}\right)_{i}=\left(\overline{\left(\left(\xi_{i}^{(1)}, \xi_{i}^{(2)}, \ldots, \xi_{i}^{(n)}\right.\right.}\right)\left(\eta_{i}^{(1)}, \eta_{i}^{(2)}, \ldots, \eta_{i}^{(n)}\right)\right)_{i} \\
& =\left(\overline{\xi_{i}^{(1)}} \eta_{i}^{(1)}, \overline{\xi_{i}^{(2)}} \eta_{i}^{(2)}, \ldots, \overline{\xi_{i}^{(n)}} \eta_{i}^{(n)}\right)_{i}
\end{aligned}
$$

with $\left(\xi_{i}\right)_{i},\left(\eta_{i}\right)_{i} \in V_{p}$ and $\left.\left.\overline{\xi_{i}}\right|_{X \times Y_{i j}} \cdot \overline{g_{i j}} \cdot g_{i j} \cdot \eta_{i}\right|_{X \times Y_{i j}}=\left.\overline{\xi_{j}} \eta_{j}\right|_{X \times Y_{i j}}$.
We also have a norm $\|\cdot\|$ related to this sesquilinear form defined by

$$
\left\|\left(\xi_{i}\right)_{i}\right\|=\max _{1 \leq i \leq n}\left\{\sup _{x \in X \times Y_{i}}\left|\left\langle\left(\xi_{i}(y)\right)_{i},\left(\xi_{i}(y)\right)_{i}\right\rangle\right|^{\frac{1}{2}}\right\} .
$$

With all the structure above, V_{p} becomes a Hilbert A-module.
It is well known that the multiplier algebra $M(A)$ is the closure of A with respect to the strict topology defined by the seminorms

$$
a \rightarrow\|a b\|, \quad a \rightarrow\|b a\|, \quad \forall a \in A
$$

for any $b \in A$.
The following theorem is from Pedersen's book [7].
Theorem 2.2 (see [7, p. 84]). For a C^{*}-algebra A, its completion with respect to the strict topology is its multiplier algebra $M(A)$.

Remark 2.3. Then any $m \in M(A)$ could be identified with a Cauchy net $\left\{m_{\lambda}\right\}$ in A such that

$$
\begin{equation*}
m a=\lim _{\lambda \rightarrow \infty} m_{\lambda} a, \quad \forall a \in A \tag{2.2}
\end{equation*}
$$

because $A=C_{0}(X \times Y)$ is commutative. Corresponding to the same $m \in M(A)$, there could be many Cauchy nets satisfying the condition (2.2). Here we introduce the "standard" one. Let $\left\{e_{\lambda}\right\}_{\lambda}$ be a self-adjoint approximate identity in A. For any $m \in M(A)$, it is easy to see that $\left\{m e_{\lambda}\right\}_{\lambda}$ is a Cauchy net in A with the condition (2.2).

Similarly to A, we can identify the multiplier algebra $M(A)$ as

$$
\begin{aligned}
M(A)= & \left\{f=\left(f_{1}, \ldots, f_{n}\right): f_{i}=\left(f_{i}^{(1)}, f_{i}^{(2)}, \ldots, f_{i}^{(n)}\right) \in \bigoplus_{k=1}^{n} C_{b}\left(X \times Y_{i}\right)\right. \\
& \text { s.t. } \left.\left.f_{i}\right|_{X \times Y_{i j}}=\left.f_{j}\right|_{X \times Y_{i j}}\right\} .
\end{aligned}
$$

It is also worth noting that the multiplier algebra $M(A)$ could also be identified by the set of all the A-linear adjointable maps from A to itself. Similarly to the case of C^{*}-algebras, for the Hilbert A-module V_{p}, the multiplier module $M\left(V_{p}\right)$ could also be identified by the set of all the A-linear adjointable maps from A to V_{p}; that is, $L\left(A, V_{p}\right) \doteq M\left(V_{p}\right)$.

With all the preparation above, now we can give a geometric description of multiplier modules for some special Hilbert C^{*}-module.

3. GEOMETRIC DESCRIPTION OF MULTIPLIER MODULES

Since we have given the cocycle description for the module V_{p} in the previous section, our aim in this section is to give a cocycle description for the multiplier module $M\left(V_{p}\right)$. For this reason, we first give the following notation.

For the C^{*}-algebra A and Hilbert A-module V_{p} in Section 2, we denote

$$
\begin{align*}
\beta V_{p}= & \left\{\xi=\left(\xi_{1}, \ldots, \xi_{n}\right): \xi_{i}=\left(\xi_{i}^{(1)}, \xi_{i}^{(2)}, \ldots, \xi_{i}^{(n)}\right) \in \bigoplus_{k=1}^{n} C_{b}\left(X \times Y_{i}\right)\right. \\
& \text { s.t. } \left.\left.g_{i j} \cdot \xi_{i}\right|_{X \times Y_{i j}}=\left.\xi_{j}\right|_{X \times Y_{i j}}\right\} \tag{3.1}
\end{align*}
$$

in which $\left\{Y_{i}\right\}_{i}$ is a finite closed cover of Y with all the Y_{i} 's contractible and $g_{i j} \in U_{n \times n}\left(C_{b}\left(X \times Y_{i j}\right)\right)$.

Similarly to V_{p}, it is easy to see βV_{p} is a (right) $M(A)$-module with the module action defined as follows:

$$
\begin{equation*}
\left(\xi_{i}\right)_{i} \cdot\left(f_{i}\right)_{i}=\left(\xi_{i} \cdot f_{i}\right)_{i} \tag{3.2}
\end{equation*}
$$

in which $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \beta V_{p}$ with $\left.g_{i j} \cdot \xi_{i}\right|_{X \times Y_{i j}}=\left.\xi_{j}\right|_{X \times Y_{i j}}$ and $\left(f_{i}\right)_{i} \in M(A)$ with trivial cocycle condition $\left.h_{i}\right|_{X \times Y_{i j}}=\left.h_{j}\right|_{X \times Y_{i j}}$. There is also a natural sesquilinear form defined on βV_{p} by $\langle\cdot, \cdot\rangle: \beta V_{p} \times \beta V_{p} \rightarrow M(A)$:

$$
\begin{align*}
\left\langle\left(\xi_{i}\right)_{i},\left(\eta_{i}\right)_{i}\right\rangle & =\left(\bar{\xi}_{i} \eta_{i}\right)_{i}=\left(\overline{\left(\left(\xi_{i}^{(1)}, \xi_{i}^{(2)}, \ldots, \xi_{i}^{(n)}\right)\right.}\left(\eta_{i}^{(1)}, \eta_{i}^{(2)}, \ldots, \eta_{i}^{(n)}\right)\right)_{i} \\
& \left.\left.\left.=\left(\overline{\left(\xi_{i}^{(1)}\right.} \eta_{i}^{(1)}\right), \overline{\left(\xi_{i}^{(2)}\right.} \eta_{i}^{(2)}\right), \ldots, \overline{\xi_{i}^{(n)}} \eta_{i}^{(n)}\right)\right)_{i} \tag{3.3}
\end{align*}
$$

for $\left(\xi_{i}\right)_{i},\left(\eta_{i}\right)_{i}$ being the sections of βV_{p}, in which $\left.\left.\overline{\xi_{i}}\right|_{X \times Y_{i j}} \cdot \overline{g_{i j}} \cdot g_{i j} \cdot \eta_{i}\right|_{X \times Y_{i j}}=$ $\left.\overline{\xi_{j}} \eta_{j}\right|_{X \times Y_{i j}}$.

We also have a norm $\|\cdot\|$ related to this sesquilinear form defined by

$$
\left\|\left(\xi_{i}\right)_{i}\right\|=\max _{1 \leq i \leq n}\left\{\sup _{y \in X \times Y_{i}}\left|\left\langle\left(\xi_{i}(y)\right)_{i},\left(\xi_{i}(y)\right)_{i}\right\rangle\right|^{\frac{1}{2}}\right\} .
$$

With all the structure above, βV_{p} becomes a Hilbert $M(A)$-module.
Proposition 3.1. The (right) $M(A)$-module βV_{p} is a Hilbert $M(A)$-module with respect to the sesquilinear form (3.3).
Proof. This result follows from all the structure mentioned above if we can show that βV_{p} is closed with respect to the norm. Suppose $\xi_{(\alpha)}=\left(\xi_{1,(\alpha)}, \ldots, \xi_{n,(\alpha)}\right)$ is a Cauchy net in βV_{p}. Then, by definition, for each $i, \xi_{i,(\alpha)}$ is a Cauchy net with respect to the supremum norms in $\bigoplus_{k=1}^{n} C_{b}\left(X \times Y_{i}\right)$, respectively. But $\bigoplus_{k=1}^{n} C_{b}\left(X \times Y_{i}\right)$ is complete with respect to their own supremum norms, and so there are $\left(\xi_{i}\right)_{i} \in \bigoplus_{k=1}^{n} C_{b}\left(X \times Y_{i}\right)$ s.t. $\xi_{i,(\alpha)} \rightarrow \xi_{i}$ for any i, which means that $\left(\xi_{i,(\alpha)}\right)_{i} \rightarrow\left(\xi_{i}\right)_{i}$ and βV_{p} is complete with respect to the norm above.

The first main result of this section is the following theorem, which claims that the module βV_{p} is just the multiplier module of V_{p}.
Theorem 3.2. For the module $\beta V_{p}, M\left(V_{p}\right)$ defined above, $\beta V_{p}=M\left(V_{p}\right)$.
In order to prove the theorem, we first show that $\beta V_{p} \subset M\left(V_{p}\right)$.

Proposition 3.3. There is a natural inclusion $V_{p} \subset \beta V_{p} \subset M\left(V_{p}\right)$.
Proof. The first inclusion is obvious, and it suffices to prove the second one. By the formula (2.1), the left multiplier of $\left(\xi_{i}\right)_{i} \in \beta V_{p}$ on $M\left(V_{p}\right)$ defines an A-linear map from A to V_{p}. It is easy to see it is a bounded operator, and so we only need to show adjointability. For any $\left(\xi_{i}\right)_{i} \in \beta V_{p}, h=\left(h_{i}\right)_{i} \in A$, and $\left(\mathfrak{h}_{i}\right)_{i} \in V_{p}$ with conditions $\left.g_{i j} \cdot \xi_{i}\right|_{X \times Y_{i j}}=\left.\xi_{j}\right|_{X \times Y_{i j}},\left.g_{i j} \cdot \mathfrak{h}_{i}\right|_{X \times Y_{i j}}=\left.\mathfrak{h}_{j}\right|_{X \times Y_{i j}}$, and $\left.h_{i}\right|_{X \times Y_{i j}}=\left.h_{j}\right|_{X \times Y_{i j}}$,

$$
\begin{align*}
\left\langle\left(\mathfrak{h}_{i}\right)_{i},\left(\xi_{i}\right)_{i}\left(h_{i}\right)_{i}\right\rangle & =\left\langle\left(\mathfrak{h}_{i}\right)_{i},\left(\xi_{i} h_{i}\right)_{i}\right\rangle \\
& =\left(\overline{\mathfrak{h}_{i}} \xi_{i} h_{i}\right)_{i}=\left\langle\left(\mathfrak{h}_{i} \overline{\xi_{i}}\right)_{i},\left(h_{i}\right)_{i}\right\rangle=\left\langle\left(\mathfrak{h}_{i}\right)_{i} \overline{\left(\xi_{i}\right)_{i}},\left(h_{i}\right)_{i}\right\rangle \tag{3.4}
\end{align*}
$$

with $\left\langle\left(\mathfrak{h}_{i}\right) \overline{\left(\xi_{i}\right)},\left(h_{i}\right)\right\rangle \in C_{0}\left(X \times Y_{i}\right)$. Then $\left\langle\left(\mathfrak{h}_{i}\right)_{i} \overline{\left(\xi_{i}\right)_{i}},\left(h_{i}\right)_{i}\right\rangle \in A$ and the adjoint operator of $\left(\xi_{i}\right)_{i}$ is $\left(\xi_{i}\right)_{i}^{*}=\overline{\left(\xi_{i}\right)_{i}}$, and hence there is a natural inclusion $\beta V_{p} \subset$ $L\left(A, V_{p}\right) \doteq M\left(V_{p}\right)$.
Remark 3.4. By the inclusion and the inner product on $M\left(V_{p}\right)$, we identify $r(v)$ as $\langle r, v\rangle$ for any $r \in M\left(V_{p}\right)$ and $v \in V_{p}$. And for $r \in M\left(V_{p}\right), x \in \beta V_{p}$, and $v \in V_{p}$, the inner products $\langle r, x\rangle,\langle r, v\rangle$, and $\langle x, v\rangle$ are well defined.

Remark 3.5. It is worth pointing out that, after multiplication by A, the inclusion becomes the equality $M\left(V_{p}\right) A=\beta V_{p} A=V_{p}$. First, any $x \in M\left(V_{p}\right)$, and also $x a$ for any $a \in A$, could be also viewed as an A-linear adjointable map from A to V_{p}. Then $x a(b)=x(a b)=x(a) b$ for any $b \in A$, and hence $M\left(V_{p}\right) A \subset V_{p}$. Finally, $M\left(V_{p}\right) A=\beta V_{p} A=V_{p}$ since $V_{p} A=V_{p}$ implies that $M\left(V_{p}\right) A=V_{p}$.

For a Hilbert B-module V and an essential ideal I in B, we denote the $V_{I} \doteq$ $\{v b: v \in V, b \in I\}$. Recall the following definition.

Definition 3.6 (see [2, Definition 1.3]). Let V be a Hilbert B-module, let I be an essential ideal in B, and let V_{I} be the associated ideal submodule. The strict topology with respect to V_{I} (or the V_{I}-strict topology) on V is defined by two families of seminorms $v \rightarrow\|\langle v, x\rangle\|$ for any $x \in V_{I}$ and $v \rightarrow\|v b\|$ for any $b \in B$.

Similarly to the case of multiplier algebras for C^{*}-algebras, Bakić and Guljăs proved the following results.
Theorem 3.7 (see [2, Proposition 1.6]). Let V be a Hilbert B-module, let I be an essential ideal in B, and let V_{I} be the essential ideal submodule. Each V_{I}-strict Cauchy net in V determines an adjointable map $v \in M\left(V_{I}\right)$.
Remark 3.8. In Theorem 3.7, if we let $B=I$, then $V_{I}=V$, and hence each V-strict Cauchy net in V determines an adjointable map $v \in M(V)$.
Theorem 3.9 (see [2, Theorem 1.8]). Let W be a full Hilbert I-module. $M(W)$ is a W-strict completion of W.

In this article, for $I=A, B=M(A), W=V_{p}, V=M\left(V_{p}\right)$, and hence $V_{I}=M\left(V_{p}\right) A$, we have the corresponding corollaries since A is an essential ideal in $M(A)$.

Corollary 3.10. Each V_{p}-strict Cauchy net determines an adjointable map $v \in$ $M\left(V_{p}\right)$.

Corollary 3.11. It holds that $M\left(V_{p}\right)$ is the V_{p}-strict completion of V_{p}.
Remark 3.12. Since A is an essential ideal in $M(A)$, by Remark 3.4, $M\left(V_{p}\right) A=V_{p}$. Then the corollary above could be rewritten as " $M\left(V_{p}\right)$ is strict completion of V_{p} with respect to V_{p} strict topology."

By Corollary 3.10 and Definition 3.6, any $r \in M\left(V_{p}\right)$ could be identified as a V_{p}-strict Cauchy net $\left\{r_{\lambda}\right\}_{\lambda}$ such that
(1) $\langle r, x\rangle=\lim _{\lambda}\left\langle r_{\lambda}, x\right\rangle, \forall x \in V_{p}$,
(2) $r b=\lim _{\lambda} r_{\lambda} b, \forall b \in A$.

Corresponding to any $r \in M(A)$, there could be many V_{p}-strict Cauchy nets $\left\{r_{\lambda}\right\}_{\lambda}$ with the conditions above. Similarly to the case of $M(A)$, we introduce a "standard" one. Let $\left\{e_{\lambda}\right\}_{\lambda}$ be a self-adjoint approximate identity in A. For any $r \in M\left(V_{p}\right)$, it is easy to see that $\left\{r e_{\lambda}\right\}_{\lambda}$ is a Cauchy net in V_{p} with the condition (1) and (2).

Lemma 3.13. For any $r \in M\left(V_{p}\right)$, there exists a $w \in \beta V_{p}$ such that
(1) $\langle w, x\rangle=\langle r, x\rangle, \forall x \in \beta V_{p}$
(2) $r b=w b, \forall b \in A$.

Proof. For each $b \in A,\left\{r e_{\lambda} b\right\}_{\lambda}$ is a Cauchy net in V_{p}. After restricting on $X \times Y_{i}$, $\left\{\left(r e_{\lambda} b\right)_{i}\right\}_{\lambda}$ is a Cauchy net in $\bigoplus_{k=1}^{m} C_{0}\left(X \times Y_{i}\right)$ for each i. Since $b \in A$ is arbitrarily chosen, $\left\{\left(r e_{\lambda}\right)_{i}\right\}_{\lambda}$ strictly converges to an element $w_{i} \in \bigoplus_{k=1}^{m} C_{b}\left(X \times Y_{i}\right)$. By the definition, $r e_{\lambda} \in V_{p}$ with $g_{i j} \cdot\left(r e_{\lambda}\right)_{i}=\left(r e_{\lambda}\right)_{j}$, and so $w=\left(w_{1}, \ldots, w_{n}\right) \in \beta V_{p}$ with $g_{i j} \cdot w_{i}=w_{j}$, and hence $\lim _{\lambda \rightarrow \infty} r e_{\lambda} b=w b, \forall b \in A$.

For each $x \in V_{p},\left\{\left\langle r e_{\lambda}, x\right\rangle\right\}_{\lambda}$ is a Cauchy net in A. Again after restricting on $X \times Y_{i},\left\{\left(\left\langle r e_{\lambda}, x\right\rangle\right)_{i}\right\}_{\lambda}=\left\{\left(\overline{r e_{\lambda}}\right)_{i} x_{i}\right\}_{\lambda}$ becomes a Cauchy net in $\bigoplus_{k=1}^{m} C_{0}\left(X \times Y_{i}\right)$ for each i. Since $x \in V_{p}$ is arbitrarily chosen, $\left\{\left(r e_{\lambda}\right)_{i}\right\}_{\lambda}$ strictly converges to the same element $w_{i} \in \bigoplus_{k=1}^{m} C_{b}\left(X \times Y_{i}\right)$ as above. Then $\lim _{\lambda \rightarrow \infty}\left\langle r e_{\lambda}, x\right\rangle=\langle w, x\rangle, \forall x \in$ V_{p}.

The lemma above could be rewritten as follows.
Lemma 3.14. We have that βV_{p} is closed with respect to strict topology.
By taking the closure of the inclusion $V_{p} \subset \beta V_{p} \subset M\left(V_{p}\right)$ with respect to the V_{p}-strict topology, it is easy to prove Theorem 3.2.

The second main result of this section is the following theorem, which declares that the module βV_{p} we constructed is a vector bundle.

Theorem 3.15. The module βV_{p} is a vector bundle over $\beta(X \times Y)$.
In order to prove the theorem, we need the following lemmas.
Lemma 3.16. We have

$$
\bigcup_{i=1}^{n} \beta\left(X \times Y_{i}\right)=\beta(X \times Y)
$$

Proof. Since, in Section 2, all the $X \times Y_{i}$'s are assumed to be C^{*}-embedded into $X \times Y$, by [8], $\beta\left(X \times Y_{i}\right)$ equals the closure of $X \times Y_{i}$ in $\beta(X \times Y)$; that is,
$\beta\left(X \times Y_{i}\right)=c l_{\beta(X \times Y)}\left(X \times Y_{i}\right) \subset \beta(X \times Y)$. For the inverse, $\forall x \in \beta(X \times Y)$, $\exists\left\{x_{\lambda}\right\}_{\lambda}$ a Cauchy net in $X \times Y$ which converges to x. Since $\bigcup_{i=1}^{n}\left(X \times Y_{i}\right)=$ $X \times Y$, there exists at least one of them, for example, $X \times Y_{i_{0}}$, that contains a subnet of $\left\{x_{\lambda}\right\}_{\lambda}$ which also converges to x. Then $x \in \beta\left(X \times Y_{i_{0}}\right)$, and hence $\bigcup_{i=1}^{n} \beta\left(X \times Y_{i}\right)=\beta(X \times Y)$.

As a special case, after taking the closure in $\beta(X \times Y)$, we have the corollary.
Corollary 3.17. We have

$$
\beta\left(X \times Y_{i}\right) \cup \beta\left(X \times Y_{j}\right)=\beta\left(\left(X \times Y_{i}\right) \cup\left(X \times Y_{j}\right)\right)
$$

For the intersection, we have another lemma.
Lemma 3.18. We have

$$
\beta\left(X \times Y_{i}\right) \cap \beta\left(X \times Y_{j}\right)=\beta\left(\left(X \times Y_{i}\right) \cap\left(X \times Y_{j}\right)\right)=\beta\left(X \times Y_{i j}\right)
$$

Proof. Since $\beta\left(X \times Y_{i}\right) \cup \beta\left(X \times Y_{j}\right)=\beta\left(\left(X \times Y_{i}\right) \cup\left(X \times Y_{j}\right)\right), C\left(\beta\left(X \times Y_{i}\right) \cup\right.$ $\left.\beta\left(X \times Y_{j}\right)\right)=C\left(\beta\left(\left(X \times Y_{i}\right) \cup\left(X \times Y_{j}\right)\right)\right)$. Because $C\left(\beta\left(X \times Y_{i}\right) \cup \beta\left(X \times Y_{j}\right)\right)$ could be identified as

$$
\left\{\left(f_{i}, f_{j}\right): f_{k} \in C\left(\beta\left(X \times Y_{k}\right)\right),\left.f_{i}\right|_{\beta\left(X \times Y_{i}\right) \cap \beta\left(X \times Y_{j}\right)}=\left.f_{j}\right|_{\beta\left(X \times Y_{i}\right) \cap \beta\left(X \times Y_{j}\right)}, k=i, j\right\}
$$

and $C\left(\beta\left(\left(X \times Y_{i}\right) \cup\left(X \times Y_{j}\right)\right)\right)$ could be identified as

$$
\left\{\left(g_{i}, g_{j}\right): g_{k} \in C_{b}\left(X \times Y_{k}\right),\left.g_{i}\right|_{X \times Y_{i j}}=\left.g_{j}\right|_{X \times Y_{i j}}, k=i, j\right\}
$$

or in another form

$$
\left\{\left(g_{i}, g_{j}\right): g_{k} \in C\left(\beta\left(X \times Y_{k}\right)\right),\left.g_{i}\right|_{X \times Y_{i j}}=\left.g_{j}\right|_{X \times Y_{i j}}, k=i, j\right\}
$$

then

$$
\begin{equation*}
\left.g_{i}\right|_{X \times Y_{i j}}=\left.\left.g_{j}\right|_{X \times Y_{i j}} \Leftrightarrow g_{i}\right|_{\beta\left(X \times Y_{i}\right) \cap \beta\left(X \times Y_{j}\right)}=\left.g_{j}\right|_{\beta\left(X \times Y_{i}\right) \cap \beta\left(X \times Y_{j}\right)} . \tag{3.5}
\end{equation*}
$$

For $k=i, j$, because $g_{k} \in C\left(\beta\left(X \times Y_{k}\right)\right)$ and $\beta\left(X \times Y_{i j}\right) \subset \beta\left(X \times Y_{k}\right)$,

$$
\begin{equation*}
\left.g_{i}\right|_{X \times Y_{i j}}=\left.\left.g_{j}\right|_{X \times Y_{i j}} \Leftrightarrow g_{i}\right|_{\beta\left(X \times Y_{i j}\right)}=\left.g_{j}\right|_{\beta\left(X \times Y_{i j}\right)} . \tag{3.6}
\end{equation*}
$$

Combining (3.5) and (3.6) together, because the functions g_{k} 's are arbitrarily chosen, the lemma follows.

Then the space $\beta X \times Y$ has a (not necessarily open) cover $\left\{\beta\left(X \times Y_{i}\right)\right\}_{i}$ with the intersections $\beta\left(X \times Y_{i}\right) \cap \beta\left(X \times Y_{j}\right)=\beta\left(X \times Y_{i j}\right)$. Compared with (3.1), the module βV_{p} could also be identified as

$$
\begin{aligned}
\beta V_{p}= & \left\{\xi=\left(\xi_{1}, \ldots, \xi_{n}\right): \xi_{i}=\left(\xi_{i}^{(1)}, \xi_{i}^{(2)}, \ldots, \xi_{i}^{(n)}\right) \in \bigoplus_{k=1}^{n} C\left(\beta\left(X \times Y_{i}\right)\right)\right. \\
& \text { s.t. } \left.\left.\beta g_{i j} \cdot \xi_{i}\right|_{\beta\left(X \times Y_{i j}\right)}=\left.\xi_{j}\right|_{\beta\left(X \times Y_{i j}\right)}\right\},
\end{aligned}
$$

in which $\beta g_{i j} \in C\left(\beta\left(X \times Y_{i j}\right)\right)$ is the unique function such that $\left.\beta g_{i j}\right|_{X \times Y_{i j}}=g_{i j}$, and hence Theorem 3.15 follows.

4. The isomorphism classes of multiplier modules

The isomorphism class of βV_{p} defines an element $\left[\beta V_{p}\right]$ in $K^{0}(\beta(X \times Y))$. It is a natural question whether they are the same in $K^{0}(\beta(X \times Y))$, or, in another word, whether $\left[\beta V_{p}\right]=\left[\beta V_{q}\right]$ when $p \neq q$. In this section, we will give a negative answer as follows.

Theorem 4.1. We have

$$
\left[\beta V_{p}\right] \neq\left[\beta V_{q}\right] \quad \text { in } K^{0}(\beta(X \times Y)) \text { when } p \neq q \text { in } K^{0}(Y)
$$

We postpone the proof until the end of this section. For a cover $\left\{Y_{i}\right\}_{i=1}^{n}$ of Y and any two projections $p \neq q \in K^{0}(Y)$, as in Section 2, p and q could be identified as two isomorphism classes of vector bundles $\left[Z_{p}\right]$ and $\left[Z_{q}\right]$ with the cocycle conditions $\left(p_{i j}, Y_{i}\right)$ and $\left(q_{i j}, Y_{i}\right)$, respectively; that is,

$$
\begin{align*}
Z_{p}= & \left\{f=\left(f_{1}, \ldots, f_{n}\right): f_{i}=\left(f_{i}^{(1)}, f_{i}^{(2)}, \ldots, f_{i}^{(n)}\right) \in \bigoplus_{k=1}^{n} C\left(Y_{i}\right),\right. \\
& \text { s.t. } \left.\left.p_{i j} f_{i}\right|_{Y_{i j}}=\left.f_{j}\right|_{Y_{i j}}\right\}, \tag{4.1}\\
Z_{q}= & \left\{f=\left(f_{1}, \ldots, f_{n}\right): f_{i}=\left(f_{i}^{(1)}, f_{i}^{(2)}, \ldots, f_{i}^{(n)}\right) \in \bigoplus_{k=1}^{n} C\left(Y_{i}\right),\right. \\
& \text { s.t. } \left.\left.q_{i j} f_{i}\right|_{Y_{i j}}=\left.f_{j}\right|_{Y_{i j}}\right\} . \tag{4.2}
\end{align*}
$$

Thus if $p \neq q$ in $K^{0}(Y)$, then $\left[Z_{p}\right] \neq\left[Z_{q}\right]$.
Corresponding to the same cover $\left\{Y_{i}\right\}_{i=1}^{n}$ of Y and the cocycles $\left(p_{i j}, Y_{i}\right)$ and $\left(q_{i j}, Y_{i}\right)$, there is a cover $\left\{\beta X \times Y_{i}\right\}_{i=1}^{n}$ of $\beta X \times Y$ and the cocycles $\left(\widehat{p_{i j}}, \beta X \times Y_{i}\right)$ and $\left(\widehat{q_{i j}}, \beta X \times Y_{i}\right)$ with $\widehat{p_{i j}} \in C\left(\beta X \times Y_{i j}\right)$ defined by $\widehat{p_{i j}}(x, y)=p_{i j}(y)$ and $\widehat{q_{i j}} \in C\left(\beta X \times Y_{i j}\right)$ defined by $\widehat{q_{i j}}(x, y)=q_{i j}(y)$.

Then corresponding to Z_{p} and Z_{q}, over $\beta X \times Y$, there are vector bundles

$$
\begin{align*}
W_{p}= & \left\{f=\left(f_{1}, \ldots, f_{n}\right): f_{i}=\left(f_{i}^{(1)}, f_{i}^{(2)}, \ldots, f_{i}^{(n)}\right) \in \bigoplus_{k=1}^{n} C\left(\beta X \times Y_{i}\right),\right. \\
& \text { s.t. } \left.\left.\widehat{p_{i j}} f_{i}\right|_{\beta X \times Y_{i j}}=\left.f_{j}\right|_{\beta X \times Y_{i j}}\right\}, \tag{4.3}\\
W_{q}= & \left\{f=\left(f_{1}, \ldots, f_{n}\right): f_{i}=\left(f_{i}^{(1)}, f_{i}^{(2)}, \ldots, f_{i}^{(n)}\right) \in \bigoplus_{k=1}^{n} C\left(\beta X \times Y_{i}\right),\right. \\
& \text { s.t. } \left.\left.\widehat{q_{i j}} f_{i}\right|_{\beta X \times Y_{i j}}=\left.f_{j}\right|_{\beta X \times Y_{i j}}\right\} . \tag{4.4}
\end{align*}
$$

Since $X \times Y_{i j}$ is dense in $\beta X \times Y_{i j}, W_{p}$ and W_{q} could be identified as

$$
\begin{align*}
W_{p}= & \left\{f=\left(f_{1}, \ldots, f_{n}\right): f_{i}=\left(f_{i}^{(1)}, f_{i}^{(2)}, \ldots, f_{i}^{(n)}\right) \in \bigoplus_{k=1}^{n} C\left(\beta X \times Y_{i}\right),\right. \\
& \text { s.t. } \left.\left.\widehat{p_{i j}} f_{i}\right|_{X \times Y_{i j}}=\left.f_{j}\right|_{X \times Y_{i j}}\right\}, \tag{4.5}
\end{align*}
$$

$$
\begin{align*}
W_{q}= & \left\{f=\left(f_{1}, \ldots, f_{n}\right): f_{i}=\left(f_{i}^{(1)}, f_{i}^{(2)}, \ldots, f_{i}^{(n)}\right) \in \bigoplus_{k=1}^{n} C\left(\beta X \times Y_{i}\right),\right. \\
& \text { s.t. } \left.\left.\widehat{q_{i j}} f_{i}\right|_{X \times Y_{i j}}=\left.f_{j}\right|_{X \times Y_{i j}}\right\} . \tag{4.6}
\end{align*}
$$

Since X path connected and so is βX, we can choose any point $x_{0} \in \beta X$ as a base point, and we can identify Y as $\left\{x_{0}\right\} \times Y$, the cover $\left\{Y_{i}\right\}_{i}$ as $\left\{\left\{x_{0}\right\} \times Y_{i}\right\}_{i}$, and hence $K^{0}(Y)$ as $K^{0}\left(\left\{x_{0}\right\} \times Y\right)$. If we denote the natural surjective map from $\beta X \times Y$ onto $\left\{x_{0}\right\} \times Y$ by h_{1}, it induces an injective map h_{1}^{*} from $\operatorname{Vect}\left(\left\{x_{0}\right\} \times Y\right)$, the set of vector bundles over $\left\{x_{0}\right\} \times Y$, to $\operatorname{Vect}(\beta X \times Y)$, and hence an injective homomorphism from $K^{0}\left(\left\{x_{0}\right\} \times Y\right) \simeq K^{0}(Y)$ to $K^{0}(\beta X \times Y)$ which is also denoted by h_{1}^{*} when there is no confusion.
Lemma 4.2. We have $h_{1}^{*}\left(\left[Z_{p}\right]\right)=\left[W_{p}\right]$ and $h_{1}^{*}\left(\left[Z_{q}\right]\right)=\left[W_{q}\right]$.
Proof. By the definition of $h_{1}^{*}, h_{1}^{*}\left(Z_{p}\right)$ is the pullback of Z_{p} to the base space $\beta X \times Y$. Then, according to (4.1), after identifying $\left\{x_{0}\right\} \times Y$ as Y and $\left\{\left\{x_{0}\right\} \times Y_{i}\right\}_{i}$ as $\left\{Y_{i}\right\}$,

$$
\begin{align*}
h_{1}^{*}\left(Z_{p}\right)= & \left\{h_{1}^{*}(f)=\left(h_{1}^{*}\left(f_{1}\right), \ldots, h_{1}^{*}\left(f_{n}\right)\right):\right. \\
& h_{1}^{*}\left(f_{i}\right)=\left(h_{1}^{*}\left(f_{i}^{(1)}\right), h_{1}^{*}\left(f_{i}^{(2)}\right), \ldots, h_{1}^{*}\left(f_{i}^{(n)}\right)\right) \in \bigoplus_{k=1}^{n} C\left(\beta X \times Y_{i}\right) \\
& \text { s.t. } \left.\left.h_{1}^{*}\left(p_{i j}\right) h_{1}^{*}\left(f_{i}\right)\right|_{\beta X \times Y_{i j}}=\left.h_{1}^{*}\left(f_{j}\right)\right|_{\beta X \times Y_{i j}}\right\} . \tag{4.7}
\end{align*}
$$

Because $h_{1}^{*}\left(\left[Z_{p}\right]\right)=\left[h_{1}^{*}\left(Z_{p}\right)\right]$, by (4.3), we have $h_{1}^{*}\left(\left[Z_{p}\right]\right)=\left[W_{p}\right]$. Replacing p by q in the argument above, the second result follows.

Because h_{1}^{*} is injective and $p \neq q \in K^{0}(Y)$, we have the following.
Corollary 4.3. For $p \neq q \in K^{0}(Y),\left[W_{p}\right] \neq\left[W_{q}\right]$.
Since both $\beta X \times Y$ and $\beta(X \times Y)$ are compact and contain $X \times Y$ as a dense subset, by the property of Stone-Cech compactification, there is a continuous surjective map h_{2} from $\beta(X \times Y)$ to $\beta X \times Y$ with $\left.h_{2}\right|_{X \times Y}=i d$, which induces an injective homomorphism h^{*} from $C(\beta X \times Y)$ to $C(\beta(X \times Y))$. In fact, h_{2} also induces another injective homomorphism h_{2}^{*} from $\operatorname{Vect}(\beta X \times Y)$, the set of complex bundles over $\beta X \times Y$, to $\operatorname{Vect}(\beta(X \times Y)$), and hence a homomorphism from $K^{0}(\beta X \times Y)$ to $K^{0}(\beta(X \times Y))$. These two maps would be still denoted by h_{2}^{*} when there is no confusion.
Lemma 4.4. Given that $X \times Y_{i}$ is dense in $h_{2}^{-1}\left(\beta X \times Y_{i}\right)$, we have $h_{2}^{-1}\left(\beta X \times Y_{i}\right)=$ $\beta\left(X \times Y_{i}\right)$.
Proof. By the definition of h_{2} and the property of the Stone-Čech compactification, there are surjective continuous maps f_{i} from $\beta X \times Y_{i}$ onto $X \times Y_{i}, \forall i$ and the commutative diagrams:

If we denote by t the inclusion $\beta\left(X \times Y_{i}\right)\left(=\operatorname{cl}_{\beta(X \times Y)}\left(X \times Y_{i}\right)\right) \hookrightarrow \beta(X \times Y)$ and denote by t^{\prime} the inclusion $\beta X \times Y_{i} \hookrightarrow \beta X \times Y$, together with the diagrams above, we have their corresponding commutative diagrams of algebras:

$$
\begin{align*}
& C_{0}(X \times Y) \longleftrightarrow C_{b}(X) \otimes C(Y) \xrightarrow{t^{* *}} C_{b}(X) \otimes C\left(Y_{i}\right) \rightarrow C_{0}\left(X \times Y_{i}\right) \tag{4.9}
\end{align*}
$$

The right square in the diagram above gives a commutative diagram of spaces

$$
\begin{aligned}
X \times Y_{i} & \rightarrow \beta\left(X \times Y_{i}\right) \\
& \downarrow \downarrow l \\
& \beta X \times Y_{i}
\end{aligned}
$$

in which $l^{*}=\left.h_{2}^{*}\right|_{C_{b}(X) \otimes C\left(Y_{i}\right)}$. Then, by (4.9) and $\beta\left(X \times Y_{i}\right)=c l_{\beta(X \times Y)}\left(X \times Y_{i}\right)$, we have the commutative diagram of spaces

$$
\begin{aligned}
& \underset{\|}{X \times Y} \underset{\downarrow h_{2}}{\beta(X \times Y)} \stackrel{t}{\hookleftarrow} c l_{\beta(X \times Y)}\left(X \times Y_{i}\right) \hookleftarrow X \times Y_{i} \\
& X \times Y \hookrightarrow \beta X \times Y \stackrel{t^{\prime}}{\hookleftarrow} \quad \beta X \times Y_{i} \quad \hookleftarrow X \times Y_{i}
\end{aligned}
$$

Then $\left.h_{2}\right|_{c l_{\beta(X \times Y)}}\left(X \times Y_{i}\right)=l$. After identifying $\beta X \times Y_{i}$ as $t^{\prime}\left(\beta X \times Y_{i}\right)$, we have $h_{2}^{-1}\left(\beta X \times Y_{i}\right)=l^{-1}\left(\beta X \times Y_{i}\right)=\beta\left(X \times Y_{i}\right)$, and hence $X \times Y_{i}$ is dense in $h_{2}^{-1}\left(\beta X \times Y_{i}\right)$.
Lemma 4.5. We have

$$
h_{2}^{*}\left(W_{p}\right) \in\left[\beta V_{p}\right] \quad \text { and } \quad h_{2}^{*}\left(W_{q}\right) \in\left[\beta V_{q}\right] .
$$

Proof. By the definition of $h_{2}^{*}, h_{2}^{*}\left(W_{p}\right)$ is the pullback of W_{p} to the base space $\beta(X \times Y)$. Then, according to (4.5),

$$
\begin{align*}
h_{2}^{*}\left(W_{p}\right)= & \left\{h_{2}^{*}(f)=\left(h_{2}^{*}\left(f_{1}\right), \ldots, h_{2}^{*}\left(f_{n}\right)\right):\right. \\
& h_{2}^{*}\left(f_{i}\right)=\left(h_{2}^{*}\left(f_{i}^{(1)}\right), h_{2}^{*}\left(f_{i}^{(2)}\right), \ldots, h_{2}^{*}\left(f_{i}^{(n)}\right)\right) \in \bigoplus_{k=1}^{n} C\left(h_{2}^{-1}\left(\beta X \times Y_{i}\right)\right) \\
& \text { s.t. } \left.\left.h_{2}^{*}\left(p_{i j}\right) h_{2}^{*}\left(f_{i}\right)\right|_{h_{2}^{-1}\left(X \times Y_{i j}\right)}=\left.h_{2}^{*}\left(f_{j}\right)\right|_{h_{2}^{-1}\left(X \times Y_{i j}\right)}\right\} . \tag{4.10}
\end{align*}
$$

By Lemma 4.4, $h_{2}^{*}\left(W_{p}\right)$ could be identified as

$$
\begin{align*}
h_{2}^{*}\left(W_{p}\right)= & \left\{h_{2}^{*}(f)=\left(h_{2}^{*}\left(f_{1}\right), \ldots, h_{2}^{*}\left(f_{n}\right)\right):\right. \\
& h_{2}^{*}\left(f_{i}\right)=\left(h_{2}^{*}\left(f_{i}^{(1)}\right), h_{2}^{*}\left(f_{i}^{(2)}\right), \ldots, h_{2}^{*}\left(f_{i}^{(n)}\right)\right) \in \bigoplus_{k=1}^{n} C\left(\beta\left(X \times Y_{i}\right)\right) \\
& \text { s.t. } \left.\left.h_{2}^{*}\left(p_{i j}\right) h_{2}^{*}\left(f_{i}\right)\right|_{X \times Y_{i j}}=\left.h_{2}^{*}\left(f_{j}\right)\right|_{X \times Y_{i j}}\right\} . \tag{4.11}
\end{align*}
$$

Because $C_{b}\left(X \times Y_{i}\right)$ could be identified as $C\left(\beta\left(X \times Y_{i}\right)\right)$, compared with (3.1), we have $h_{2}^{*}\left(W_{p}\right) \in\left[\beta V_{p}\right]$ and similarly $h_{2}^{*}\left(W_{q}\right) \in\left[\beta V_{q}\right]$.

Remark 4.6. It is well known that, for the cover $\left\{\beta\left(X \times Y_{i}\right)\right\}_{i}$, the vector bundles determined by two cocycles $\left(h_{2}^{*}\left(p_{i j}\right), \beta\left(X \times Y_{i}\right)\right)$ and $\left(h_{2}^{*}\left(q_{i j}\right), \beta\left(X \times Y_{i}\right)\right)$ are isomorphic if and only if they are equivalent systems of transition functions; that is, for each i, there exists $r_{i} \in U_{n}\left(\beta\left(X \times Y_{i}\right)\right)$ such that

$$
\begin{equation*}
\left.h_{2}^{*}\left(p_{i j}\right)\right|_{\beta\left(X \times Y_{i j}\right)}=\left.r_{i} h_{2}^{*}\left(q_{i j}\right) r_{i}^{-1}\right|_{\beta\left(X \times Y_{i j}\right)} . \tag{4.12}
\end{equation*}
$$

Now we can begin to prove Theorem 4.1.
Proof of Theorem 4.1. If $\left[\beta V_{p}\right]=\left[\beta V_{q}\right]$, by Lemma 4.5, the vector bundle $h_{2}^{*}\left(W_{p}\right)$ is isomorphic to $h_{2}^{*}\left(W_{q}\right)$. By Remark 4.6, there exists $r_{i} \in U_{n}\left(\beta\left(X \times Y_{i}\right)\right)$ with the condition (4.12). But if $X \times Y_{i j}$ is dense in $\beta\left(X \times Y_{i j}\right)$, then the condition (4.12) could be identified as

$$
\begin{equation*}
\left.h_{2}^{*}\left(p_{i j}\right)\right|_{X \times Y_{i j}}=\left.r_{i} h_{2}^{*}\left(q_{i j}\right) r_{i}^{-1}\right|_{X \times Y_{i j}} . \tag{4.13}
\end{equation*}
$$

By the definition of $h_{2}, \widehat{p_{i j}}$, and $\widehat{q_{i j}},\left.h_{2}^{*}\left(\widehat{p_{i j}}\right)\right|_{X \times Y_{i j}}=p_{i j}$ and $\left.h_{2}^{*}\left(\widehat{q_{i j}}\right)\right|_{X \times Y_{i j}}=q_{i j}$. If we denote $r_{i}^{\prime}=\left.r_{i}\right|_{X \times Y_{i j}} \in U_{n}\left(C_{b}\left(X \times Y_{i j}\right)\right)$, then we have

$$
\begin{equation*}
\left.p_{i j}\right|_{X \times Y_{i j}}=\left.r_{i}^{\prime} q_{i j} r_{i}^{\prime-1}\right|_{X \times Y_{i j}}, \tag{4.14}
\end{equation*}
$$

which induces the equivalence of the cocyles $\left(p_{i j}, X \times Y_{i}\right)$ and $\left(q_{i j}, X \times Y_{i}\right)$. Again by Remark 4.6, we have the isomorphism between Z_{p} and Z_{q}, and hence $p=q$, which is a contradiction to the assumption in the theorem.
Remark 4.7. In the argument above, we use a map h_{2} from $\beta(X \times Y)$ to $\beta X \times Y$ with $\left.h_{2}\right|_{X \times Y}=i d_{X \times Y}$. Generally, the map h_{2} is not surjective, or, in other words, $\beta(X \times Y)$ and $\beta X \times Y$ might not be the same [4].
Acknowledgments. The author wishes to thank the reviewers for their careful reading and valuable comments.

This work was supported in part by National Natural Science Foundation of China (NSFC) grant no. 11326104 and by the Fundamental Research Funds of Jiaxing University grant no. 70513016. The author also thanks the Harbin Institute of Technology, where most of this article was written, for its warm hospitality.

References

1. D. Bakić and B. Guljas̆, Extensions of Hilbert C^{*}-modules II, Glas. Mat. Ser. III 38 (2003), 341-357. Zbl 1057.46046. MR2052751. DOI 10.3336/gm.38.2.12.
2. D. Bakić and B. Guljas̆, Extensions of Hilbert C^{*}-modules, Houston J. Math. 30 (2004), 537-558. Zbl 1069.46032. MR2084917. 51, 55
3. C. H. Dowker, Mapping theorems for noncompact spaces, Amer. J. Math. 69 (1947), 200-242. Zbl 0037.10101. MR0020771.
4. I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), no. 3, 369-382. Zbl 0089.38702. MR0105667. 61
5. D. Husemoller, Fibre Bundles, McGraw-Hill, New York, 1966. Zbl 0144.44804. MR0229247.
6. V. M. Manuilov and J. Zhu, Extensions of Hilbert C^{*}-modules: Classification in simple cases, Russ. J. Math. Phys. 19 (2012), 197-202 Zbl 1285.46045. MR2926324. DOI 10.1134/ S1061920812020069. 51
7. G. K. Pedersen, C^{*}-algebras and Their Automorphism Groups, Academic Press, New York, 1979. MR0548006. 53
8. R. Walker, The Stone-Čech Compactification, Ergeb. Math. Grenzgeb. 83, Springer, Berlin, 1974. Zbl 0292.54001. MR0380698. 56

College of Mathematics, Physics and Information Engineering, Jiaxing Universitiy, Jiaxing 314000, Zhejiang Province, P.R. China.

E-mail address: zhujingming_math@163.com

[^0]: Copyright 2017 by the Tusi Mathematical Research Group.
 Received Mar. 27, 2016; Accepted Jun. 8, 2016.
 2010 Mathematics Subject Classification. Primary 39B82; Secondary 44B20, 46C05.
 Keywords. Hilbert modules, compactification, vector bundle.

