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Abstract. Let λ = (λn)n≥1be a nondecreasing sequence of positive numbers
tending to infinity such that λ1 = 1 and λn+1 ≤ λn + 1 for all n, and let
In = [n − λn + 1, n] for n = 1, 2, . . . . Then for any given nonzero sequence
µ, we define by ∆+(µ) the operator that generalizes the operator of the first
difference and is defined by ∆+(µ)xk = µk(xk − xk+1). In this article, for
any given integer r ≥ 1, we deal with the λ+r(µ)-statistical convergence that
generalizes in a certain sense the well-known λr

E-statistical convergence. The
main results consist in determining sets of sequences χ and χ′ of the form s0ξ
satisfying χ ⊂ [V, λ]0(∆

+r(µ)) ⊂ χ′ and sets κ and κ′ of the form sξ satisfying
κ ≤ [V, λ]∞(λ+r(µ)) ≤ κ′. This study is justified since the infinite matrix
associated with the operator ∆+r(µ) cannot be explicitly calculated for all r.

1. Introduction and preliminaries

1.1. Statistical convergence. The notion of statistical convergence, first intro-
duced by Fast [8], was later studied by Fridy ([9], [10]), Fridy and Orhan [11],
and Connor [4]. The sequence X = (xn)n≥1 is said to be statistically convergent
to the number L if

lim
n→∞

1

n

∣∣{k ≤ n : |xk − L| ≥ ε
}∣∣ = 0 for all ε > 0,

where the vertical bars indicate the number of elements in the enclosed set. Note
that lacunary statistical convergence, which was introduced by Fridy and Orhan
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([11], [12]) and further studied by Alotaibi et al. [1], can be considered as a
special case of statistical convergence. Recall that [6] defined the λ+r

E -statistical
convergence where λ = (λn)n is a nondecreasing sequence of positive numbers
tending to infinity such that λ1 = 1 and λn+1 ≤ λn + 1 for all n (see also
[2], [3], [7], [5], [19]). For a given Banach space E, the sequence (xn)n≥1 is said to
be λ+r

E -statistically convergent if

lim
n→∞

1

λn

∣∣{k ∈ In : ‖∆+rxk − L‖ ≥ ε
}∣∣ = 0,

where In = [n − λn + 1, n] for n = 1, 2, . . .; ∆+xk = xk − xk+1; and ∆+rxk =∑r
j=0(−1)j(rj)xk+j.

In the present article, we will take E = R or C, L = 0 and replace ∆+r by
∆+r(µ) = (Dµ∆

+)r and deal with the λ+r(µ)-statistical convergence to zero. (In
all that follows, the subscripts are greater or equal to 1.) We will also consider the
infinite matrix of first difference ∆+ = (anm)n,m≥1 defined by ann = 1, an,n+1 =
−1 and anm = 0 otherwise. Let Dµ be the diagonal matrix defined by [Dµ]nn = µn

for all n and consider the set U of all sequences such that un 6= 0 for all n. Then
we let ∆+(µ) = Dµ∆

+ for µ ∈ U .
From the generalized de la Vallée-Poussin mean defined by

tn(X) =
1

λn

∑
k∈In

xk for X = (xn)n,

we are led to define the following sets for r ≥ 1 integer

[V, λ]0
(
∆+r(µ)

)
=

{
X ∈ s : lim

n→∞

1

λn

∑
k∈In

∣∣∆+r(µ)xk

∣∣ = 0
}
,

[V, λ]∞
(
∆+r(µ)

)
=

{
X ∈ s : sup

n

1

λn

∑
k∈In

∣∣∆+r(µ)xk

∣∣ < ∞
}
.

In the case when λn = n, we will write the previous sets [V ]0(∆
+r(µ)) and

[V ]∞(∆+r(µ)). For the convenience of the reader, note that

[V, λ]0
(
∆+1(µ)

)
=

{
X ∈ s : lim

n→∞

1

λn

∑
k∈In

∣∣µk(xk − xk+1)
∣∣ = 0

}
,

and that in the previous definitions of [V, λ]0(∆
+r(µ)) and [V, λ]∞(∆+r(µ)), for

r = 2, we have

∆+2(µ)xk = µ2
kxk − µk(µk + µk+1)xk+1 + µkµk+1xk+2 for all k.

Note that there is no general expression for ∆+r(µ)xk where r is any given integer.
Now we can state the definition of λ+r(µ)-statistical convergence to zero.

Definition 1.1. A sequence X = (xn)n≥1 is said to be λ+r(µ)-statistically conver-
gent to zero if, for every ε > 0,

lim
n→∞

1

λn

∣∣{k ∈ In :
∣∣∆+r(µ)xk

∣∣ ≥ ε
}∣∣ = 0.
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In this case, we write xk → 0Sλ(∆
+r(µ)). If λn = n for all n, then we write

xk → 0S(∆+r(µ)).

Now we explicitly give both a relation between X ∈ [V, λ]0(∆
+r(µ)) and

the condition xk → 0Sλ(∆
+r(µ)) and a relation between the condition xk →

0S(∆+r(µ)) and the condition xk → 0Sλ(∆
+r(µ)). In this way we have the next

results.

Theorem 1.2. Let α, µ ∈ U+, and let r ≥ 1 be an integer. Then

(a) X ∈ [V, λ]0(∆
+r(µ)) implies that xk → 0Sλ(∆

+r(µ)) and the inclusion is
proper;

(b) if X ∈ l∞(∆+r(µ)) and xk → 0Sλ(∆
+r(µ)), then X ∈ [V, λ]0(∆

+r(µ)),
where l∞(∆+r(µ)) := {X ∈ s : supk | ∆+r(µ)xk |< ∞}.

Proof. (a) This follows easily from the following:

1

λn

∑
k∈In

∣∣∆+r(µ)xk

∣∣ ≥ ε

λn

∣∣{k ∈ In :
∣∣∆+r(µ)xk

∣∣ ≥ ε
}∣∣.

The following example shows that the inclusion is proper. Let X = (xn)n≥1 be
defined such that

∆+r(µ)xk =

{
k for n− [

√
λn] + 1 ≤ k ≤ n,

0 otherwise.

Then X /∈ l∞, and for 0 < ε ≤ 1,

1

λn

∣∣{k ∈ In :
∣∣∆+r(µ)xk

∣∣ ≥ ε
}∣∣ = [

√
λn]

λn

→ 0 (n → ∞);

that is, xk → 0Sλ(∆
+r(µ)). But

1

λn

∑
k∈In

∣∣∆+r(µ)xk

∣∣9 0;

that is, x /∈ [V, λ]0(∆
+r(µ)).

(b) Let X ∈ l∞. Then |xk| ≤ M for all k, where M > 0. For ε > 0, we have

1

λn

∑
k∈In

∣∣∆+r(µ)xk

∣∣ = 1

λn

∑
k∈In

|∆+r(µ)|≥ε

∣∣∆+r(µ)xk

∣∣+ 1

λn

∑
k∈In

|∆+r(µ)|<ε

∣∣∆+r(µ)xk

∣∣
≤ M

λn

∣∣{k ∈ In :
∣∣∆+r(µ)xk

∣∣ ≥ ε
}∣∣+ ε.

Hence xk → 0Sλ(∆
+r(µ)) implies that X ∈ [V, λ]0(∆

+r(µ)). �

Remark 1.3. It is easy to see that Sλ(∆
+r(µ)) ⊆ S(∆+r(µ)) for all λ, since

λn/n ≤ 1.

Now we establish the reverse inclusion.
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Theorem 1.4. We have that S0(∆+r(µ)) ⊆ S0
λ(∆

+r(µ)) if and only if

lim inf
n→∞

λn

n
> 0, (1.1)

where by X ∈ S0(∆+r(µ)) (or X ∈ S0
λ(∆

+r(µ))), we mean that xk → 0S(∆+r(µ))
(or that xk → 0Sλ(∆

+r(µ))).

Proof. For ε > 0, we have{
k ∈ In :

∣∣∆+r(µ)xk

∣∣ ≥ ε
}
⊂

{
k ≤ n :

∣∣∆+r(µ)xk

∣∣ ≥ ε
}
.

Therefore,

1

n

∣∣{k ≤ n :
∣∣∆+r(µ)xk

∣∣ ≥ ε
}∣∣ ≥ 1

n

∣∣{k ∈ In :
∣∣∆+r(µ)xk

∣∣ ≥ ε
}∣∣

≥ λn

n
.
1

λn

∣∣{k ∈ In :
∣∣∆+r(µ)xk

∣∣ ≥ ε
}∣∣.

Letting n → ∞ and using (1.1), we get the inclusion.
Conversely, suppose that

lim inf
n→∞

λn

n
= 0.

Choose a subsequence (n(j))j≥1 such that
λn(j)

n(j)
< 1

j
. Define a sequence X =

(xk)k≥1 such that

∆+r(µ)xk =

{
1 for k ∈ In(j), j = 1, 2, 3, . . . ;
0 otherwise.

ThenX ∈ [V ]0(∆
+r(µ)), and hence by Theorem 1.2(a), we haveX ∈ 0S(∆+r(µ)).

But X /∈ [V, λ]0(∆
+r(µ)), and therefore by Theorem 1.2(b), we have X /∈

0Sλ(∆
+r(µ)). To get a subset for each of the sets [V ]0(∆

+r(µ)) and [V ]∞(∆+r(µ)),
we need the following. �

1.2. Some properties of the set Ĉ1. We write c0, c, and l∞ for the sets of null,
convergent and bounded sequences, respectively. If we then put U+ = {(un)n ∈
s : un > 0 for all n} and use Wilansky’s notation (see [20]), we define, for any
sequence α = (αn)n ∈ U+ and for any set of sequences E, the set

(1/α)−1 ∗ E =
{
(xn)n ∈ s : (xn/αn)n ∈ E

}
.

To simplify, we will write DαE = (1/α)−1 ∗ E, where Dα is the diagonal matrix

defined in Section 1.1, and we put sα = Dαl∞, s
0

α = Dαc0, and s
(c)
α = Dαc. Recall

that a Banach space E ⊂ s is a BK space if each projection X 7→ Pn(X) = xn is
continuous. Each of the spaces DαE, where E ∈ {l∞, c0, c}, is a BK space normed
by ‖X‖sα = supn(|xn|/αn), and s

◦
α has AK (see [14]).

Now let α = (αn)n, β = (βn)n ∈ U+. By Sα,β, we denote the set of all infinite
matrices A = (anm)n,m≥1 such that

‖A‖Sα,β
= sup

n

( 1

βn

∞∑
m=1

|anm|αm

)
< ∞.

The set Sα,β with norm ‖A‖Sα,β
is a Banach space with the norm.
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Let E and F be any subsets of s. When A maps E into F , we will write
A ∈ (E,F ) (see [13]). So for every X ∈ E, AX ∈ F (AX ∈ F will mean that,
for each n ≥ 1, the series defined by An(X) =

∑∞
m=1 anmxm is convergent and

(An(X))n ∈ F ). It was shown in [17] that A ∈ (sα, sβ) if and only if A ∈ Sα,β. So
we can write (sα, sβ) = Sα,β.

When sα = sβ, we obtain the Banach algebra with identity Sα,β = Sα (see [17])
normed by ‖A‖Sα = ‖A‖Sα,α . We also have A ∈ (sα, sα) if and only if A ∈ Sα.

If α = (rn)n≥1, Γα, Sα, sα, s
0

α and s
(c)
α are denoted by Γr, Sr, sr, s

0
r, and s

(c)
r ,

respectively. When r = 1, we obtain s1 = l∞, s01 = c0, and s
(c)
1 = c, and putting

e = (1, 1, . . .) we have S1 = Se. It is well known (see [13]) that (s1, s1) = (c0, s1) =
(c, s1). We also have A ∈ (c0, c0) if and only if A ∈ S1 and limn→∞ anm = 0 for
all m ≥ 1.

For any subset E of s, we put

AE = {Y ∈ s : Y = AX for some X ∈ E}.

If F is a subset of s, we denote

F (A) = FA = {X ∈ s : Y = AX ∈ F}.

Define now the set Ĉ1 of sequences α ∈ U+ satisfying the condition
supn(

∑n
k=1 αk)/αn < ∞. Let ∆ be the well-known operator defined by ∆xn =

xn − xn−1 for all n, with x0 = 0. Note that ∆T = ∆+. Therefore, we get the next
result (see [14]).

Lemma 1.5. Let α ∈ U+. The following conditions are equivalent:

(i) α ∈ Ĉ1,
(ii) the operator ∆ is bijective from sα to itself,
(iii) the operator ∆ is bijective from s0α to itself.

It can easily be deduced that if α ∈ Ĉ1, then for any given integer r ≥ 1 the
operator ∆r is bijective from sα to itself, and sα(∆

r) = sα. It is the same for
the operator ∆ considered as an operator from s0α to itself. Recall the following
result.

Lemma 1.6 ([14, Corollary 3.4, p. 1795]). Let r ≥ 1 be an integer. The following
properties are equivalent:

(i) α ∈ Ĉ1,
(ii) sα(∆) = sα,
(iii) sα(∆

r) = sα,
(iv) C(α)(Σr−1α) ∈ l∞.

In the remainder of this article, we will also use the next result (see [16, Propo-
sition 2.1, p. 1656]), where Γ is the set of all α ∈ U+ such that limn→∞(αn−1/
αn) < 1.

Lemma 1.7. Let α ∈ U+. Then

(i) if α ∈ Ĉ1, then there are K > 0 and γ > 1 such that αn ≥ Kγn for all n;
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(ii) the condition α ∈ Γ implies that α ∈ Ĉ1 and there is a real b > 0 such
that[
C(α)α

]
n
≤ 1

1− χ
+ bχn for n ≥ q + 1 and χ = γq(α) ∈ ]0, 1[.

To state some results on the sets [V ]0(∆
+(µ)) and [V ]∞(∆+(µ)), we will give

some properties on the sets sα(∆
+r(µ)) and s0α(∆

+r(µ)).

2. Some properties of the sets sα(∆
+r(µ)) and s0α(∆

+r(µ))
for r ≥ 1 integer

First, recall the following lemma (see [18, Theorem 3.5]).

Lemma 2.1. Let α, β ∈ U+. Then s0α = s0β if and only if there are K1, K2 > 0
such that

K1 ≤
αn

βn

≤ K2 for all n.

We also need the next result.

Lemma 2.2. Let r ≥ 1 be an integer, and let α ∈ U+. The operator represented
by the infinite matrix ∆+r is surjective from s0α(∆

+r) to s0α.

Proof. Consider the matrix ∆+r(e1, e2, . . . , er) obtained from ∆+r by addition of
the rows er, er−1, . . . , e1, respectively. Similarly for any B = (bn)n ∈ s, we will
write B(u1, u2, . . . , ur) for the vector obtained from B by addition of the scalars
ur, ur−1, . . . , u1; that is, B(u1, u2, . . . , ur) = (u1, u2, . . . , ur, b1, . . . , bn, . . .)

T . Since
the infinite matrix ∆+r(e1, e2, . . . , er) is a triangle, the equation ∆+rX = B,
where B ∈ s0α has infinitely solutions in s0α(∆

+r) given by

X =
[
∆+r(e1, e2, . . . , er)

]−1
B(u1, u2, . . . , ur)

for all scalars ur, ur−1, . . . , u1. This completes the proof. �

We will now use the convention xn = 1 for all n ≤ 0, and put (xn−r)n for
the sequence (1, . . . , 1, x1, . . . , xn−r, . . .), where x1 is in the (r + 1)-position. The
following theorem extends some results given in [15] and [16].

Theorem 2.3. Let α ∈ U+ and r ≥ 1 be an integer. Then

(i) (αn−1/αn)n ∈ l∞ if and only if s0(αn−1)n
⊂ s0α(∆

+);

(ii) the following statements are equivalent:

(a) α ∈ Ĉ1,
(b) s0α(∆

+) = s0(αn−1)n
,

(c) s0α(∆
+) ⊂ s0(αn−1)n

;

(iii) (a) (αn/αn−1)n ∈ l∞ if and only if, for any given integer r ≥ 1,

s0α ⊂ s0α(∆
+) ⊂ · · · ⊂ s0α(∆

+r);

(b) the conditions α ∈ Ĉ1 and (αn/αn−1)n ∈ l∞ are equivalent to
s0α(∆

+) = s0α;
(iv) the following statements are equivalent:

(a) s0α(∆
+) = s0α,
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(b) s0α(∆
+k) = s0α(∆

+(k+1)) for all k ≥ 0 integer,
(c) s0α(∆

+k) = s0α for all k ≥ 0 integer.

Proof. (i) We have s0(αn−1)n
⊂ s0α(∆

+) if and only if I ∈ (s0(αn−1)n
, s0α(∆

+)).

Thus ∆+X ∈ s0α for all X ∈ s0(αn−1)n
and ∆+ ∈ (s0(αn−1)n

, s0α). This means

D1/α∆
+D(αn−1)n ∈ (c0, c0), where D1/α∆

+D(αn−1)n = (anm)n,m≥1 with ann =
αn−1/αn, an,n+1 = 1 and anm = 0, otherwise. Using the characterization of (c0, c0)
given in the Introduction, we have D1/α∆

+D(αn−1)n ∈ S1 and (αn−1/αn)n ∈ l∞.
We conclude that s0(αn−1)n

⊂ s0α(∆
+) if and only if (αn−1/αn)n ∈ l∞.

(ii). First show that (c) implies (a). We have I ∈ (s0α(∆
+), s0(αn−1)n

) if and only
if

B = ∆+X ∈ s0α implies that X ∈ s0(αn−1)n
for all X ∈ s. (2.1)

Using elementary calculations (see [15]), and Lemma 2.2 for every B ∈ s0α, there
is X ∈ s0α(∆

+) such that B = ∆+X with xn = u −
∑n−1

k=1 bk for all u ∈ C. Then
(2.1) implies that, for every B = (bn)n ∈ s0α,

u−
∑n−1

k=1 bk
αn−1

→ 0 (n → ∞) for any given u ∈ C.

So if we take u = 0, then (
∑n−1

k=1 bk)/αn−1 → 0 (n → ∞); that is, for every B ∈ s0α
we have Σ−B ∈ s0(αn−1)n

, where

Σ− =


0
1 0 0
1 1 0
· · · ·

 .

We conclude that Σ− ∈ (s0α, s
0
(αn−1)n

); that is, Σ− ∈ Sα,(αn−1)n , which means that

α1 + · · ·+ αn−1

αn−1

= O(1) (n → ∞) and α ∈ Ĉ1.

Thus we have shown that (c) implies (a).

Let us show now that (a) implies (b). Assume that α ∈ Ĉ1 and let X ∈ s0α(∆
+).

We have B = ∆+X ∈ s0α and for every n, we have xn = u −
∑n−1

k=1 bk for u ∈ C.
As we have seen above, the condition α ∈ Ĉ1 implies that Σ− ∈ Sα,(αn−1)n and
Σ−B ∈ s0(αn−1)n

for all B ∈ s0α. Then

xn

αn−1

=
u−

∑n−1
k=1 bk

αn−1

= o(1) (n → ∞);

that is,X ∈ s0(αn−1)n
, and we conclude that s0α(∆

+) ⊂ s0(αn−1)n
. Now α ∈ Ĉ1 implies

that (αn−1/αn)n≥1 ∈ l∞, and by (i), s0(αn−1)n
⊂ s0α(∆

+). So s0α(∆
+) = s0(αn−1)n

and

we have shown that (a) implies (b). We conclude that (b) implies (c) and that
(c) implies (a) and that (a) implies (b). This completes the proof of (ii).

(iii)(a) Let X ∈ s0α. Then condition (αn+1/αn)n≥1 ∈ l∞ implies that

xn − xn+1

αn

=
xn

αn

− xn+1

αn+1

αn+1

αn

→ 0 (n → ∞)
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and s0α ⊂ s0α(∆
+). Now assume that, for any given integer i ≥ 1, X ∈ s0α(∆

+i);
then Y = ∆+iX ∈ s0α, and with s0α ⊂ s0α(∆

+), then Y ∈ s0α(∆
+) and X ∈

s0α(∆
+(i+1)). So we have s0α(∆

+i) ⊂ s0α(∆
+(i+1)), which shows the necessity.

Conversely, the inclusion s0α ⊂ s0α(∆
+) implies that ∆+X ∈ s0α for all X ∈ s0α.

Thus ∆+ ∈ (s0α, s
0
α) and (αn+1/αn)n ∈ l∞.

(iii)(b) If α ∈ Ĉ1 and (αn/αn−1)n ∈ l∞, then there are K1, K2 > 0 such that

K1 ≤
αn

αn−1

≤ K2 for all n.

Then by Lemma 2.1, we have s0(αn−1)n
= s0α. By (ii), we conclude that the condition

α ∈ Ĉ1 implies that s0α(∆
+) = s0(αn−1)n

= s0α.

Conversely, assume that s0α(∆
+) = s0α. Then I ∈ (s0α, s

0
α(∆

+)) and ∆+ ∈
(s0α, s

0
α); that is, (αn/αn−1)n ∈ l∞. Now as we have just seen in the proof of

(c) implying (a) in (ii), for every B ∈ s0α there is X ∈ s such that B = ∆+X with
xn = u−

∑n−1
k=1 bk for all u ∈ C. Then for every B ∈ s0α with B = ∆+X, we have

that X ∈ s0α; that is,

u−
∑n−1

k=1 bk
αn

→ 0 (n → ∞) for any given u ∈ C.

Then if we take u = 0, we have Σ− ∈ (s0α, s
0
(αn−1)n

); that is, Σ− ∈ Sα,(αn−1)n . So

α1 + · · ·+ αn−1

αn−1

= O(1) (n → ∞) and α ∈ Ĉ1.

The proof of (iv) is elementary and left to the reader. �

We immediately deduce the following corollary.

Corollary 2.4. Let r ≥ 1 be an integer, and assume that (αn/αn−1)n ∈ l∞. Then
s0α(∆

+r) ⊂ s0α implies that s0α(∆
+r) = s0α.

Proof. By Theorem 2.3(iii)(a), the condition (αn/αn−1)n ∈ l∞ implies that s0α ⊂
s0α(∆

+r). So the condition s0α(∆
+r) ⊂ s0α implies that s0α(∆

+r) = s0α. �

Remark 2.5. Note that in Theorem 2.3, the conditions α ∈ Ĉ1 and (αn/αn−1)n ∈
l∞ are equivalent to s0α(∆

+) = s0(αn−1)n
= s0α.

Corollary 2.6. Let α ∈ U+.

(i) Let r ≥ 1 be an integer. The condition α ∈ Ĉ1 implies s0α(∆
+r) = s0(αn−r)n

.

(ii) The conditions α ∈ Ĉ1 and (αn/αn−1)n ∈ l∞ are equivalent to s0α(∆
+k) =

s0α for all k ≥ 0.

Proof. For statement (i), the condition α ∈ Ĉ1 implies that s0α(∆
+) = s0(αn−1)n

by Theorem 2.3(ii). Now let j ≥ 1 be an integer, and assume that s0α(∆
+j) =

s0(αn−j)n
. Then X ∈ s0α(∆

+(j+1)) if and only if ∆+(j+1)X ∈ s0α, which in turn is

∆+X ∈ s0α(∆
+j) = s0(αn−j)n

. So s0α(∆
+(j+1)) = s0(αn−j)n

(∆+). Since α ∈ Ĉ1, then

(αn−j)n ∈ Ĉ1 and s0(αn−j)n
(∆+) = s0α(∆

+(j+1)) = s0(αn−(j+1))n
. This shows (i).
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For statement (ii), the conditions α ∈ Ĉ1 and αn/αn−1 = O(1) (n → ∞)
imply that s0α(∆

+) = s0(αn−1)n
= s0α by Theorem 2.3(iii)(b). This implies that

s0α(∆
+k) = s0(αn−k)n

= s0α by what we have just shown. Conversely, assume that

s0α(∆
+k) = s0α for all k ≥ 0; then obviously s0α(∆

+) = s0α, and by Theorem 2.3

this implies that α ∈ Ĉ1 and αn/αn−1 = O(1) (n → ∞). �

Corollary 2.7. Let α ∈ U+. The following conditions are equivalent:

(i) s0α(∆
+) 6= s0α;

(ii) there is k ≥ 0 integer such that s0α(∆
+k) 6= s0α(∆

+(k+1));

(iii) either α /∈ Ĉ1 or there is a sequence of integers (ni)i strictly increasing to
infinity such that αni

/αni−1 → ∞ (i → ∞).

Proof. Here (i) is equivalent to (ii) by Theorem 2.3(iv), and (i) is equivalent to
(iii) by Theorem 2.3(iii). �

Corollary 2.8. Let α ∈ U+\Ĉ1. Then (αn/αn−1)n ∈ l∞ if and only if

s0(αn−1)n
& s0α(∆

+).

Proof. This result comes from Theorem 2.3 parts (i) and (iii). Indeed, by Theo-

rem 2.3(ii), α ∈ U+\Ĉ1 if and only if s0(αn−1)n
6= s0α(∆

+). �

Using Theorem 2.3 and the equivalence (ii) and (iii) in Corollary 2.8, we get
the following.

Proposition 2.9. Let α ∈ U+\Ĉ1. Then (αn/αn−1)n ∈ l∞ if and only if, for any
given integer k ≥ 1,

s0α $ s0α(∆
+) $ · · · $ s0α(∆

+k).

We immediately deduce the following.

Theorem 2.10. Let r ≥ 1 be an integer, and let α ∈ U+. Then we have the
following.

(i) For any given β ∈ U+, the condition

s0α(∆
+r) ⊂ s0β ⊂ s0α(∆

+(r+1)) (2.2)

implies that s0α = s0β = s0α(∆
+r).

(ii) Condition (2.2) implies that (αn/αn−1)n ∈ l∞, α ∈ Ĉ1 and s0α = s0(αn+j)n

for all j ≥ 1.

Proof. (i) First, the inclusion s0α(∆
+r) ⊂ s0α(∆

+(r+1)) implies that

∆+rX = Y ∈ s0α implies ∆+Y ∈ s0α for all Y ∈ s.

By Lemma 2.2, the operator represented by the infinite matrix ∆+r is surjective
from s0α(∆

+r) to s0α. So ∆+ ∈ Sα and (αn+1/αn)n ∈ l∞, and by Theorem 2.3(iii),
we have s0α ⊂ s0α(∆

+r).
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Now the condition s0β ⊂ s0α(∆
+(r+1)) implies that I ∈ (s0β, s

0
α(∆

+(r+1))) and

that ∆+(r+1) ∈ Sβ,α; and since all the diagonal entries of ∆+(r+1) are equal to 1,
we successively get β/α ∈ l∞ and s0β ⊂ s0α. Then

s0α ⊂ s0α(∆
+r) ⊂ s0β ⊂ s0α

and s0α = s0β = s0α(∆
+r).

(ii) By (i) and Theorem 2.3(iii), condition (2.2) implies that (αn/αn−1)n ∈ l∞
and α ∈ Ĉ1. Then the condition (αn/αn−1)n ∈ l∞ implies that s0α ⊃ s0(αn+1)n

⊃
· · · ⊃ s0(αn+j)n

and α ∈ Ĉ1 implies that (αn−1/αn)n ∈ l∞ and s0α ⊂ s0(αn+1)n
⊂

· · · ⊂ s0(αn+j)n
for all j ≥ 1. This gives the conclusion. �

Concerning the sets s0α(∆
+r(µ)) and sα(∆

+r(µ)), we deduce from the preceding
the next result.

Lemma 2.11. Let α, µ ∈ U+, and let r ≥ 1 be an integer. If

α/µ,
(
αn−1/(µn−1µn)

)
n
, . . . ,

(
αn−r+1/(µn−r+1 · · ·µn)

)
n
∈ Ĉ1 (2.3)

holds, then we have

s0α
(
∆+r(µ)

)
= s0

(
αn−r

µn−r ···µn−1
)n

and sα
(
∆+r(µ)

)
= s( αn−r

µn−r+1···µn−1
)n
.

Proof. It is enough to show that under (2.3), s0α(∆
+r(µ)) = s0(αn−r/(µn−r···µn−1))n

,

the other proof being similar. Since s0α(∆
+(µ)) = s0α/µ(∆

+) by Corollary 2.6(i),

we have s0α(∆
+(µ)) = s0(αn−1/µn−1)n

for α/µ ∈ Ĉ1 and the lemma holds for r = 1.
Now let j be an integer with 1 ≤ j ≤ r − 1 and assume that

s0α
(
∆+j(µ)

)
= s

(
αn−j

µn−j ···µn−1
)n

for α/µ, (αn−1/(µn−1µn))n, . . . , (αn−j+1/(µn−j+1 · · ·µn))n ∈ Ĉ1. Then

s0α
(
∆+(j+1)(µ)

)
=

{
X ∈ s : ∆+j(µ)

(
∆+(µ)X

)
∈ sα

}
=

{
X ∈ s : ∆+(µ)X ∈ sα

(
∆+j(µ)

)}
= s0(αn−j/(µn−j ···µn−1))n

(
∆+(µ)

)
.

Now the condition ( αn−j

µn−j · · ·µn−1

1

µn

)
n
∈ Ĉ1 (2.4)

implies that

s0
(

αn−j
µn−j ···µn−1

)n

(
∆+(µ)

)
= s0

(
αn−1−j

µn−1−j ···µn−2

1
µn−1

)n
= s0

(
αn−(j+1)

µn−(j+1)···µn−1
)n
.

Since condition (2.4) is equivalent to
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µn−(j+1)+1 · · ·µn

)
n
∈ Ĉ1,

we have shown how α/µ, (αn−1/(µn−1µn))n, . . . , (αn−(j+1)+1/(µn−(j+1)+1 · · ·
µn))n ∈ Ĉ1 implies that

s0α
(
∆+(j+1)(µ)

)
= s0

(
αn−(j+1)

µn−(j+1)···µn−1
)n
.

This completes the proof. �

Remark 2.12. We immediately see that α ∈ Ĉ1 successively implies that

sα(∆
r) = sα, s

◦

α(∆
r) = s

◦

α, sα(∆
+r) = s(αn−r)n and

s
◦

α(∆
+r) = s

◦

(αn−r)n
.

3. Properties of the sets [V ]0(∆
+r(µ)) and [V ]∞(∆+r(µ))

In this section, we give some conditions to have xk → 0S(∆+r(µ)). Among other
things we also make explicit interesting subsets of [V ]0(∆

+r(µ)) and
[V ]∞(∆+r(µ)). In the following we will use the condition

sup
n

( 1
n

n∑
k=1

αk

)
< ∞ (3.1)

for given sequence α ∈ U+. We will put ξ = (n)n, and we will denote by C(ξ) =
(cnm)n,m≥1, or C1 for short, the Cesàro operator defined by cnm = 1/n for m ≤ n
and cnm = 0 otherwise. It can easily be seen that C1 ∈ (c0, c0) and c0(∆

+r(µ)) ⊂
[V ]0(∆

+r(µ)). Since Y = ∆+r(µ)X ∈ c0 implies that C1(|Y |) ∈ c0, it is interesting
to explicitly define a set E ⊂ s such that

c0
(
∆+r(µ)

)
 E ⊂ [V ]0

(
∆+r(µ)

)
. (3.2)

We will see that we can take E = s0α(∆
+r(µ)) for α /∈ l∞ satisfying (3.1). In this

way we are led to state the following result.

Proposition 3.1. Let α ∈ U+. Assume there is a map ϕ : N∗ 7→ N∗ strictly
increasing satisfying the following conditions:

(i) n2/ϕ(n) = O(1) (n → ∞),
(ii) αϕ(n)/n = O(1) (n → ∞),
(iii) (

∑
k∈I,k≤n αk)/n = O(1) (n → ∞) where I = [ϕ(N∗)]c.

Then α ∈ U+\l∞ satisfies (3.1).

Proof. Let n ≥ 1 be an integer and let in be the greatest integer less than n, for
which ϕ(in) ≤ n. So we have ϕ(in) ≤ n < ϕ(in + 1). Then there is K > 0 such
that ∑n

k=1 αk

n
=

αϕ(1) + · · ·+ αϕ(in) +
∑

k∈I,k≤n αk

n

≤ K
1 + 2 + · · ·+ in

n
+

1

n

∑
k∈I,k≤n

αk
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≤ K
in(in+1)

2

ϕ(in)
+

1

n

∑
k∈I,k≤n

αk = O(1) (n → ∞).

So we have shown that α /∈ l∞ and (
∑n

k=1 αk)/n = O(1) (n → ∞).
For example, let α be a sequence satisfying α2i = i for all i ≥ 1 and αk ≤ K

for given K > 0 and for all k ∈ I, where I = {k ∈ N∗ : k 6= 2i for all i ≥ 1}.
Then (3.1) holds. �

Now we can state the main result.

Theorem 3.2. Let α, µ ∈ U+, and let r ≥ 1 be an integer. Assume that (2.3)
and (3.1) hold. Then we have

xk → 0S
(
∆+r(µ)

)
for all sequences (xn)n ∈ s such that lim

n→∞

µn−1 · · ·µn−r

αn−r

xn = 0.

Proof. We have C(ξ)|∆+r(µ)X| ∈ c0 if and only if∣∣∆+r(µ)X
∣∣ ∈ ∆s0(n)n . (3.3)

Now (3.3) is satisfied when ∣∣∆+r(µ)X
∣∣ ∈ s0α (3.4)

with

s0α ⊂ ∆s0(n)n . (3.5)

Thus by Lemma 2.11, condition (2.3) implies that (3.4) holds if and only if

X ∈ s0α
(
∆+r(µ)

)
= s0(αn−r/(µn−r···µn−1))n

and (3.1) means D1/ξΣDα ∈ (c0, c0), which is equivalent to (3.5). Now for ε > 0,
we get

1

n

n∑
k=1

∣∣∆+r(µ)xk

∣∣ ≥ 1

n

∑
k∈Iε(n)

∣∣∆+r(µ)xk

∣∣ ≥ ε

n

∣∣{k ≤ n :
∣∣∆+r(µ)xk

∣∣ ≥ ε
}∣∣.

We easily conclude, since as we have just seen

lim
n→∞

µn−1 · · ·µn−r

αn−r

xn = 0 implies that
1

n

n∑
k=1

∣∣∆+r(µ)xk

∣∣ → 0 (n → ∞).
�

Remark 3.3. From Theorem 3.2 under (2.3) and (3.1), we have

s0
(

αn−r
µn−1···µn−r

)
⊂ [V ]0

(
∆+r(µ)

)
.

Using a similar argument, we also have s( αn−r
µn−1···µn−r

) ⊂ [V ]∞(∆+r(µ)).
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Remark 3.4. Note that for µ = (2−n)n, we immediately see that

c0
(
∆+(µ)

)
= s02 ⊂ [V ]0

(
∆+(µ)

)
,

and that

c0
(
∆+2(µ)

)
= s0(1/2−(2n−3))n

= s04 ⊂ [V ]0
(
∆+2(µ)

)
.

In fact for α = e, we get α/µ = (2n)n, (αn−1/µn−1µn)n = (22n−1)n ∈ Ĉ1.

Proposition 3.5. Let β, µ ∈ U+, and let r ≥ 1 be an integer. Assume that

(n/βn)n ∈ l∞ and β/µ, (βn−1/(µn−1µn))n, . . . , (βn−r+1/(µn−r+1 · · ·µn))n ∈ Ĉ1.
Then we have

[V ]0
(
∆+r(µ)

)
⊂ s0(βn−r/(µn−r···µn−1))n

and

[V ]∞
(
∆+r(µ)

)
⊂ s(βn−r/(µn−r···µn−1))n .

(3.6)

Proof. As we have seen above, X ∈ [V ]0(∆
+r(µ)) if and only if∣∣∆+r(µ)X

∣∣ ∈ ∆s0(n)n .

Now since (n/βn) ∈ l∞, we have D1/β∆D(n)n ∈ (c0, c0) and ∆s0(n)n ⊂ s0β. There-

fore, |∆+r(µ)X| ∈ s0β and X ∈ s0β(∆
+r(µ)). Finally by Lemma 2.11, we have

s0β
(
∆+r(µ)

)
= s0(βn−r/(µn−r···µn−1))n

and the first inclusion given in (3.6) holds. The other inclusion can be shown
similarly. �

Corollary 3.6. Let β, µ ∈ U+, and assume that (n/βn)n≥1 ∈ l∞ and β/µ ∈ Ĉ1.
Then we have

[V ]0
(
∆+(µ)

)
⊂ s0(βn−1/µn−1)n

and [V ]∞
(
∆+(µ)

)
⊂ s(βn−1/µn−1)n .

We also have the next result.

Proposition 3.7. Let α, µ ∈ U+ satisfy the conditions (αn/αn−1)n ∈ l∞ and
(
∑n

k=1 αkµk)/n = O(1) (n → ∞). Then xk → 0S(∆+(µ)) for all X ∈ s0α.

Proof. Let X ∈ s0α. First, we have D(1/n)nΣDµα = (σnm)n,m≥1 with σnm =
µmαm/n for m ≤ n and σnm = 0 for m > n; and since (

∑n
k=1 αkµk)/n = O(1)

(n → ∞), we deduce that D(1/n)nΣDµα ∈ S1 and σnm → 0 (n → ∞) for all m.
So by the characterization of (c0, c0), we conclude that D(1/n)nΣDµα ∈ (c0, c0).
Then (ΣDµ)s

0
α ⊂ s0(n)n and s0α ⊂ D1/µ∆s0(n)n . Now, by Corollary 2.6 the condition

(αn/αn−1)n ∈ l∞ implies that s0α ⊂ s0α(∆
+); we then have |∆+X| ∈ s0α for all

X ∈ s0α. Then |∆+X| ∈ D1/µ∆s0(n)n (i.e., C((n)n)|∆+(µ)X| ∈ c0 for all X ∈ s0α).
This concludes the proof. �

These results lead us to compare Theorem 3.2 with Proposition 3.7. In this
way we can finish the next remark.
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Remark 3.8. Note that Theorem 3.2 does not imply Proposition 3.7, and con-
versely Proposition 3.7 does not imply Theorem 3.2. Indeed, let α be a sequence
defined by α2i = i for all i ≥ 1 and αk = 1 for all k ∈ I, where I = {k ∈ N∗ : k 6=
2i for all i ≥ 1}. For µ = (2−n)n, we deduce that Theorem 3.2 holds for r = 1
and that Proposition 3.7 cannot be satisfied. Now take α = 1/µ = (2n)n; then
xk → 0S(∆+(µ)) by Proposition 3.7 and α does not satisfy (2.3) and Theorem 3.2
with r = 1.
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bia.

E-mail address: vrakoc@ptt.rs

http://www.emis.de/cgi-bin/MATH-item?1052.47023
http://www.ams.org/mathscinet-getitem?mr=2077352
http://www.emis.de/cgi-bin/MATH-item?1303.40004
http://www.ams.org/mathscinet-getitem?mr=3132539
http://www.emis.de/cgi-bin/MATH-item?0531.40008
http://www.ams.org/mathscinet-getitem?mr=0738632
mailto:bdemalaf@wanadoo.fr
mailto:mursaleenm@gmail.com
mailto:vrakoc@ptt.rs

	1 Introduction and preliminaries
	1.1 Statistical convergence
	1.2 Some properties of the set C1

	2 Some properties of the sets salpha ( Delta+r ( µ) )  and salpha0 (Delta+r ( µ) )  for r>=1 integer
	3 Properties of the sets  [ V ] 0 ( Delta+r ( µ) )  and  [ V ] infty ( Delta+r ( µ) ) 
	Acknowledgment
	References
	Author's addresses

