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Abstract. The exact value of the Schäffer-type constants are investigated
under the absolute normalized norms on R2 by means of their correspond-
ing continuous convex functions on [0, 1]. Moreover, some sufficient conditions
which imply uniform normal structure are presented. These results improve
some known results.

1. Introduction and preliminaries

Throughout this article, SX and BX denote the unit sphere and the unit ball
of a Banach space X, respectively. Let C be a nonempty bounded closed convex
subset of a Banach space X. A mapping T : C → C is said to be nonexpansive,
provided that the inequality

‖Tx− Ty‖ ≤ ‖x− y‖
holds for every x, y ∈ C. A Banach space X is said to have the fixed point property
if every nonexpansive mapping T : C → C has a fixed point.

Recall that a Banach space X is called uniformly nonsquare in the sense of
Schäffer if there is a λ > 1 such that

max
(
‖x+ y‖, ‖x− y‖

)
≥ λ

for all x, y ∈ SX . The Schäffer constant, defined by

S(X) = inf
{
max

{
‖x+ y‖, ‖x− y‖ : x, y ∈ SX

}}
,
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is introduced to characterize this concept: X is uniformly nonsquare in the sense
of Schäffer if and only if S(X) > 1.

A bounded convex subset K of a Banach space X is said to have normal
structure if for every convex subset H of K that contains more than one point
there exists a point x0 ∈ H such that

sup
{
‖x0 − y‖ : y ∈ H

}
< sup

{
‖x− y‖ : x, y ∈ H

}
.

A Banach space X is said to have uniform normal structure if there exists 0 <
c < 1 such that for any closed bounded convex subset K of X that contains more
than one point, there exists x0 ∈ K such that

sup
{
‖x0 − y‖ : y ∈ K

}
< c sup

{
‖x− y‖ : x, y ∈ K

}
.

It was proved by W. A. Kirk that every reflexive Banach space with normal
structure has the fixed point property.

In recent times, many constants in Banach space have been defined and/or
studied, such as the James constant in [6], the Schäffer constant in [11], and the
von Neumann–Jordan constant in [6]. It has been shown that these constants are
very useful in the geometric theory of Banach spaces, which enables us to classify
several important concepts of Banach spaces such as uniformly nonsquareness
and uniform normal structure (see [6], [9], [14]). On the other hand, calculation
of the constant for some concrete spaces is also of some interest (see [3], [4], [6],
[8], [13]–[15]). In [14], Takahashi introduced the Schäffer-type constant SX,t(τ) as
a generalization of the Schäffer constant S(X).

Definition 1.1. For τ ≥ 0 and 1 < t ≤ ∞ the constant SX,t(τ) is defined to be

SX,t(τ) = inf
{
Mt

(
‖x+ τy‖, ‖x− τy‖

)
: x, y ∈ SX

}
.

Mt(a, b) is the generalized mean defined by

Mt(a, b) :=
(at + bt

2

)1/t

,

where a and b are two positive real numbers. It is well known that Mt(a, b) is
nondecreasing and M∞(a, b) := limt→∞ Mt(a, b) = max(a, b). Obviously SX,t(τ)
is an extension of S(X), which also includes Gao’s constant f(X) = 2S2

X,2(1) (see
[3]) as a special case. Some basic properties of this new coefficient are investigated
in [14] and [15]. In particular, Wang and Yang in [15] study the constant SX,τ (1)
extensively and get some useful results, such as

(1) SX,τ (1) = min{Mt(ε, 2(1− %X(ε))) : 0 ≤ ε ≤ S(X)};
(2) X is uniformly nonsquare ⇔ SX,τ (1) > 1 for some t > 1.

The modulus of smoothness %X(ε) is defined in [1] as

%X(ε) = sup
{
1− ‖x+ y‖

2
: x, y ∈ SX , ‖x− y‖ ≤ ε

}
.

By the formula (1), they compute SX,τ (1) in some concrete spaces by the mod-
ulus of smoothness %X(ε). However, the value of %X(ε) in many some concrete
Banach spaces, such as the space of absolute normalized norms, is not known,
and therefore the formula (1) is invalid.
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In the following pages we give a simple method to determine and estimate the
SX,τ (1) of absolute normalized norms on R2 which are complementary to results
of Takahashi and of Wang and Yang (see [14] and [15]). Moreover, some sufficient
conditions which imply uniform normal structure are presented.

Recall that a norm on R2 is called absolute if ‖(z, w)‖ = ‖(|z|, |w|)‖ for all
z, w ∈ R and normalized if ‖(1, 0)‖ = ‖(0, 1)‖ = 1. Let Nα denote the family of
all absolute normalized norms on R2, and let Ψ denote the family of all continuous
convex functions on [0, 1] such that ψ(1) = ψ(0) = 1 and max{1−s, s} ≤ ψ(s) ≤ 1
(0 ≤ s ≤ 1). It has been shown that Nα and Ψ are in a one-to-one correspondence
(see [2]).

Proposition 1.2. If ‖ ·‖ ∈ Nα, then ψ(s) = ‖(1−s, s)‖ ∈ Ψ. On the other hand,
if ψ(s) ∈ Ψ, defining the norm ‖ · ‖ψ as

∥∥(z, ω)∥∥
ψ
:=

{
(|z|+ |ω|)ψ( |ω|

|z|+|ω|), (z, ω) 6= (0, 0),

0, (z, ω) = (0, 0),

then the norm ‖ · ‖ψ ∈ Nα.

A simple example of the absolute normalized norm is the usual lr (1 ≤ r ≤ ∞)
norm. From Proposition 1.2, one can easily get the corresponding function of the
lr norm:

ψr(s) =

{
{(1− s)r + sr}1/r, 1 ≤ r <∞,

max{1− s, s}, r = ∞.

Also, the above correspondence enables us to get many non-lr norms on R2. One
of the properties of these norms is stated in the following result.

Proposition 1.3. Let ψ, ϕ ∈ Ψ, and let ϕ ≤ ψ. Put M = max0≤s≤1
ψ(s)
ϕ(s)

. Then

‖ · ‖ϕ ≤ ‖ · ‖ψ ≤M‖ · ‖ϕ.

The Cesàro sequence space was defined by Shue [12] in 1970. It is very useful
in the theory of matrix operators and others. Let l be the space of real sequences.
For 1 < p <∞, the Cesàro sequence space cesp is defined by

cesp =
{
x ∈ l : ‖x‖ =

∥∥(x(i))∥∥ =
( ∞∑
n=1

( 1
n

n∑
i=1

∣∣x(i)∣∣)p)1/p

<∞
}
.

The geometry of Cesàro sequence spaces has been extensively studied in [7] and

[10]. Let us restrict ourselves to the 2-dimensional Cesàro sequence space ces
(2)
p ,

which is just R2 equipped with the norm defined by

∥∥(x, y)∥∥ =
(
|x|p +

( |x|+ |y|
2

)p)1/p

.
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2. Schäffer-type constant SX,t(1) and absolute normalized norm

For a norm ‖ · ‖ on R2, we write SX,τ (1)(‖ · ‖) for SX,τ (1)(R2, ‖ · ‖). It follows
from the property of SX,τ (t) that one can easily get the following result.

Proposition 2.1. Let X be a nontrivial Banach space, and let 1 < t <∞. Then

SX,τ (t) = inf
{(‖x+ τy‖t + ‖x− τy‖t

2min(‖x‖t, ‖y‖t)

)1/t

: x, y ∈ X, ‖x‖+ ‖y‖ 6= 0
}
.

Proposition 2.2. Let X be the space lr or Lr[0, 1] with dimX ≥ 2 (see [14]).

(1) Let 1 < r ≤ 2, and let 1/r + 1/r′ = 1. If r ≤ t ≤ ∞, then

SX,t(τ) =
((1 + τ)r + |1− τ |r

2

)1/r

for all τ ≥ 0.

(2) Let 2 ≤ r ≤ ∞, and let 1/r + 1/r′ = 1. If r′ ≤ t ≤ ∞, then

SX,t(τ) = (1 + τ r)1/r for all τ ≥ 0.

Proposition 2.3. Let ϕ ∈ Ψ, and let ψ(s) = ϕ(1− s). Then

SX,t(τ)
(
‖ · ‖ϕ

)
= SX,t(τ)

(
‖ · ‖ψ

)
.

Since ‖ · ‖ψ and ‖ · ‖ϕ are isometric, the proof of Proposition 2.3 is trivial, and
so we omit it.

Lemma 2.4. Let ‖ · ‖ and | · | be two equivalent norms on a Banach space. If
a| · | ≤ ‖ · ‖ ≤ b| · | (b ≥ a > 0), then

a

b
SX,t(τ)

(
| · |

)
≤ SX,t(τ)

(
‖ · ‖

)
≤ b

a
SX,t(τ)

(
| · |

)
.

We now consider the constant SX,t(1) of a class of absolute normalized norms
on R2. Now let us put

M1 = max
0≤s≤1

ψr(s)

ψ(s)
and M2 = max

0≤s≤1

ψ(s)

ψr(s)
.

Theorem 2.5. Let ψ ∈ Ψ, and let ψ ≥ ψr (1 ≤ r ≤ 2). If the function ψ(s)
ψr(s)

attains its maximum at s = 1/2 and r ≤ t ≤ ∞, then

SX,t(1)
(
‖ · ‖ψ

)
=

1

ψ(1/2)
.

Proof. By Proposition 1.3, we have ‖ · ‖r ≤ ‖ · ‖ψ ≤ M2‖ · ‖r. Let x, y ∈ X,
(x, y) 6= (0, 0), where X = R2. Then

‖x+ τy‖tψ + ‖x− τy‖tψ ≥ ‖x+ τy‖tr + ‖x− τy‖tr
≥ 2StX,t(τ)

(
‖ · ‖r

)
min

{
‖x‖tr, ‖y‖tr

}
≥ 2

M t
2

StX,t(τ)
(
‖ · ‖r

)
min

{
‖x‖tψ, ‖y‖tψ

}
from the definition of SX,t(τ) implies that

SX,t(τ)
(
‖ · ‖ψ

)
≥ 1

M2

SX,t(τ)
(
‖ · ‖r

)
.



456 Z.-F. ZUO and C.-L. TANG

Note that r ≤ t ≤ ∞ and the function ψ(s)
ψr(s)

attains its maximum at s = 1/2;

that is, M2 =
ψ(1/2)
ψr(1/2)

. Proposition 2.2 implies that

SX,t(τ)
(
‖ · ‖ψ

)
≥ 1

M2

SX,t(τ)
(
‖ · ‖r

)
=

1

ψ(1/2)
. (2.1)

On the other hand, let us put x = (a, a), y = (a,−a), where a = 1
2ψ(1/2)

; hence,

‖x‖ψ = ‖y‖ψ = 1, and(‖x+ y‖tψ + ‖x− y‖tψ
2

)1/t

= 2a =
1

ψ(1/2)
. (2.2)

From (2.1) and (2.2), we have

SX,t(1)
(
‖ · ‖ψ

)
=

1

ψ(1/2)
. �

Theorem 2.6. Let ψ ∈ Ψ, and let ψ ≤ ψr (2 ≤ r < ∞). If the function ψr(s)
ψ(s)

attains its maximum at s = 1/2 and r′ ≤ t ≤ ∞, then

SX,t(1)
(
‖ · ‖ψ

)
= 2ψ(1/2).

Proof. By Proposition 1.3, we have ‖ · ‖ψ ≤ ‖ · ‖r ≤ M1‖ · ‖ψ. Let x, y ∈ X,
(x, y) 6= (0, 0), where X = R2. Then

‖x+ τy‖tψ + ‖x− τy‖tψ ≥ 1

M t
1

(
‖x+ τy‖tr + ‖x− τy‖tr

)
≥ 2

M t
1

StX,t(τ)
(
‖ · ‖r

)
min

{
‖x‖tr, ‖y‖tr

}
≥ 2

M t
1

StX,t(τ)
(
‖ · ‖r

)
min

{
‖x‖tψ, ‖y‖tψ

}
from the definition of SX,t(τ) implies that

SX,t(τ)
(
‖ · ‖ψ

)
≥ 1

M1

SX,t(τ)
(
‖ · ‖r

)
.

Note that r′ ≤ t ≤ ∞ and the function ψr(s)
ψ(s)

attains its maximum at s = 1/2;

that is, M1 =
ψr(1/2)
ψ(1/2)

. Proposition 2.2 implies that

SX,t(1)
(
‖ · ‖ψ

)
≥ 1

M1

SX,t(1)
(
‖ · ‖r

)
= 2ψ(1/2). (2.3)

On the other hand, let us put x = (1, 0), y = (0, 1). Then ‖x‖ψ = ‖y‖ψ = 1 and(‖x+ y‖tψ + ‖x− y‖tψ
2

)1/t

= 2ψ(1/2). (2.4)

From (2.3) and (2.4), we have

SX,t(1)
(
‖ · ‖ψ

)
= 2ψ(1/2). �
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Example 2.7. Let X = R2 with the norm

‖x‖ = max
{
‖x‖2, λ‖x‖1

}
(1/

√
2 ≤ λ ≤ 1).

Then

SX,t(1)
(
‖ · ‖

)
=

1

λ
(2 ≤ t ≤ ∞).

Proof. It is very easy to check that ‖x‖ = max{‖x‖2, λ‖x‖1} ∈ Nα and its corre-
sponding function is

ψ(s) =
∥∥(1− s, s)

∥∥ = max
{
ψ2(s), λ

}
≥ ψ2(s).

Therefore,
ψ(s)

ψ2(s)
= max

{
1,

λ

ψ2(s)

}
.

Since ψ2(s) attains its minimum at s = 1/2, ψ(s)
ψ2(s)

attains its maximum at s = 1/2.

Therefore, from Theorem 2.5, we have

SX,t(1)
(
‖ · ‖ψ

)
=

1

ψ(1/2)
=

1

λ
. �

Example 2.8. Let X be the 2-dimensional Cesàro space ces
(2)
2 . Then

SX,t(1)(ces
(2)
2 ) =

√
10

5 +
√
5

(2 ≤ t ≤ ∞).

Proof. We first define

|x, y| =
∥∥∥( 2x√

5
, 2y

)∥∥∥
ces

(2)
2

for (x, y) ∈ R2. It follows that ces
(2)
2 is isometrically isomorphic to (R2, | · |) and

| · | is an absolute and normalized norm, and the corresponding convex function
is given by

ψ(s) =
[4(1− s)2

5
+
(1− s√

5
+ s

)2]1/2
.

Indeed, T : ces
(2)
2 → (R2, | · |) defined by T (x, y) = ( x√

5
, 2y) is an isometric

isomorphism. In the sequence, we prove that ψ(s) ≥ ψ2(s). Note that(1− s√
5

+ s
)2

≥
(1− s√

5

)2

+ s2.

Consequently,

ψ(s) ≥
(
(1− s)2 + s2

)1/2
= ψ2(s).

Some elementary computation shows that ψ(s)
ψ2(s)

attains its maximum at s = 1/2.

Therefore, from Theorem 2.5, we have

SX,t(1)(ces
(2)
2 ) =

1

ψ(1/2)
=

√
10

5 +
√
5
.

�



458 Z.-F. ZUO and C.-L. TANG

Example 2.9. Let X = R2 with the norm

‖x‖ = max
{
‖x‖2, λ‖x‖∞

}
(1 ≤ λ ≤

√
2).

Then

SX,t(1)
(
‖ · ‖

)
=

√
2

λ
(2 ≤ t ≤ ∞).

Proof. It is obvious to check that the norm ‖x‖ = max{‖x‖2, λ‖x‖∞} is absolute,
but not normalized, since ‖(1, 0)‖ = ‖(0, 1)‖ = λ. Let us put

| · | = ‖ · ‖
λ

= max
{‖ · ‖2

λ
, ‖ · ‖∞

}
.

Then | · | ∈ Nα, and its corresponding function is

ψ(s) =
∥∥(1− s, s)

∥∥ = max
{ψ2(s)

λ
, ψ∞(s)

}
≤ ψ2(s).

Thus
ψ2(s)

ψ(s)
= min

{
λ,

ψ2(s)

ψ∞(s)

}
.

Consider the increasing continuous function g(s) = ψ2(s)
ψ(s)

(0 ≤ s ≤ 1/2). Because

g(0) = 1 and g(1/2) =
√
2, there exists a unique 0 ≤ a ≤ 1 such that g(a) = λ.

In fact, g(s) is symmetric with respect to s = 1/2. Then we have

g(s) =

{
ψ2(s)
ψ(s)

, s ∈ [0, a] ∪ [1− a, a],

λ, s ∈ [a, 1− a].

Obviously, g(s) attains its maximum at s = 1/2. Hence, from Lemma 2.4 and
Theorem 2.6, we have

SX,t(1)
(
‖ · ‖

)
= SX,t(1)

(
| · |

)
= 2ψ(1/2) =

√
2

λ
. �

Example 2.10 (Lorentz sequence spaces). Let ω1 ≥ ω2 > 0, 2 ≤ r < ∞. Thus, if
we have a 2-dimensional Lorentz sequence space (i.e., R2 with the norm)∥∥(z, ω)∥∥

ω,r
=

(
ω1|x∗1|r + ω2|x∗2|r

)1/r
,

where (x∗1, x
∗
2) is the rearrangement of (|z|, |ω|) satisfying x∗1 ≥ x∗2, then

SX,t(1)
(∥∥(z, ω)∥∥

ω,r

)
=

(ω1 + ω2

ω1

)1/r

(r′ ≤ t ≤ ∞).

Proof. It is obvious that | · | = (‖(z, ω)‖ω,r)/ω1/q
1 ∈ Nα, and the corresponding

convex function is given by

ψ(s) =

{
[(1− s)r + (ω2/ω1)s

r]1/r, s ∈ [0, 1/2],

[sr + (ω2/ω1)(1− s)r]1/r, s ∈ [1/2, 1].
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Obviously, ψ(s) ≤ ψr(s) and Φ(s) = ψr(s)
ψ(s)

. It suffices to consider Φ(s) for s ∈
[0, 1/2] since Φ(s) is symmetric with respect to s = 1/2. Note that, for s ∈ [0, 1/2],

Φr(s) =
ψrr(s)

ψr(s)
=

(1− s)r + sr

(1− s)r + (ω2/ω1)sr
=
u(s)

v(s)
.

Some elementary computation shows that u(s) − v(s) = (1 − (ω2/ω1))s
r attains

its maximum and v(s) attains its minimum at s = 1/2. Hence

Φr(s) =
u(s)− v(s)

v(s)
+ 1

attains its maximum at s = 1/2, and so does Φ(s). Then from Lemma 2.4 and
Theorem 2.6, we have

SX,t(1)
(
‖ · ‖

)
= SX,t(1)

(
| · |

)
= 2ψ(1/2) =

(ω1 + ω2

ω1

)1/r

. �

Example 2.11. Let Xλ = R2 with the norm

‖x‖λ =
(
‖x‖2p + λ‖x‖2q

)
(λ ≥ 0).

(i) If 1 ≤ p ≤ q ≤ 2, then SX,t(1)(‖ · ‖) =
√

4(1+λ)

2
2
q λ+2

2
p

.

(ii) If 2 ≤ p ≤ q ≤ ∞, then SX,t(1)(‖ · ‖) =
√

2
2
q λ+2

2
p

1+λ
.

Proof. It is obvious to check that the norm ‖x‖λ = (‖x‖2p+λ‖x‖2q)1/2 is absolute,
but not normalized. Let us put

| · |0λ =
‖ · ‖√
1 + λ

.

Therefore, | · |0λ ∈ Nα, and its corresponding function is ψλ(t) = ‖(1− t, t)‖λ.
(i) Suppose that 1 ≤ p ≤ q ≤ 2. Since ψλ(t) ≥ ψ2(t),

ψλ(s)
ψ2(s)

attains its

maximum at s = 1/2 and 2 = r < t ≤ ∞. By Theorem 2.5, we get that

SX,t(1)(‖ · ‖ψ) = 1
ψ(1/2)

=

√
4(1+λ)

2
2
q λ+2

2
p

.

(ii) Suppose that 2 ≤ p ≤ q ≤ ∞. Since ψλ(t) ≤ ψ2(t),
ψ2(s)
ψλ(s)

attains its

maximum at s = 1/2 and 2 = r′ ≤ t ≤ ∞. By Theorem 2.6, we get that

SX,t(1)(‖ · ‖ψ) = 2ψ(1/2) =

√
2
2
q λ+2

2
p

1+λ
. �

3. Schäffer-type constant and uniform normal structure

In this section, some relationships among the Schäffer-type constant SX,t(τ)
and parameters J(ε,X) were given where J(ε,X) are nonsquareness parameters
defined by

J(ε,X) = sup
{
min

{
‖x+ εy‖, ‖x+ εy‖

}
: x, y ∈ SX

}
.
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Using the same method as in [5], we give some sufficient conditions for which
a Banach space X has uniform normal structure in terms of the Schäffer-type
constant.

In [9], Saejung proved the following theorem.

Theorem 3.1. A Banach space X has uniform normal structure if J(ε,X) <
ε+

√
4+ε2

2
for some 0 < ε ≤ 1.

The proof of the following theorem is similar to Theorem 10 in [5], and so we
omit the proof.

Theorem 3.2. Let X be a Banach space. Then

2
[
SX,t(τ)

]t[
J(ε,X)

]t ≤ [
1 + τ + ε(1− τ)

]t
+
[
1− τ + ε(1 + τ)

]t
for all 0 ≤ τ, ε ≤ 1, and 1 < t <∞. In particular,

2
[
SX,t(τ)

]t[
J(τ,X)

]t ≤ (1 + 2τ − τ 2)t + (1 + τ 2)t.

Corollary 3.3. Let X be a Banach space with

SX,t(τ) >
1

g(τ)

((1 + 2τ − τ 2)t + (1 + τ 2)t

2

)1/t

for some τ ∈ (0, 1], where g(τ) = τ+
√

4+τ2

2
. Then X has uniform normal structure.

Proof. It follows from Theorem 3.2 that

1

gt(τ)

[
(1 + 2τ − τ 2)t + (1 + τ 2)t

][
J(τ,X)

]t
< 2

[
SX,t(τ)

]t[
J(τ,X)

]t
≤ (1 + 2τ − τ 2)t + (1 + τ 2)t.

Then J(τ,X) < g(τ) = τ+
√

4+τ2

2
, and the proof is complete from Theorem 3.1. �

Remark 3.4. Letting τ = 1 and t = 2, we can easily get the results of f(x) >
12 − 4

√
5. Then X has uniform normal structure. This is an extension and an

improvement of the results in [4]. Letting τ = 1/2, we can get some new result
which is complementary to [14, Theorem 28].
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SCHÄFFER-TYPE CONSTANT AND UNIFORM NORMAL STRUCTURE 461

References

1. J. Banas, On modulus of smoothness of Banach spaces, Bull. Pol. Acad. Sci. Math. 34
(1986), no. 5–6, 287–293. Zbl 0606.46010. MR0874871. 453

2. F. F. Bonsall and J. Duncan, Numerical Ranges, II, London Math. Soc. Lecture Note Ser.
10, Cambridge Univ. Press, London, 1973. Zbl 0262.47001. MR0442682. 454

3. J. Gao, A Pythagorean approach in Banach spaces, J. Inequal. Appl. 2006, art. ID 94982.
Zbl 1104.46006. MR2215461. DOI 10.1155/JIA/2006/94982. 453

4. J. Gao, A note on Pythagorean approach in Banach spaces, J. Dyn. Syst. Geom.
Theor. 4 (2006), no. 2, 125–132. Zbl 1171.46304. MR2280450. DOI 10.1080/
1726037X.2006.10698509. 453, 460

5. J. Gao and S. Saejung, A note on Pythagorean parameters and normal structure in Banach
spaces, Int. J. Pure Appl. Math. 48 (2008), no. 4, 557–562. Zbl 1183.46015. MR2482571.
460

6. M. Kato, L. Maligranda, and Y. Takahashi, On James and Jordan–von Neumann constants
and normal structure coefficient of Banach spaces, Studia Math. 144 (2001), no. 3, 275–295.
Zbl 0997.46009. MR1829721. DOI 10.4064/sm144-3-5. 453

7. L. Maligranda, N. Petrot, and S. Suantai, On the James constant and B-convexity of
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