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Abstract. For a locally compact Abelian group G, we give a necessary and
sufficient condition for shifts of a function φ ∈ L2(G) to be a Riesz family. Also,
for a finite family Φ of compactly supported functions in L2(G), we show that
the shifts of Φ constitute a Riesz family if and only if the nets (φ(ξη))η∈L⊥ ,

φ ∈ Φ, are linearly independent for all ξ ∈ Ĝ.

1. Introduction and preliminaries

Shift-invariant spaces and Riesz families play an increasingly important role in
various areas of mathematical analysis and their applications. They appear in the
study of spline wavelets, approximation, regular sampling, Gabor systems, and
several others (see [1], [4], [8], [14]). A sequence (xn)n∈N for a Hilbert space H is
called a Riesz basis if it is a frame and is also a basis for H. Frames provide a
useful tool to obtain signal decomposition in cases where redundancy, oversam-
pling, and irregular sampling play a role (see [2], [6]). A frame for a vector space
equipped with an inner product also allows each vector in the space to be written
as a linear combination of the elements in the frame, but linear independence
between the frame elements is not required. Intuitively, one can think about a
frame as a basis to which one has added more elements (see [5]). One of the main
purposes of this paper is to give a necessary and sufficient condition for a finite
family of functions to constitute a Riesz family via linear independence of the
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Fourier transform of basis functions. The problem of linear independence of inte-
ger translates of basis functions stemmed from some questions about multivariate
splines. In [3], de Boor and Höllig considered the linear independence problem for
integer translates of a box spline. They gave a necessary condition for the integer
translates of a box spline to be linearly independent and conjectured that their
condition would be also sufficient. Their conjecture was confirmed independently
by Dahmen and Micchelli [7] and by Jia [11]. The general problem of linear inde-
pendence of integer translates of a function was studied in [7]. A characterization
for a Riesz family of shifts of a finite number of compactly supported functions
in Lp(R) for 1 < p ≤ ∞ was established in [13], based on the linear independence
of the Fourier transform of functions. Then Jia extended the result for a finite
number of compactly supported distributions in Lp(R) for 0 < p ≤ ∞ (see [12]).

In this paper we give conditions under which shifts of a finite number of com-
pactly supported functions constitute a Riesz family on a locally compact Abelian
(LCA) group.

Let G be an LCA group with identity 1, and let Ĝ be its dual group with Haar
measure µ. For a closed subgroup H of G, the annihilator of H in Ĝ is denoted
by H⊥ and is defined by {ξ ∈ Ĝ; ξ(H) = {1}}, which is a closed subgroup of

Ĝ. A subgroup L of G is called a uniform lattice if it is discrete and cocompact
(i.e., G/L is compact). Let L be a uniform lattice in G; then the subgroup L⊥

is a uniform lattice in Ĝ (see [9, Theorem 4.39]). For a uniform lattice L in
G, a fundamental domain is a measurable set SL in G, such that every x ∈ G
can be uniquely written as x = ks, for k ∈ L and s ∈ SL. The existence of a
relatively compact fundamental domain for a uniform lattice in an LCA group
G is guaranteed by [15, Lemma 2], and it has been shown that SL has positive
measure (see [14], [15]). For a uniform lattice L, a closed subspace V ⊆ L2(G) is
called L-invariant if it is invariant under translations by elements of L. In other
words, V is called shift-invariant if f ∈ V implies Tkf ∈ V , where Tk is the
translation operator on L2(G) defined by Tkf(x) = f(k−1x) for all x ∈ G, k ∈ L.
Also in [15], it was seen that L2(G/L) ∼= L2(SL), when G is a second countable
and LCA group and L is a uniform lattice in G.

We denote by l(L) the linear space of all functions on L, and by cc(L) the
linear space of all finitely supported functions on L. Given a ∈ l(L), the formal

Laurent series
∑

k∈L a(k)ξ(k) for ξ ∈ Ĝ is called the symbol of a and is denoted
by ã(ξ). If a ∈ l1(L), then the symbol ã is a continuous function on SL⊥ . If f and
g are measurable functions on G, then the convolution of f and g is the function
defined by

f ∗ g(x) =
∫
f(y)g(y−1x) dy,

for all x ∈ G whenever the integral exists. Suppose that 1 ≤ p ≤ ∞, f ∈ L1(G),
and that g ∈ Lp(G). By [9, Proposition 2.39], the above integral converges abso-
lutely for almost every x, and we have

f ∗ g ∈ Lp(G) and ‖f ∗ g‖p ≤ ‖f‖1‖g‖p. (1.1)
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In the case of discrete groups, letting a, b ∈ l(L), the convolution of a and b is
given by

a ∗ b(l) =
∑
k∈L

a(k−1l)b(k), l ∈ L,

whenever the above series exists. If δ(k) = 1 for k = 1 and δ(k) = 0 for k 6= 1,
then δ ∈ l1(L) and a ∗ δ = a. Note that if a, c ∈ l1(L) and ã(ξ)c̃(ξ) = 1 for all
ξ ∈ SL⊥ , then a ∗ c = δ, which is followed by [9, Proposition 4.36].

Let Φ = {φ1, . . . , φn} be a finite family of functions in L2(G). The family of all
shifts of Φ is called a Riesz family for the span{Tkφ, k ∈ L, φ ∈ Φ} if there exist
two positive constants C1 and C2 such that

C1

n∑
i=1

‖ai‖l2(L) ≤
∥∥∥ n∑
i=1

∑
k∈L

ai(k)Tkφi

∥∥∥
L2(G)

≤ C2

n∑
i=1

‖ai‖l2(L), (1.2)

for all elements a1, a2, . . . , an ∈ l2(L).
In this paper we show that the set of shifts of a function φ ∈ L2(G) is a Riesz

family if and only if 0 < ess infξ∈Ĝ
∑

η∈L⊥ |φ̂(ξη)|2 and ess supξ∈Ĝ
∑

η∈L⊥ |φ̂(ξη)|2 <
∞. We define a set of nets, {(φ̂1(ξη))η∈L⊥ , . . . , (φ̂n(ξη))η∈L⊥}, to be linearly inde-

pendent on Ĝ if
∑n

i=1 ci(φ̂i(ξη))η∈L⊥ = 0 implies that c1 = · · · = cn = 0. We show
that the shifts of a finite number of compactly supported functions {φ1, . . . , φn} in
L2(G) constitute a Riesz family if and only if the nets (φ̂i(ξη))η∈L⊥ , i = 1, . . . , n,

are linearly independent for all ξ ∈ Ĝ. This paper is organized as follows. In
the second section, we investigate conditions under which shifts of a function
φ ∈ L2(G) constitute a Riesz family. In the third section, we give a necessary and
sufficient condition for shifts of a finite number of compactly supported functions
in L2(G) to be a Riesz family.

2. Riesz family of a function

In this section, we establish a necessary and sufficient condition for shifts of a
single function in L2(G) to form a Riesz family.

Theorem 2.1. Let G be a second countable LCA group, and let φ ∈ L2(G).
The shifts of φ constitute a Riesz family in the sense of (1.2), if and only if

0 < ess infξ∈Ĝ
∑

η∈L⊥ |φ̂(ξη)|2 and ess supξ∈Ĝ
∑

η∈L⊥ |φ̂(ξη)|2 <∞.

Proof. Let V0 := span{Tkφ, k ∈ L}, and let f ∈ V0. Then

f(x) =
∑
k∈L

a(k)φ(k−1x),
(
a(k)

)
k∈L ∈ l2(L).
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Also, T defined by T (ξ) =
∑

k∈L a(k)ξ̄(k) is in L2(L̂). Indeed, using the fact that

{ξ(k), k ∈ L} is an orthonormal basis for L2(L̂), we have

‖T ‖2
L2(L̂)

=

∫
L̂

∣∣T (ξ)
∣∣2 dξ

=

∫
L̂

∑
k∈L

a(k)ξ̄(k)
∑
l∈L

ā(l)ξ(l) dξ

=

∫
L̂

∑
k∈L

∣∣a(k)∣∣2 dξ <∞.

Taking the Fourier transform of f , we obtain

f̂(ξ) =
∑
k∈L

a(k)(̂Tkφ)(ξ) =
∑
k∈L

a(k)ξ̄(k)φ̂(ξ) = T (ξ)φ̂(ξ).

Therefore,

‖f‖2 = ‖f̂‖2 =
∫
Ĝ

∣∣T (ξ)
∣∣2∣∣φ̂(ξ)∣∣2 dξ

=

∫
L̂

∑
η∈L⊥

∣∣T (ξη)
∣∣2∣∣φ̂(ξη)∣∣2 dξ

=

∫
L̂

∣∣T (ξ)
∣∣2 ∑
η∈L⊥

∣∣φ̂(ξη)∣∣2 dξ.
Let F (ξ) =

∑
η∈L⊥ |φ̂(ξη)|2. Then F (ξ) is measurable, and

∑
η∈L⊥ |φ̂(ξη)|2 ≤ ∞.

Set

Mr = ess sup
ξ∈Ĝ

F (ξ), Ml = ess inf
ξ∈Ĝ

F (ξ).

If Mr < ∞ and Ml > 0, then (1.2) follows. On the other hand, if Ml = 0, then,

for some ε > 0, the measure of the set Eε defined as {ξ ∈ Ĝ, F (ξ) ≤ ε} is positive.

Set µ(Eε) = δ, where µ is the Haar measure of Ĝ. Let T (ξ) be defined by

T (ξ) =

{
1√
δ

ξ ∈ Eε,

0 otherwise

Then T ∈ L2(L̂) and ‖T ‖L2(L̂)
= 1. Suppose that T (ξ) =

∑
k∈L a(k)ξ̄(k) and

f(x) =
∑

k∈L a(k)Tkφ(x). Then
∑

k∈L |a(k)|2 = 1. On the other hand,

‖f‖2 = ‖f̂‖2

=

∫
L̂

∣∣T (ξ)
∣∣2 ∑
η∈L⊥

∣∣φ̂(ξη)∣∣2 dξ
=

∫
Eε

∣∣T (ξ)
∣∣2F (ξ) dξ ≤ ε,

which implies that there is no constant A > 0 such that the left-hand side of (1.2)
holds for all {a(k)}k∈L ∈ l2(L). Similarly, if Mr = ∞, then there exists M ∈ R,
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such that the measure of EM defined as {ξ ∈ Ĝ, |F (ξ)| > M} is positive. Then,
as before, one can show that there is no constant B > 0 such that the right-hand
side of (1.2) holds for all {a(k)}k∈L ∈ l2(L). �

We show that, by Theorem 2.1, the following example does not satisfy the Riesz
family condition (1.2).

Example 2.2. Let φ(x) = χ[0,2)(x). Then φ̂(ξ) =
1−e−2iξ

iξ
, and∑

k∈Z

∣∣φ̂(ξ + 2kπ)
∣∣2 = ∑

k∈Z

sin2 ξ

( ξ
2
+ kπ)2

= sin2 ξ
∑
k∈Z

1

( ξ
2
+ kπ)2

=
sin2 ξ

sin2( ξ
2
)
= 4 cos2

(ξ
2

)
.

Hence
∑

k∈Z |φ̂(·+2kπ)|2 = 4 cos2( .
2
) is a continuous function vanishing at ξ = π.

Therefore, {φ(· − k)}k∈Z is not a Riesz basis for its span.

3. Riesz family of a finite number of functions

In this section, we give a necessary and sufficient condition for shifts of a finite
number of compactly supported functions in L2(G) to be a Riesz family. To
express and prove our results, we require the following lemmas.

Lemma 3.1. Suppose that aij ∈ cc(L), i = 1, . . . ,m, j = 1, . . . , n, where L is
a uniform lattice in G. Let the matrix A(ξ) = (ãij(ξ))m×n have rank n for every
ξ ∈ SL⊥; then there exist two positive constants C1 and C2 such that

C1

n∑
j=1

‖uj‖2 ≤
m∑
i=1

∥∥∥ n∑
j=1

aij ∗ uj
∥∥∥
2
≤ C2

n∑
j=1

‖uj‖2, (3.1)

for all u1, u2, . . . , un ∈ l2(L).

Proof. The right-hand inequality in (3.1) is followed by (1.1). To prove the left-
hand inequality in (3.1), set

νi =
n∑
j=1

aij ∗ uj, i = 1, . . . ,m. (3.2)

For i = 1, . . . ,m and j = 1, . . . , n, let bji(k) be the complex conjugate of aij(k
−1);

that is, bji(k) = aij(k−1) for all k ∈ L. Then b̃ji(ξ) = ãij(ξ) for all ξ ∈ SL⊥ . Set

B(ξ) =
(
b̃ji(ξ)

)
n×m and G(ξ) = B(ξ)A(ξ), ξ ∈ SL⊥ .

The n×nmatrix G(ξ) has n-rank, so it is nonsingular. Hence there exist functions
hij, i, j = 1, 2, . . . , n, such that H(ξ)B(ξ)A(ξ) = I for all ξ ∈ SL⊥ , where H(ξ) =
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(h̃ij(ξ))n×n and I is the n× n identity matrix. As a result, if we set

cri =
n∑
t=1

hrt ∗ bti, r = 1, . . . , n, i = 1, . . . ,m,

then
m∑
i=1

cri ∗ aij =

{
δ r = j,

0 r 6= j.

By (3.2) we have

m∑
i=1

cri ∗ νi =
m∑
i=1

n∑
j=1

cri ∗ aij ∗ uj = ur, r = 1, . . . , n.

Hence by (1.1), there exists C > 0 such that

n∑
r=1

‖ur‖2 ≤
n∑
r=1

m∑
i=1

‖cri‖1‖νi‖2

≤ C
m∑
i=1

‖νi‖2.

This completes the proof. �

Lemma 3.2. Let U be a compact subset of G, and let L be a uniform lattice in G.
Then U ∩ kSL 6= ∅, only for a finite number k ∈ L.

Proof. Without loss of generality, we can suppose that 1 ∈ SL. As G is locally
compact, and SL has compact closure, there exists a symmetric neighborhood
V of 1 with compact closure such that SL ⊆ V , and so

⋃
k∈L kV is an open

covering for U . Therefore, there are k1, . . . , kn ∈ L such that U ⊆
⋃n
j=1 kjV . Set

w =
⋃n
j=1 kjV and W = w∪w−1; then W is a symmetric neighborhood of 1 with

compact closure. Note that W contains kiSL for all i = 1, . . . , n. Fix 1 ≤ i0 ≤ n;
therefore W̄ ∩ kki0SL 6= ∅ for finitely many k ∈ L. Indeed, W̄ ∩ kki0SL 6= ∅ if and
only if k ∈ W̄W̄ . Also W̄W̄ ∩L is compact and discrete. So it is finite in L. Thus
U ∩ kki0SL 6= ∅ for finitely many k ∈ L. �

Now we state and prove the main result of this section. We assume that G is
a second countable and LCA group.

Theorem 3.3. Let Φ = {φ1, . . . , φn} be a finite number of compactly supported
functions in L2(G). Then shifts of Φ = {φ1, . . . , φn} constitute a Riesz family if

and only if, for any ξ ∈ Ĝ, the nets (φ̂(ξη))η∈L⊥, φ ∈ Φ are linearly independent.

Proof. Let S(Φ) be the shift-invariant space generated by Φ, defined as

S(Φ) = span{Tkφ, φ ∈ Φ, k ∈ L}.

Set Ui = supp(φi), i = 1, . . . , n. Then kUi ∩ SL 6= ∅ (or Ui ∩ kSL 6= ∅) for only
finitely many k ∈ L by Lemma 3.2. Therefore, S(Φ)|SL

is finite-dimensional.
Hence there exist functions ψ1, . . . , ψm ∈ L2(G) with support in SL such that
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{ψj|SL
}j=1,...,m forms a basis for S(Φ)|SL

. Every φi, i = 1, . . . , n, can be represented
as

φi(x) =
m∑
j=1

∑
k∈L

aji(k)ψj(k
−1x), (3.3)

where aji ∈ cc(L), j = 1, . . . ,m, i = 1, . . . , n. Consider u1, . . . , un ∈ l2(L) and

f(x) =
n∑
i=1

∑
k∈L

φi(k
−1x)ui(k).

Using (3.3) we obtain

f(x) =
m∑
j=1

n∑
i=1

∑
k∈L

∑
l∈L

aji(k)ui(l)ψj(k
−1l−1x)

=
m∑
j=1

∑
γ∈L

νj(γ)ψj(γ
−1x),

where

νj =
n∑
i=1

aji ∗ ui, j = 1, . . . ,m. (3.4)

Thus f(kx) =
∑m

j=1 νj(k)ψj(x) for x ∈ SL and k ∈ L (note that G =
⋃
k∈L kSL).

Accordingly, there exist two positive constants C1 and C2 such that, for all k ∈ L,

C1

( m∑
j=1

∣∣νj(k)∣∣2) 1
2 ≤ ‖f‖L2(kSL) ≤ C2

( m∑
j=1

∣∣νj(k)∣∣2) 1
2
.

As ‖f‖22 =
∑

k∈L ‖f‖L2(kSL), it follows that

C1

( m∑
j=1

‖νj‖22
) 1

2 ≤ ‖f‖2 ≤ C2

( m∑
j=1

‖νj‖22
) 1

2
. (3.5)

This, together with (3.4), yields

‖f‖2 ≤ C2

( m∑
j=1

∥∥∥ n∑
i=1

aji ∗ ui
∥∥∥2

2

)1/2

≤ C3

n∑
i=1

‖ui‖2 (3.6)

for all u1, . . . , un ∈ l2(L), where C3 > 0 is a constant independent of u1, . . . , un.
Suppose that the Fourier transforms of φ1, . . . , φn exist. Taking the Fourier trans-
forms of both sides of (3.3), we get

φ̂i(ξ) =
m∑
j=1

∑
k∈L

aji(k)ξ̄(k)ψ̂j(ξ)

=
m∑
j=1

ãji(ξ)ψ̂j(ξ), ξ ∈ Ĝ, i = 1, . . . , n.
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Thus, if the nets (φ̂i(ξη))η∈L⊥ , i = 1, . . . , n, are linearly independent for every

ξ ∈ Ĝ, then the matrix A(ξ) := (ãji(ξ))m×n has rank n for every ξ ∈ SL⊥ . By
Lemma 3.1, there exists a constant C4 > o such that

n∑
i=1

‖ui‖2 ≤ C4

m∑
j=1

‖νj‖2.

This, along with (3.5), yields

n∑
i=1

‖ui‖2 ≤ C5‖f‖2 (3.7)

for all u1, . . . , un ∈ l2(L), where C5 > 0 is a constant independent of u1, . . . , un. By
combining (3.6) and (3.7), the sufficient part of the theorem is proved. To prove

the necessity part of the theorem, suppose that the nets (φ̂i(ξη))η∈L⊥ , i = 1, . . . , n,

are linearly dependent for some ξ ∈ Ĝ. Therefore,
∑n

i=1 ciφ̂i(ξη) = 0 for all η ∈ L⊥

for some complex numbers c1, . . . , cn, which are not all zero. It follows that

n∑
i=1

∑
k∈L

ciξ(k)φi(k
−1x) = 0. (3.8)

Indeed, if

f(x) :=
n∑
i=1

∑
k∈L

ciξ̄(k
−1x)φi(k

−1x),

then f is L-periodic and well defined. Consider

ν(η) =

∫
SL

f(x)η̄(x) dx, η ∈ L⊥.

We have

ν(η) =

∫
SL

n∑
i=1

∑
k∈L

ciξ̄(k
−1x)φi(k

−1x)η̄(x) dx

=
n∑
i=1

∫
G

ciξ̄(x)φi(x)η̄(x) dx

=
n∑
i=1

ciφ̂i(ξη).

Thus (3.8) is true if and only if
∑n

i=1 ciφ̂i(ξη) = 0 for all η ∈ L⊥. Suppose
that V is a symmetric compact neighborhood of 1 in G such that φ1, . . . , φn are
supported in V . Now, let U be a symmetric compact neighborhood of the identity
1 in G such that V ⊆ U and U contains at least one nontrivial element of L. Set
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Um = UU · · ·U (m factors). Then every Um is a compact set that contains finitely
many k ∈ L. For m ∈ N, i = 1, . . . , n, set

ai,m(k) =

{
ciξ(k) if k ∈ Um,

0 if k ∈ U c
m,

where ai,m ∈ cc(L). Let fm(x) =
∑n

i=1

∑
k∈L ai,m(k)φi(k

−1x). Then (3.8) implies
that

fm(x) =
n∑
i=1

∑
k∈Um

ciξ(k)φi(k
−1x)

= −
n∑
i=1

∑
k∈Uc

m

ciξ(k)φi(k
−1x).

Therefore fm(x) = 0 for x ∈ (UmV
c) ∪ (U c

mV
c). In other words, the function fm

is supported in E := (UmV
c)c ∩ (U c

mV
c)c. Since Um contains the identity element

of G and V ⊆ U , we have E ⊆ U . Clearly, φi(k
−1x) 6= 0 only if k ∈ xV . Now, if

x ∈ E and φi(k
−1x) 6= 0, then k ∈ F := L ∩ EV ⊆ U2. In other words, x ∈ E

and k /∈ F imply that fm(x) = 0. As supp(fm) ⊆ E, we have

‖fm‖L2(G) ≤
n∑
i=1

|ci|‖φi‖L2(G)

∑
k∈U2

1

and
n∑
i=1

‖ai,m‖l2(L) =
n∑
i=1

(∑
k∈Um

∣∣ciξ(k)∣∣2) 1
2 ≥

n∑
i=1

|ci|.m
1
2 .

Consequently,

lim
m→∞

∑n
i=1 ‖ai,m‖l2(L)
‖fm‖L2(G)

≥
∑n

i=1 |ci| ·m
1
2∑n

i=1 |ci|‖φi‖L2(G)

∑
k∈U2

1
= ∞.

This shows that the set of shifts of φ1, . . . , φn is not a Riesz family. The proof of
the theorem is complete. �

As an example of Theorem 3.3, we give the following example.

Example 3.4. Let {Vi}i∈I be a multiresolution of L2(R) that is a nested sequence
as follows:

· · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · ·
such that

(i)
⋂
i∈Z Vi = {0};

(ii)
⋃
i∈ZVi = L2(R);

(iii) f(·) ∈ Vi if and only if f(2·) ∈ Vi+1; and
(iv) there exists a function φ ∈ V0 such that {φ(· − n)}n∈Z is a Riesz basis

of V0.
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As φ ∈ V0 is also in V1, we can expand φ into a linear combination of the basis
of V1; that is,

φ(x/2) =
∑
k∈Z

akφ(x− k), (ak)k∈Z ∈ l2(Z). (3.9)

Taking the Fourier transform of (3.9), we obtain

φ̂(ξ) = mφ(ξ/2)φ̂(ξ/2), (3.10)

where mφ(ξ) =
∑

k∈Z
ak
2
e−2πikξ. Denoting by Wi the orthogonal complement of

Vi in Vi+1, we have the orthogonal decomposition Wi ⊕ Vi = Vi+1. Let ψ ∈ W0.
Then there exists a sequence (bk)k∈Z ∈ l2(Z) such that

ψ =
∑
k∈Z

bk(D2−1Tkφ), (3.11)

which induces a Riesz basis {ψ(2i · −k), k ∈ Z} of Wi (see [6]). Moreover,
{φ(2i · −k), ψ(2i · −k), k ∈ Z} forms a Riesz basis of Vi+1. By taking the Fourier
transform of (3.11), we have

ψ̂(ξ) = mψ(ξ/2)φ̂(ξ/2), (3.12)

where mψ(ξ) =
∑

k∈Z
bk
2
e−2πikξ. Therefore, by (3.10) we have ψ̂(ξ) =

1
mφ(ξ/2)

mψ(ξ/2)φ̂(ξ). For more details on multiresolution, we refer to [6].

It is clear that 1
mφ((ξ+2kπ)/2)

mψ((ξ + 2kπ)/2) is not constant for every k ∈ Z.
So, for every ξ ∈ R, {(φ̂(ξ + 2πk))k∈Z, (ψ̂(ξ + 2πk))k∈Z} is linearly indepen-
dent.

Using Theorem 3.3 we obtain the following example, which confirms [10, Ex-
ample 4.1].

Example 3.5. Let the scaling function φ := (φ1, φ2) be given as follows (see Fig-
ure 1): {

φ1 := (1− 3x2 − 2x3)χ[−1,0] + (1− 3x2 + 2x3)χ[0,1],

φ2 := (x+ 2x2 + x3)χ[−1,0] + (x− 2x2 + x3)χ[0,1].

Then φ̂(2ξ) = â(ξ)φ̂(ξ), where the mask a is given by

a(−1) =

[
1/4 3/8

−1/16 −1/16

]
, a(0) =

[
1/2 0
0 1/4

]
, a(1) =

[
1/4 −3/8
1/16 −1/16

]
,

with a(k) = 0 for all k ∈ Z \ {−1, 0, 1}. Consider a sequence b supported on
{−1, 0, 1} as

b(−1) =
1

4

[
−2 −15
125
512

1875
512

− 2

]
, b(0) =

[
1 0
0 1

]
, b(1) =

1

4

[
−2 15
−125
512

1875
512

− 2

]
,

and b(k) = 0 for all k ∈ Z \ {−1, 0, 1}. Define

ψ(x) = 2
∑
k∈Z

b(k)φ(2x− k)

= 2
(
b(−1)φ(2x+ 1) + b(0)φ(2x) + b(1)φ(2x− 1)

)
.
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Figure 1. φ1(x), φ2(x).

Then, by Theorem 3.3, ψ = (ψ1, ψ2) generates a Riesz wavelet basis for L2(R),
since the set {(ψ̂1(ξ + 2kπ))k∈Z, (ψ̂2(ξ + 2kπ))k∈Z} for all ξ ∈ R is linearly inde-
pendent.
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