Ann. Funct. Anal. 7 (2016), no. 1, 33-41
http://dx.doi.org/10.1215/20088752-3163452
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

ISOMETRIES ON THE UNIT SPHERE OF THE ℓ^{1}-SUM OF STRICTLY CONVEX NORMED SPACES

LEI LI
Dedicated to Professor Anthony To-Ming Lau
Communicated by P. N. Dowling

Abstract

We study the extension property of isometries on the unit sphere of the ℓ^{1}-sum of strictly normed spaces, which is a special case of Tingley's isometric extension problem. In this paper, we will give some sufficient conditions such that such isometries can be extended to the whole space.

1. Introduction

Let E, F be real normed spaces. The classical Mazur-Ulam theorem states that every surjective isometry $T: E \rightarrow F$ must be affine. P. Mankiewicz [5] extended this result by showing that if $U \subset E$ and $V \subset F$ are either open connected or convex bodies and $V_{0}: U \rightarrow V$ is a surjective isometry, then there exists a surjective affine isometry $V: E \rightarrow F$ such that $\left.V\right|_{U}=V_{0}$. Motivated by these results, Tingley [9] proposed the following isometric extension problem. Suppose that E is a normed space, and let $S_{1}(E)=\{x \in E:\|x\|=1\}$ be the unit sphere of E.
(IEP) Let E, F be real normed spaces. Suppose that $V_{0}: S_{1}(E) \rightarrow S_{1}(F)$ is a surjective isometry. Is V_{0} necessarily the restriction of a linear isometry on the whole space?
If this problem has a positive answer, then the local geometric property of a mapping on the unit sphere will determine the global property of the mapping

[^0]
2. The isometries on the unit sphere of ℓ^{1}-Sum spaces

Lemma 2.1. Suppose that $x=\left(x_{\gamma}\right)_{\gamma \in \Gamma}, y=\left(y_{\gamma}\right)_{\gamma \in \Gamma} \in G$. Then $\|x+y\|=$ $\|x\|+\|y\|$ if and only if, for each $\gamma \in \operatorname{supp}(x) \cap \operatorname{supp}(y)$, there exists $a_{\gamma}>0$ such that $y_{\gamma}=a_{\gamma} x_{\gamma}$.
Proof. Since $\|x+y\|=\|x\|+\|y\|$ and $\left\|x_{\gamma}+y_{\gamma}\right\| \leq\left\|x_{\gamma}\right\|+\left\|y_{\gamma}\right\|$ for every $\gamma \in \Gamma$, it follows that, for each $\gamma \in \Gamma,\left\|x_{\gamma}+y_{\gamma}\right\|=\left\|x_{\gamma}\right\|+\left\|y_{\gamma}\right\|$. Note that each G_{γ} is strictly convex; then one can derive that, for every $\gamma \in \operatorname{supp}(x) \cap \operatorname{supp}(y)$, there exists $a_{\gamma}>0$ such that $y_{\gamma}=a_{\gamma} x_{\gamma}$.

Lemma 2.2. Suppose that V_{0} satisfies that $-V_{0}\left[S_{1}(G)\right] \subset V_{0}\left[S_{1}(G)\right]$. Then, for any $\gamma \in \Gamma$ and $x_{\gamma} \in G_{\gamma}$, we have that $V_{0}\left(-x_{\gamma}\right)=-V_{0}\left(x_{\gamma}\right)$.
Proof. For any $\gamma \in \Gamma$ and $x_{\gamma} \in G_{\gamma}$, there must exist an element $y \in S_{1}(G)$ such that $V_{0}(y)=-V_{0}\left(x_{\gamma}\right)$. Then, for each $\gamma_{1} \in \Gamma$ with $\gamma_{1} \neq \gamma$, we have that $x_{\gamma} \perp \frac{y_{\gamma_{1}}}{\left\|y_{\gamma_{1}}\right\|}$ whenever $y_{\gamma_{1}} \neq 0$.

Let $z=\left(z_{\gamma}\right)_{\gamma \in \Gamma}$, where $z_{\gamma}=\frac{1}{2} x_{\gamma}, z_{\gamma_{1}}=\frac{1}{2} \frac{y_{\gamma_{1}}}{\left\|y_{\gamma_{1}}\right\|}$ and $z_{\gamma^{\prime}}=0$ for all $\gamma^{\prime} \neq \gamma, \gamma_{1}$. Evidently, z belongs to the unit sphere of G, which implies that there exists $u \in S_{1}(G)$ such that $V_{0}(u)=-V_{0}(z)$ and hence $\|u-z\|=2$. By Lemma 2.1 we can derive that $u_{\gamma}=0$ or $u_{\gamma}=-a_{\gamma} x_{\gamma}$ for some $a_{\gamma}>0$. Therefore,

$$
\left\|V_{0}\left(x_{\gamma}\right)-V_{0}(u)\right\|=\left\|u-x_{\gamma}\right\|=\|u\|+\left\|x_{\gamma}\right\|=2
$$

and then

$$
2=\left\|V_{0}(z)-V_{0}(y)\right\|=\|z-y\| .
$$

Thus, it follows from Lemma 2.1 that $-y_{\gamma_{1}}=a_{\gamma_{1}} \frac{y_{\gamma_{1}}}{\left\|y_{\gamma_{1}}\right\|}$ for some positive number $a_{\gamma_{1}}$. This is impossible since $y_{\gamma_{1}} \neq 0$.

By Lemmas 2.1 and 2.2 we can derive that $V_{0}(-x)=-V_{0}(x)$ for all $x \in S_{1}(G)$, which is stated in the following theorem.
Theorem 2.3. Suppose that V_{0} satisfies that $-V_{0}\left[S_{1}(G)\right] \subset V_{0}\left[S_{1}(G)\right]$. Then, for any $x \in S_{1}(G)$, we have that

$$
V_{0}(-x)=-V_{0}(x) .
$$

Proof. For any $x \in S_{1}(G)$, there exists $y \in S_{1}(G)$ such that $V_{0}(y)=-V_{0}(x)$. For any $\gamma \in \operatorname{supp}(y)$, it follows from Lemma 2.2 that

$$
\left\|y+\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right\|=\left\|V_{0}(y)-V_{0}\left(-\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right)\right\|=\left\|V_{0}\left(\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right)-V_{0}(x)\right\|=\left\|\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}-x\right\|
$$

and

$$
\left\|y-\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right\|=\left\|V_{0}(y)-V_{0}\left(\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right)\right\|=\left\|V_{0}(x)+V_{0}\left(\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right)\right\|=\left\|x+\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right\| .
$$

That is,

$$
1=1+\left\|y_{\gamma}\right\|-\left\|y_{\gamma}\right\|=\left\|x_{\gamma}-\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right\|-\left\|x_{\gamma}\right\|
$$

and

$$
1-\left\|y_{\gamma}\right\|-\left\|y_{\gamma}\right\|=\left\|x_{\gamma}+\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right\|-\left\|x_{\gamma}\right\|
$$

The strict convexity of G_{γ} implies that there exists $a_{\gamma}>0$ such that $x_{\gamma}=-a_{\gamma} y_{\gamma}$, and then

$$
1-2\left\|y_{\gamma}\right\|+a_{\gamma}\left\|y_{\gamma}\right\|=\left|1-a_{\gamma}\left\|y_{\gamma}\right\|\right| .
$$

Since $a_{\gamma}\left\|y_{\gamma}\right\| \leq\left\|x_{\gamma}\right\| \leq 1$, one can derive that $a_{\gamma}=1$. This implies that, for each $\gamma \in \operatorname{supp}(y), y_{\gamma}=-x_{\gamma}$, and then $y=-x$.

In order to give the representation of V_{0}, we need the following result, which plays the important role in the proof of Corollary 2.6.

Lemma 2.4. Suppose that V_{0} satisfies that $-V_{0}\left[S_{1}(G)\right] \subset V_{0}\left[S_{1}(G)\right]$. Then, for any $k \in \mathbb{N}$, we have the following:
(i) For any $\left\{x_{i}\right\}_{1 \leq i \leq k}$ with $x_{i} \perp x_{j}(1 \leq i \neq j \leq k)$, we have that

$$
\left\|\sum_{i=1}^{k} \lambda_{i} V_{0}\left(x_{i}\right)\right\|=\sum_{i=1}^{k}\left|\lambda_{i}\right|, \quad \forall \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}
$$

(ii) For any $\left\{\gamma_{i}\right\}_{1 \leq i \leq k} \subset \Gamma, x_{\gamma_{i}} \in S_{1}\left(G_{\gamma_{i}}\right)(1 \leq i \leq k)$ and $\left\{\lambda_{i}\right\}_{1 \leq i \leq k} \subset \mathbb{R}$, if there exists an element $y \in S_{1}(G)$ such that $V_{0}(y)=\sum_{i=1}^{k} \lambda_{i} V_{0}\left(x_{\gamma_{i}}\right)$, then we have that $y=\sum_{i=1}^{k} \lambda_{i} x_{\gamma_{i}}$.
Proof. We will prove this lemma by induction. When $k=2$, for any $x_{1}, x_{2} \in S_{1}(G)$ with $x_{1} \perp x_{2}$ and for any $\theta_{1}, \theta_{2}=1$ or -1 , by Theorem 2.3 we have that

$$
\left\|\theta_{1} V_{0}\left(x_{1}\right)+\theta_{2} V_{0}\left(x_{2}\right)\right\|=\left\|\theta_{1} x_{1}+\theta_{2} x_{2}\right\|=\left\|\theta_{1} x_{1}\right\|+\left\|\theta_{2} x_{2}\right\|=2 .
$$

Therefore, for any $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, we have that

$$
\left\|\lambda_{1} V_{0}\left(x_{1}\right)+\lambda_{2} V_{0}\left(x_{2}\right)\right\|=\left|\lambda_{1}\right|+\left|\lambda_{2}\right| .
$$

Suppose that $\gamma_{1} \neq \gamma_{2}, x_{\gamma_{i}} \in S_{1}\left(G_{\gamma_{i}}\right)(i=1,2)$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$; if there exists a $y \in S_{1}(G)$ such that $V_{0}(y)=\lambda_{1} V_{0}\left(x_{1}\right)+\lambda_{2} V_{0}\left(x_{2}\right)$, then for any $i=1,2$ we can derive that

$$
\left\|y+x_{\gamma_{i}}\right\|=\left\|V_{0}(y)+V_{0}\left(x_{\gamma_{i}}\right)\right\|=\left|1+\lambda_{i}\right|+1-\left|\lambda_{i}\right|
$$

and

$$
\left\|y-x_{\gamma_{i}}\right\|=\left\|V_{0}(y)-V_{0}\left(x_{\gamma_{i}}\right)\right\|=\left|1-\lambda_{i}\right|+1-\left|\lambda_{i}\right| .
$$

This implies that

$$
\begin{equation*}
\left\|y_{\gamma_{i}}+x_{\gamma_{i}}\right\|-\left\|y_{\gamma_{i}}\right\|=1+\lambda_{i}-\left|\lambda_{i}\right| \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{\gamma_{i}}-x_{\gamma_{i}}\right\|-\left\|y_{\gamma_{i}}\right\|=1-\lambda_{i}-\left|\lambda_{i}\right| . \tag{2.2}
\end{equation*}
$$

Since $G_{\gamma_{i}}$ is strictly convex, there exists a real number $a_{\gamma_{i}}$ such that $y_{\gamma_{i}}=a_{\gamma_{i}} x_{\gamma_{i}}$, where $\left|a_{\gamma_{i}}\right|=\left\|a_{\gamma_{i}} x_{\gamma_{i}}\right\|=\left\|y_{\gamma_{i}}\right\| \leq 1$. It follows from (2.1) and (2.2) that $a_{\gamma_{i}}=\lambda_{i}$ for each $i=1,2$, which implies that $y=\lambda_{1} x_{\gamma_{1}}+\lambda_{2} x_{\gamma_{2}}$.

Suppose that the lemma is true for $k-1$; then for any $\left\{x_{i}\right\}_{1 \leq i \leq k} \subset S_{1}(G)$ with $x_{i} \perp x_{j}$ for $1 \leq i \neq j \leq k$, we have that, for any $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$,

$$
\begin{aligned}
& \left\|\sum_{i=1}^{k} \lambda_{i} V_{0}\left(x_{i}\right)\right\| \\
& \quad=\| \| \sum_{i=1}^{k-1} \lambda_{i} V_{0}\left(x_{i}\right)\left\|\sum_{i=1}^{k-1} \frac{\lambda_{i}}{\left\|\sum_{i=1}^{k-1} \lambda_{i} V_{0}\left(x_{i}\right)\right\|} V_{0}\left(x_{i}\right)+\lambda_{k} V_{0}\left(x_{k}\right)\right\| \\
& \quad=\| \| \sum_{i=1}^{k-1} \lambda_{i} V_{0}\left(x_{i}\right)\left\|V_{0}\left(\sum_{i=1}^{k-1} \frac{\lambda_{i} x_{i}}{\left\|\sum_{i=1}^{k-1} \lambda_{i} V_{0}\left(x_{i}\right)\right\|}\right)+\lambda_{k} V_{0}\left(x_{k}\right)\right\| \\
& \quad=\left\|\sum_{i=1}^{k-1} \lambda_{i} V_{0}\left(x_{i}\right)\right\|+\left|\lambda_{k}\right|=\sum_{i=1}^{k}\left|\lambda_{i}\right| .
\end{aligned}
$$

On the other hand, for any $\left\{\gamma_{i}\right\}_{1 \leq i \leq k} \subset \Gamma, x_{\gamma_{i}} \in S_{1}\left(G_{\gamma_{i}}\right)(1 \leq i \leq k)$ and $\left\{\lambda_{i}\right\}_{1 \leq i \leq k} \subset \mathbb{R}$, if there exists $y \in S_{1}(G)$ such that $V_{0}(y)=\sum_{i=1}^{k} \lambda_{i} V_{0}\left(x_{\gamma_{i}}\right)$, then for each $i=1,2, \ldots, k$ we have that

$$
\left\|y+x_{\gamma_{i}}\right\|=\left\|V_{0}(y)+V_{0}\left(x_{\gamma_{i}}\right)\right\|=\left|1+\lambda_{i}\right|+1-\left|\lambda_{i}\right|
$$

and

$$
\left\|y-x_{\gamma_{i}}\right\|=\left\|V_{0}(y)-V_{0}\left(x_{\gamma_{i}}\right)\right\|=\left|1-\lambda_{i}\right|+1-\left|\lambda_{i}\right| .
$$

Since $G_{\gamma_{i}}$ is strictly convex, there exists a $a_{\gamma_{i}} \in \mathbb{R}$ with $\left|a_{\gamma_{i}}\right| \leq 1$ such that $y_{\gamma_{i}}=a_{\gamma_{i}} x_{\gamma_{i}}$. Moreover, we can derive that $a_{\gamma_{i}}=\lambda_{i}$ for every $i=1,2, \ldots, k$, and hence $y=\sum_{i=1}^{k} \lambda_{i} x_{\gamma_{i}}$.
Corollary 2.5. If V_{0} satisfies the following conditions,
$\left(\Delta_{1}\right)-V_{0}\left[S_{1}(G)\right] \subset V_{0}\left[S_{1}(G)\right]$,
$\left(\Delta_{2}\right)$ for any $\gamma \in \Gamma, x_{\gamma} \in S_{1}\left(G_{\gamma}\right)$, and $y \in S_{1}(G)$ with $x_{\gamma} \perp y$, we have that $\lambda_{1} V_{0}\left(x_{\gamma}\right)+\lambda_{2} V_{0}(y) \in V_{0}\left[S_{1}(G)\right]$ for all $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ with $\left|\lambda_{1}\right|+\left|\lambda_{2}\right|=1$,
then, for any $k \in \mathbb{N}, x_{\gamma_{i}} \in S_{1}\left(G_{\gamma_{i}}\right)(i=1,2, \ldots, k)$, and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ with $\sum_{i=1}^{k}\left|\lambda_{i}\right|=1$, we have that

$$
V_{0}\left(\sum_{i=1}^{k} \lambda_{i} x_{\gamma_{i}}\right)=\sum_{i=1}^{k} \lambda_{i} V_{0}\left(x_{\gamma_{i}}\right) .
$$

Therefore, we can get the representation of V_{0}.
Corollary 2.6. Suppose that V_{0} satisfies conditions (Δ_{1}) and $\left(\Delta_{2}\right)$; then for any $x=\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in S_{1}(G)$ we have that

$$
V_{0}(x)=\sum_{x_{\gamma} \neq 0}\left\|x_{\gamma}\right\| V_{0}\left(\frac{x_{\gamma}}{\left\|x_{\gamma}\right\|}\right)
$$

Proof. By condition $\left(\Delta_{2}\right)$ and Corollary 2.5, for any $k \in \mathbb{N}$ and $\left\{\gamma_{i}\right\}_{1 \leq i \leq k} \subset$ $\operatorname{supp}(x)$, we have that

$$
\sum_{i=1}^{k} \frac{\left\|x_{\gamma_{i}}\right\|}{\sum_{i=1}^{k}\left\|x_{\gamma_{i}}\right\|} V_{0}\left(\frac{x_{\gamma_{i}}}{\left\|x_{\gamma_{i}}\right\|}\right) \in V_{0}\left[S_{1}(G)\right]
$$

and

$$
V_{0}\left(\sum_{i=1}^{k} \frac{x_{\gamma_{i}}}{\sum_{i=1}^{k}\left\|x_{\gamma_{i}}\right\|}\right)=\sum_{i=1}^{k} \frac{x_{\gamma_{i}}}{\sum_{i=1}^{k}\left\|x_{\gamma_{i}}\right\|} V_{0}\left(\frac{x_{\gamma_{i}}}{\left\|x_{\gamma_{i}}\right\|}\right) .
$$

Then one can derive that

$$
V_{0}(x)=V_{0}\left(\sum_{x_{\gamma} \neq 0} x_{\gamma}\right)=\sum_{x_{\gamma} \neq 0}\left\|x_{\gamma}\right\| V_{0}\left(\frac{x_{\gamma}}{\left\|x_{\gamma}\right\|}\right) .
$$

By the above lemmas, we can obtain the main result of this paper.
Theorem 2.7. Suppose that V_{0} satisfies $\left(\Delta_{2}\right)$ and the following condition:
$\left(\Delta_{3}\right)$ There exists a perturbation π of Γ such that, for any $\gamma \in \Gamma, x_{\gamma}, y_{\gamma} \in$ $S_{1}\left(G_{\gamma}\right)$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, if $\left\|\lambda_{1} V_{0}\left(x_{\gamma}\right)+\lambda_{2} V_{0}\left(y_{\gamma}\right)\right\|=1$, then $\lambda_{1} V_{0}\left(x_{\gamma}\right)+$ $\lambda_{2} V_{0}\left(y_{\gamma}\right) \in V_{0}\left[S_{1}\left(G_{\pi(\gamma)}\right)\right]$.
Then V_{0} can be extended to be an isometric mapping V from G to E.
Proof. Define a mapping V from G into E by

$$
V_{0}(x)=\sum_{\gamma \in \Gamma} y_{\gamma}, \quad \forall x=\left(x_{\gamma}\right)_{\gamma \in \Gamma} \in G
$$

where

$$
y_{\gamma}= \begin{cases}\left\|x_{\gamma}\right\| V_{0}\left(\frac{x_{\gamma}}{\left\|x_{\gamma}\right\|}\right) & \text { if } x_{\gamma} \neq 0 \\ 0 & \text { if } x_{\gamma}=0\end{cases}
$$

By Corollary 2.6, we have that V is an extension of V_{0}; that is, $\left.V\right|_{S_{1}(G)}=V_{0}$ and V is a positively homogeneous operator satisfying $\|V(x)\|=\|x\|$ for all $x \in G$.

For any $\tilde{x}_{\gamma}, \tilde{y}_{\gamma} \in G_{\gamma}$ with $\left\|\tilde{x}_{\gamma}\right\|,\left\|\tilde{y}_{\gamma}\right\| \leq 1$ and $e \in S_{1}\left(G_{\gamma_{1}}\right)$, where $\gamma_{1} \neq \gamma$, we can construct two elements $u=\left(u_{\sigma}\right)_{\sigma \in \Gamma}$ and $v=\left(v_{\sigma}\right)_{\sigma \in \Gamma}$ in G as follows:

$$
u_{\sigma}= \begin{cases}\tilde{x}_{\gamma} & \text { if } \sigma=\gamma \\ \left(1-\left\|\tilde{x}_{\gamma}\right\|\right) e & \text { if } \sigma=\gamma_{1} \\ 0 & \text { if } \sigma \neq \gamma, \gamma_{1}\end{cases}
$$

and

$$
v_{\sigma}= \begin{cases}\tilde{y}_{\gamma} & \text { if } \sigma=\gamma \\ \left(1-\left\|\tilde{y}_{\gamma}\right\|\right) e & \text { if } \sigma=\gamma_{1} \\ 0 & \text { if } \sigma \neq \gamma, \gamma_{1}\end{cases}
$$

It is easy to check that $\|u\|=\|v\|=1$. It follows from the construction of V that

$$
\begin{aligned}
\|V(u)-V(v)\| & =\sum_{\gamma \in \Gamma}\left\|V\left(u_{\sigma}\right)-V\left(v_{\sigma}\right)\right\| \\
& =\left\|V\left(\tilde{x}_{\gamma}\right)-V\left(\tilde{y}_{\gamma}\right)\right\|+\left\|\left(1-\left\|\tilde{x}_{\gamma}\right\|\right) V(e)-\left(1-\left\|\tilde{y}_{\gamma}\right\|\right) V(e)\right\| \\
& =\left\|V\left(\tilde{x}_{\gamma}\right)-V\left(\tilde{y}_{\gamma}\right)\right\|+\left|\left\|\tilde{x}_{\gamma}\right\|-\left\|\tilde{y}_{\gamma}\right\|\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\|u-v\| & =\sum_{\sigma \in \Gamma}\left\|u_{\sigma}-v_{\sigma}\right\| \\
& =\left\|\tilde{x}_{\gamma}-\tilde{y}_{\gamma}\right\|+\left\|\left(1-\left\|\tilde{x}_{\gamma}\right\|\right) e-\left(1-\left\|\tilde{y}_{\gamma}\right\|\right) e\right\| \\
& =\left\|\tilde{x}_{\gamma}-\tilde{y}_{\gamma}\right\|+\left|\left\|\tilde{x}_{\gamma}\right\|-\left\|\tilde{y}_{\gamma}\right\|\right| .
\end{aligned}
$$

Since $\|V(u)-V(v)\|=\left\|V_{0}(u)-V_{0}(v)\right\|=\|u-v\|$, one can derive that

$$
\begin{equation*}
\left\|V\left(\tilde{x}_{\gamma}\right)-V\left(\tilde{y}_{\gamma}\right)\right\|=\left\|\tilde{x}_{\gamma}-\tilde{y}_{\gamma}\right\| . \tag{2.3}
\end{equation*}
$$

For any $x=\left(x_{\gamma}\right)_{\gamma \in \Gamma}, y=\left(y_{\gamma}\right)_{\gamma \in \Gamma} \in G$ and $\gamma \in \Gamma$, if $V_{0}\left(x_{\gamma}\right)-V_{0}\left(y_{\gamma}\right) \neq 0$, then by $\left(\Delta_{3}\right)$ one can choose an element $z_{\pi(\gamma)} \in S_{1}\left(G_{\pi(\gamma)}\right)$ such that

$$
\begin{aligned}
V & \left(x_{\gamma}\right)-V\left(y_{\gamma}\right) \\
& =\left\|V\left(x_{\gamma}\right)-V\left(y_{\gamma}\right)\right\|\left[\frac{1}{\left\|V\left(x_{\gamma}\right)-V\left(y_{\gamma}\right)\right\|}\left(\left\|x_{\gamma}\right\| V_{0}\left(\frac{x_{\gamma}}{\left\|x_{\gamma}\right\|}\right)-\left\|y_{\gamma}\right\| V_{0}\left(\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right)\right)\right] \\
& =\left\|V\left(x_{\gamma}\right)-V\left(y_{\gamma}\right)\right\| V_{0}\left(z_{\pi(\gamma)}\right) .
\end{aligned}
$$

On the other hand, there exists a real number $M>0$ such that $x_{\gamma} / M, y_{\gamma} / M$ have norm less than 1 for all $\gamma \in \Gamma$, which implies that, by (2.3),

$$
\begin{aligned}
\left\|V\left(x_{\gamma}\right)-V\left(y_{\gamma}\right)\right\| & =M\left\|V\left(\frac{x_{\gamma}}{M}\right)-V\left(\frac{y_{\gamma}}{M}\right)\right\|=M\left\|\frac{x_{\gamma}}{M}-\frac{y_{\gamma}}{M}\right\| \\
& =\left\|x_{\gamma}-y_{\gamma}\right\| \quad \text { for all } \gamma \in \Gamma .
\end{aligned}
$$

Then, by Lemma 2.4, one can derive that

$$
\begin{aligned}
\|V(x)-V(y)\|= & \left\|\sum_{x_{\gamma} \neq 0}\right\| x_{\gamma}\left\|V_{0}\left(\frac{x_{\gamma}}{\left\|x_{\gamma}\right\|}\right)-\sum_{y_{\gamma} \neq 0}\right\| y_{\gamma}\left\|V_{0}\left(\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right)\right\| \\
= & \left\|\sum_{\gamma \in \operatorname{supp}(x) \cap \operatorname{supp}(y)}\left(V\left(x_{\gamma}\right)-V\left(y_{\gamma}\right)\right)\right\| \\
& +\left\|\sum_{x_{\gamma} \neq 0, y_{\gamma}=0}\right\| x_{\gamma}\left\|V_{0}\left(\frac{x_{\gamma}}{\left\|x_{\gamma}\right\|}\right)\right\|+\left\|\sum_{y_{\gamma} \neq 0, x_{\gamma}=0}\right\| y_{\gamma}\left\|V_{0}\left(\frac{y_{\gamma}}{\left\|y_{\gamma}\right\|}\right)\right\| \\
= & \left\|\sum_{\gamma \in \operatorname{supp}(x) \cap \operatorname{supp}(y)}\right\| V\left(x_{\gamma}\right)-V\left(y_{\gamma}\right)\left\|V_{0}\left(z_{\pi(\gamma)}\right)\right\| \\
& +\sum_{x_{\gamma} \neq 0, y_{\gamma}=0}\left\|x_{\gamma}\right\|+\sum_{y_{\gamma} \neq 0, x_{\gamma}=0}\left\|y_{\gamma}\right\| \\
= & \sum_{\gamma \in \operatorname{supp}(x) \cap \operatorname{supp}(y)}\left\|V\left(x_{\gamma}\right)-V\left(y_{\gamma}\right)\right\| \\
& +\sum_{x_{\gamma} \neq 0, y_{\gamma}=0}\left\|x_{\gamma}\right\|+\sum_{y_{\gamma} \neq 0, x_{\gamma}=0}\left\|y_{\gamma}\right\| \\
= & \sum_{\gamma \in \Gamma}\left\|x_{\gamma}-y_{\gamma}\right\|=\|x-y\|,
\end{aligned}
$$

and this shows that V is an isometry from G into E.

Remark 2.8. We can obtain condition $\left(\Delta_{1}\right)$ from conditions $\left(\Delta_{2}\right)$ and $\left(\Delta_{3}\right)$. By Lemma 2.4, we can see that the condition $\left(\Delta_{2}\right)$ can be replaced by the following condition $\left(\Delta_{2}^{\prime}\right)$:
$\left(\Delta_{2}^{\prime}\right)$ For any $x_{\gamma} \in S_{1}\left(G_{\gamma}\right)$ and $y \in S_{1}(G)$ with $x_{\gamma} \perp y$, if $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ with $\left|\lambda_{1}\right|+\left|\lambda_{2}\right|=1$, we have that $\lambda_{1} V_{0}\left(x_{\gamma}\right)+\lambda_{2} V_{0}(y) \in V_{0}\left[S_{1}(G)\right]$.
Remark 2.9. If, in addition, V_{0} is surjective, then it follows from the Mazur-Ulam theorem that the extension V of V_{0} is a linear isometry.

Corollary 2.10. Suppose that E is a normed space, and suppose that V_{0} is an isometric mapping from $S_{1}\left[\ell^{1}(\Gamma)\right]$ into $S_{1}(E)$ satisfying the following condition:
$\left(\Delta_{2}^{\prime \prime}\right)$ If $\gamma_{1}, \gamma_{2} \in \Gamma$ and $\gamma_{1} \neq \gamma_{2}$, then for any $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ with $\left|\lambda_{1}\right|+\left|\lambda_{2}\right|=1$ we have that $\lambda_{1} V_{0}\left(e_{\gamma_{1}}\right)+\lambda_{2} V_{0}\left(e_{\gamma_{2}}\right) \in V_{0}\left[S_{1}\left(\ell^{1}(\Gamma)\right)\right]$.
Then V_{0} can be extended to be an operator $V: \ell^{1}(\Gamma) \rightarrow E$, defined on the whole space $\ell^{1}(\Gamma)$. Furthermore, if V_{0} is a surjective operator, then V_{0} can be extended to be a linear isometry from $\ell^{1}(\Gamma)$ to E.

Remark 2.11. Let $\ell_{(n)}^{1}$ be the n-dimensional Banach spaces with the ℓ^{1}-norm. Define an isometric mapping V_{0} from $S_{1}\left(\ell_{(2)}^{1}\right)$ into $S_{1}\left(\ell_{(3)}^{1}\right)$ by

$$
V_{0}\left(\xi_{1}, \xi_{2}\right)=\left\{\begin{array}{ll}
\left(0, \xi_{1}, \xi_{2}\right) & \text { if } \xi_{1}<0, \\
\left(\xi_{1}, 0, \xi_{2}\right) & \text { if } \xi_{1} \geq 0,
\end{array} \quad \forall\left(\xi_{1}, \xi_{2}\right) \in S_{1}\left(\ell_{(2)}^{1}\right)\right.
$$

Then V_{0} can be extended to be an isometric mapping defined on $\ell_{(2)}^{1}$ in the canonical way, but it is not linear.

In particular, if E is the ℓ^{1}-sum of strictly convex normed spaces, then, by Theorem 2.7, we can conclude the main result (Theorem 6) of [10].

Corollary 2.12. Suppose that $\left(E_{\gamma}\right)_{\gamma \in \Gamma}$ and $\left(F_{\delta}\right)_{\delta \in \Delta}$ are sets of strictly convex normed spaces. Let $E=\left(\sum_{\gamma \in \Gamma} E_{\gamma}\right)_{\ell^{1}}$ and $F=\left(\sum_{\delta \in \Delta} F_{\delta}\right)_{\ell^{1}}$. If V_{0} is an isometry from $S_{1}(E)$ into $S_{1}(F)$ satisfying $-V_{0}\left[S_{1}(E)\right] \subset V_{0}\left[S_{1}(E)\right]$ and, for any $\gamma \in \Gamma$, $x_{\gamma} \in S_{1}\left(E_{\gamma}\right)$ and $y \in S_{1}(E)$ with $x_{\gamma} \perp y$, then we have that $\lambda_{1} V_{0}\left(x_{\gamma}\right)+\lambda_{2} V_{0}(y) \in$ $V_{0}\left[S_{1}(E)\right]$, where $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ with $\left|\lambda_{1}\right|+\left|\lambda_{2}\right|=1$. Then V_{0} can be extended to an isometry defined on the whole space E. In particular, if V_{0} is a surjective isometry, then it must be extended to be a linear surjective isometry from E onto F.

For any index set Γ and any Banach space G, it is well known that $\ell^{1}(\Gamma, G)=$ $\ell^{1}(\Gamma) \otimes_{\pi} G$ (see [6, p. 20]). So we can derive a more general case of Theorem 2.7.

Corollary 2.13. Suppose that Γ is an index set and that G is a strictly convex Banach space. Let V_{0} be an isometric mapping from the unit sphere of $\ell^{1}(\Gamma) \otimes_{\pi} G$ into the unit sphere of another Banach space E. If V_{0} satisfies $\left(\Delta_{2}\right)$ and (Δ_{3}), then it can be extended to be an isometry defined on $\ell^{1}(\Gamma) \otimes_{\pi} G$.

Acknowledgments. This work was supported in part by the National Natural Science Foundation of China (11301285, 11371201).

I would like to express my thanks to the referee for several helpful comments that improved the presentation of this paper.

References

1. G. Ding, On isometric extension problem between two unit spheres, Sci. China Ser. A 52 (2009), no. 10, 2069-2083. Zbl 1190.46013. MR2550266. DOI 10.1007/s11425-009-0156-x. 34
2. G. Ding and J. Li, Isometries between unit spheres of the ℓ^{∞}-sum of strictly convex normed spaces, Bull. Aust. Math. Soc. 88 (2013), no. 3, 369-375. Zbl 1291.46007. MR3189286. DOI 10.1017/S000497271300018X. 34
3. V. Kadets and M. Martin, Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces, J. Math. Anal. Appl. 396 (2012), no. 2, 441-447. Zbl 1258.46004. MR2961236. DOI 10.1016/j.jmaa.2012.06.031. 34
4. R. Liu, Isometries between the unit spheres of ℓ^{β}-sum of strictly convex normed spaces, Acta Math Sinica Chinese Series 50 (2007), no. 1, 227-232. Zbl 1122.46302. MR2305815. 34
5. P. Mankiewicz, On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 367-371. Zbl 0234.46019. MR0312214. 33
6. R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, Berlin, 2002. Zbl 1090.46001. MR1888309. DOI 10.1007/978-1-4471-3903-4. 40
7. R. Tanaka, Tingley's problem on symmetric absolute normalized norms on \mathbb{R}^{2}, Acta Math. Sinica, English Series 30 (2014), no. 8, 1324-1340. Zbl pre06342505. MR3229144. DOI 10.1007/s10114-014-3491-y. 34
8. R. Tanaka, A further property of spherical isometries, Bull. Aust. Math. Soc. 90 (2014), no. 2, 304-310. Zbl pre06355707. MR3252013. DOI 10.1017/S0004972714000185. 34
9. D. Tingley, Isometries of the unit spheres, Geom. Dedicate 22 (1987), no. 3, 371-378. MR0887583. DOI 10.1007/BF00147942. 33
10. R. Wang and A. Orihara, Isometries between the unit spheres of ℓ^{1}-sum of strictly convex normed spaces, Acta Sci. Natur. Univer. Nankai 35 (2002), 38-42. 34, 40

School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China.

E-mail address: leilee@nankai.edu.cn

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Mar. 4, 2015; Accepted Apr. 23, 2015.
 2010 Mathematics Subject Classification. Primary 46B04; Secondary 47B37.
 Keywords. isometries, unit spheres, strictly convex spaces.

